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This supplementary appendix contains (i) additional theoretical results related to estimation and

inference of the parameters of interest in the main text, (ii) an explanation for how to extend the

arguments in the main text to the case where the timing of the policy can vary across locations,

(iii) additional discussion regarding the compatibility of the unconfoundedness approach with several

extensions to the Stochastic SIRD Model for Untreated Potential Outcomes, and (iv) additional

details about the application on shelter-in-place orders.

SA Additional Theoretical Results

This section contains several additional results related to verifying double robustness and infer-

ence. The results in this section are, for the most part, not new, but rather slightly adapt existing

arguments to the particular case considered in the paper. We provide these results primarily to

complete the arguments presented in the paper.

We consider the case where a researcher implements parametric working models for the propensity

score and outcome regression. We denote the propensity score working model by p(Ft∗−1; π) where

π is a finite dimensional parameter, and we denote the pseudo true value of the parameter by π∗

and the estimated value of the parameter by π̂. Likewise, we denote the outcome regression working

model by mC
0,t(Ft∗−1;µt) where µt is a finite dimensional parameter, and we denote the pseudo true

value of the parameter by µ∗t and the estimated value of the parameter by µ̂t.

We make the following assumptions

Assumption SA.1 (Random Sample). The data consists of {Yl1, Yl2, . . . , YlT ,Fl1,Fl2, . . . ,FlT , Dl}nl=1

which are iid across locations.

Assumption SA.2 (Assumptions for propensity score). (i) p(Ft∗−1; π) = Λ(hps(Ft∗−1)′π) is a para-

metric working model for p(Ft∗−1) where Λ(z) = 1/(1+exp(z)) and hps allows for transformations of
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Ft∗−1, (ii) the pseudo true value π∗ is in the interior of the parameter space Π which is a compact sub-

set of Rk (k being the dimension of hps(Ft∗−1)), (iii) Qps := E[hps(Ft∗−1)hps(Ft∗−1)′Λ(hps(Ft∗−1)′π∗)(1−
Λ(hps(Ft∗−1)′π∗)] is positive definite, and (iv) E [||hps(Ft∗−1)||4] <∞.

Assumption SA.3 (Assumptions for outcome regression). For all t = t∗, . . . , T , (i) m0,t(Ft∗−1;µt) =

hor(Ft∗−1)′µt is a parametric working model for mC
0,t(Ft∗−1) and hor allows for transformations of

Ft∗−1, (ii) Q0,or := E[hor(Ft∗−1)hor(Ft∗−1)′|D = 0] is positive definite, (iii) E[C4
t |D = 0] < ∞, (iv)

E [||hor(Ft∗−1)||4|D = 0] <∞

Assumption SA.4. For all t = t∗, . . . , T , at least one (but not necessarily both) of the following

conditions hold: (i) p(Ft∗−1) = p(Ft∗−1; π∗), (ii) mC
0,t(Ft∗−1) = mC

0,t(Ft∗−1;µ∗t )

Assumptions SA.1 to SA.4 are all standard assumptions. Assumption SA.2 says that we use a

logit model for the propensity score working model and invokes standard conditions for logit models.

Assumption SA.3 says that we use a linear model for the outcome regression working model and

invokes standard assumptions for linear models. Assumption SA.4 says that at least one of the

propensity score working model or outcome regression working model is correctly specified.

It is helpful to define some additional notation regarding the weights in Theorem 2. First,

ω1(D) :=
D

E[D]
and ω̂1(D) :=

D

D̄

where D̄ = n−1
∑n

l=1Dl. In addition, define

ω̃0(D,Ft∗−1, π) :=
p(Ft∗−1; π)

(1− p(Ft∗−1; π))
(1−D)

ω0(D,Ft∗−1, π) :=
ω̃0(D,Ft∗−1, π)

E[ω̃0(D,Ft∗−1, π)]

ω̂0(D,Ft∗−1; π) :=
ω̃0(D,Ft∗−1; π)

1
n

∑n
h=1 ω̃0(Dh,Fht∗−1; π)

We also denote the estimated weights by ω̂(D,Ft∗−1, π̂) = ω̂1(D)− ω̂0(D,Ft∗−1, π̂).

The next result shows that the estimand in Equation (9) in Theorem 2 is indeed doubly robust.

Proposition SA.1. Under the Stochastic SIRD Model for Untreated Potential Outcomes and As-

sumptions 1 and SA.1 to SA.4,

ÂTT
C

t =
1

n

n∑
l=1

ω̂(Dl,Flt∗−1, π̂)(Clt −mC
0,t(Flt∗−1; µ̂t)

p−→ ATTCt

Proof. Under Assumptions SA.2 and SA.3, it immediately holds by the weak law of large numbers

2



and continuous mapping theorem that

ÂTT
C

t

p−→ E
[
ω(D,Ft∗−1, π∗)(Ct −mC

0,t(Ft∗−1;µ∗t ))
]

It remains to show that this expression is equal to ATTCt .

Case 1: Propensity Score is Correctly Specified

First, consider the case where the propensity score is correctly specified so that p(Ft∗−1) =

p(Ft∗−1; π∗), but where the outcome regression may be misspecified so that it can be the case that

mC
0,t(Ft∗−1) 6= mC

0,t(Ft∗−1;µ∗t ). In this case, ω(D,Ft∗−1) = ω(D,Ft∗−1; π∗). From the arguments in

Equation (B.10) in the proof of Theorem 2, it holds that

ATTCt = E[ω(D,Ft∗−1)Ct] (SA.1)

Then, notice that

E[ω(D,Ft∗−1)mC
0,t(Ft∗−1;µ∗t )] = E

[
mC

0,t(Ft∗−1;µ∗t )E[ω(D,Ft∗−1)|Ft∗−1]
]

= 0 (SA.2)

where the last equality holds by Equation (B.11).

Combining, Equations (SA.1) and (SA.2) implies the result for this part when the propensity

score is correctly specified.

Case 2: Outcome Regression is Correctly Specified

Next, we consider the case where the outcome regression is correctly specified so thatmC
0,t(Ft∗−1) =

mC
0,t(Ft∗−1;µ∗t ), but the propensity score may not be correctly specified so that it may be the case

that p(Ft∗−1) 6= p(Ft∗−1; π∗). In this case,

E
[
ω(D,Ft∗−1; π∗)(Ct −mC

0,t(Ft∗−1;µ∗t ))
]

= E
[
ω(D,Ft∗−1; π∗)(Ct −mC

0,t(Ft∗−1))|D = 1
]
E[D]

+ E
[
ω(D,Ft∗−1; π∗)(Ct −mC

0,t(Ft∗−1))|D = 0
]

(1− E[D])

:= A+B

where the first equality holds by the law of iterated expectations. We consider Term A and Term B

in turn next. Next, notice that

A = E[(Ct −mC
0,t(Ft∗−1))|D = 1]

= E[Ct|D = 1]− E [E[Ct(0)|Ft∗−1, D = 1]|D = 1]

= ATTCt
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where the first equality holds by the definition of the weights (and by the expectation being conditional

on D = 1), the second equality holds by unconfoundedness (which holds here by Theorem 2), and

the last equality holds by the law of iterated expectations and the definition of ATTCt .

Finally, consider Term B

B = E
[
ω(D,Ft∗−1; π∗)(E[Ct|Ft∗−1, D = 0]−mC

0,t(Ft∗−1))|D = 0
]

(1− E[D])

= 0

where the first equality holds by the law of iterated expectations and the last equality holds by the

definition of mC
0,t(Ft∗−1).

Combining the results for Term A and Term B implies the result for this part when the outcome

regression is correctly specified.

Next, we provide additional results related to conducting inference. For this part, we primar-

ily follow Sant’Anna and Zhao (2020) who consider similar doubly robust estimands to the ones

considered in the current paper. Interestingly, that paper considers estimation and inference in a

(conditional) difference in differences setup; however, most of their arguments apply to the current

paper with only minor modifications.

Notice that, under Assumptions SA.1 to SA.3,

√
n (π̂ − π∗) = Q−1ps

1√
n

n∑
l=1

ιps(Dl,Flt∗−1) + op(1) (SA.3)

√
n (p(Ft∗−1; π̂)− p(Ft∗−1; π∗)) = κps(Ft∗−1)′Q−1ps

1√
n

n∑
l=1

ιps(Dl,Flt∗−1) + op(1) (SA.4)

where ιps(D,Ft∗−1) = hps(Ft∗−1)(D− p(Ft∗−1; π∗)) and κps(Ft∗−1) = λ(hps(Ft∗−1)′π∗)hps(Ft∗−1) with

λ the derivative of Λ. Similarly,

√
n (µ̂t − µ∗t ) = Q−10,or

1√
n

n∑
l=1

ιor(Clt, Dl,Flt∗−1) + op(1) (SA.5)

√
n
(
mC

0,t(Ft∗−1; µ̂t)−mC
0,t(Ft∗−1;µ∗t )

)
= hor(Ft∗−1)′Q−10,or

1√
n

n∑
l=1

ιor(Clt, Dl,Flt∗−1) + op(1) (SA.6)

where ιor(Ct, D,Ft∗−1) = (1−D)

(1−E[D])1/2
hor(Ft∗−1)(Ct − hor(Ft∗−1)′µ∗t ).

Next, we provide an asymptotically linear representation for estimating ATTCt as well as its

limiting distribution. Before doing that, we introduce some additional notation. First, let Wt :=

(Ct, D,F ′t∗−1)′, Wlt := (Clt, Dl,F ′lt∗−1)′, and W := (W ′
t∗ , . . . ,W

′
T )′. Further, define
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ψA1,t(Wlt) := −
E
[
D(Ct −mC

0,t(Ft∗−1;µ∗t )
]

E[D]2
(Dl − E[D])

ψB1
0,t (Wlt) :=

1

E [ω̃0(D,Ft∗−1; π∗)]
E

[
(1−D)(Ct −mC

0,t(Ft∗−1;µ∗t ))
(1− p(Ft∗−1; π∗))2

κps(Ft∗−1)′
]
Q−1ps ι

ps(Dl,Flt∗−1)

ψB21
0,t (Wlt) := ζtE

[(
(1−D)

(1− p(Ft∗−1; π∗))2

)
κps(Ft∗−1)′

]
Q−1ps ι

ps(Dl,Flt∗−1)

ψB22
0,t (Wlt) := ζt (ω̃0(Dl,Flt∗−1; π∗)− E [ω̃0(D,Ft∗−1; π∗)])

ψCt (Wlt) := E [ω(Dl,Flt∗−1; π∗)hor(Flt∗−1)′]Q−10,orι
or(Clt,Flt∗−1)

ψDt (Wlt) := ω(Dl,Flt∗−1; π∗)(Clt −mC
0,t(Flt∗−1;µ∗t ))− ATTCt

and where

ζt :=
E
[
ω0(D,Ft∗−1; π∗)(Ct −mC

0,t(Ft∗−1;µ∗t ))
]

E [ω̃0(D,Ft∗−1; π∗)]

Next, define

ψt(Wlt) := ψA1,t(Wlt)− ψB1
0,t (Wlt) + ψB21

0,t (Wlt) + ψB22
0,t (Wlt)− ψCt (Wlt) + ψDt (Wlt)

and Ψ(W ) := (ψt∗(Wt∗), . . . , ψT (WT ))′. Moreover, let ATTC = (ATTCt∗ , . . . , ATT
C
T )′, and, likewise,

ÂTT
C

= (ÂTT
C

t∗ , . . . , ÂTT
C

T )′.

Proposition SA.2. Under the Stochastic SIRD Model for Untreated Potential Outcomes and As-

sumptions 1 and SA.1 to SA.4, for any t∗ ≤ t ≤ T ,

√
n(ÂTT

C

t − ATTCt ) =
1√
n

n∑
l=1

ψt(Wlt) + op(1)

In addition,

√
n(ÂTT

C
− ATTC)

d−→ N(0, V )

where V = E[Ψ(W )Ψ(W )′].

Before proving Proposition SA.2, we provide an additional helpful result that is used in the proof.
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Lemma SA.1. Under the Stochastic SIRD Model for Untreated Potential Outcomes and Assump-

tions 1 and SA.1 to SA.4,

√
n (ω̃0(D,Ft∗−1, π̂)− ω̃0(D,Ft∗−1, π∗)) =

(
(1−D)

(1− p(Ft∗−1; π∗))2

)√
n (p(Ft∗−1; π̂)− p(Ft∗−1; π∗)) + op(1)

Proof. First, notice that

√
n (ω̃0(D,Ft∗−1, π̂)− ω̃0(D,Ft∗−1, π∗))

=
√
n

(
p(Ft∗−1; π̂)

(1− p(Ft∗−1; π̂))
− p(Ft∗−1; π∗)

(1− p(Ft∗−1; π∗))

)
(1−D)

=

(
(1−D)

(1− p(Ft∗−1; π̂))(1− p(Ft∗−1; π∗))

)√
n (p(Ft∗−1; π̂)− p(Ft∗−1; π∗))

=

(
(1−D)

(1− p(Ft∗−1; π∗))2

)√
n (p(Ft∗−1; π̂)− p(Ft∗−1; π∗)) + op(1)

where the first equality holds by the definition of ω̃0, the second equality by cross-multiplying and

rearranging, and the last equality by the weak law of large numbers and the continuous mapping

theorem.

Proof of Proposition SA.2. By adding and subtracting terms (and using the result from Proposi-

tion SA.1), we can write

√
n
(
ÂTT

C

t − ATTCt
)

=
1√
n

n∑
l=1

(ω̂1(Dl)− ω1(Dl))(Clt −mC
0,t(Flt∗−1; µ̂t))

− 1√
n

n∑
l=1

(ω̂0(Dl,Flt∗−1; π̂))− ω0(Dl,Flt∗−1; π∗))(Clt −mC
0,t(Flt∗−1; µ̂t))

− 1√
n

n∑
l=1

ω(Dl,Flt∗−1; π∗)(mC
0,t(Flt∗−1; µ̂t)−mC

0,t(Flt∗−1;µ∗t ))

+
1√
n

n∑
l=1

ω(Dl,Flt∗−1; π∗)(Clt −mC
0,t(Flt∗−1;µ∗t ))− ATTCt

:= A−B − C +D

Term A involves the estimation effect of the first component of the weights, Term B involves the

estimation effect of the second component of the weights, Term C involves the estimation effect of

the outcome regression, and Term D is the estimation effect if the weights and outcome regression

were known. We consider each of these terms in turn next.
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First, we consider Term A. Notice that we can re-write it as

A =
1√
n

n∑
l=1

(ω̂1(Dl)− ω1(Dl))(Clt −mC
0,t(Flt∗−1;µ∗t ))

− 1√
n

n∑
l=1

(ω̂1(Dl)− ω1(Dl))(m
C
0,t(Flt∗−1; µ̂t)−mC

0,t(Flt∗−1;µ∗t ))

= A1 − A2

Now consider Term A1.

A1 =
1√
n

n∑
l=1

(
Dl

D̄
− Dl

E[D]

)
(Clt −mC

0,t(Flt∗−1;µ∗t ))

= − 1√
n

n∑
l=1

Dl
(D̄ − E[D])

D̄E[D]
(Clt −mC

0,t(Flt∗−1;µ∗t ))

= − 1√
n

n∑
l=1

E
[
D(Ct −mC

0,t(Ft∗−1;µ∗t )
]

E[D]2
(Dl − E[D]) + op(1)

=
1√
n

n∑
l=1

ψA1,t(Wlt) + op(1)

where the first equality holds by the definition of the weights, the second equality holds by combining

terms, the third equality holds by the weak law of large numbers and continuous mapping theorem,

and the last equality by the definition of ψA1,t.

Next, consider Term A2,

A2 =
1

n

n∑
l=1

(
Dl

D̄
− Dl

E[D]

)
hor(Flt∗−1)′

√
n(µ̂t − µ∗t ) + op(1)

= − 1

n

n∑
l=1

(
Dl(D̄ − E[D])

D̄E[D]

)
hor(Flt∗−1)′

√
n(µ̂t − µ∗t ) + op(1)

= −E[Dhor(Ft∗−1)′]
E[D]2

(D̄ − E[D])
√
n(µ̂t − µ∗t ) + op(1)

= op(1)

where the first equality holds from the definitions of the weights and by Equation (SA.6), the second

equality holds by combining terms, the third equality by the weak law of large numbers and continuous

mapping theorem, and the last equality holds because (D̄−E[D]) = op(1) and
√
n(µ̂t−µ∗t ) = Op(1).
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Next, consider Term B,

B =
1√
n

n∑
l=1

(
ω̃0(Dl,Flt∗−1; π̂)− ω̃0(Dl,Flt∗−1; π∗)

1
n

∑n
h=1 ω̃0(Dh,Fht∗−1; π̂)

)
(Clt −mC

0,t(Flt∗−1; µ̂t))

+
1√
n

n∑
l=1

(
ω̃0(Dl,Flt∗−1; π∗)

1
n

∑n
h=1 ω̃0(Dh,Fht∗−1; π̂)

− ω̃0(Dl,Flt∗−1; π∗)
E [ω̃0(D,Ft∗−1; π∗)]

)
(Clt −mC

0,t(Flt∗−1; µ̂t))

:= B1 +B2

For Term B1,

B1 =
1√
n

n∑
l=1

(
ω̃0(Dl,Flt∗−1; π̂)− ω̃0(Dl,Flt∗−1; π∗)

E [ω̃0(D,Ft∗−1; π∗)]

)
(Clt −mC

0,t(Flt∗−1;µ∗t )) + op(1)

=
1

n

n∑
l=1

(
(1−Dl)(Clt −mC

0,t(Flt∗−1;µ∗t ))
(1− p(Flt∗−1; π∗))2E [ω̃0(D,Ft∗−1; π∗)]

)
√
n (p(Flt∗−1; π̂)− p(Flt∗−1; π∗)) + op(1)

=
1

E [ω̃0(D,Ft∗−1; π∗)]
E

[
(1−D)(Ct −mC

0,t(Ft∗−1;µ∗t ))
(1− p(Ft∗−1; π∗))2

κps(Ft∗−1)′
]
Q−1ps

1√
n

n∑
l=1

ιps(Dl,Flt∗−1) + op(1)

=
1√
n

n∑
l=1

ψB1
0,t (Wlt) + op(1)

where the first equality follows from similar arguments as above, the second equality uses Lemma SA.1,

and the last equality holds from Equation (SA.4) and by the weak law of large numbers and contin-

uous mapping theorem.

Next, for term B2,

B2 = − 1

n

n∑
l=1

ω0(Dl,Flt∗−1; π∗)(Clt −mC
0,t(Flt∗−1; µ̂t))

1
n

∑n
h=1 ω̃0(Dh,Fht∗−1; π̂)

(
1√
n

n∑
h=1

ω̃0(Dh,Fht∗−1; π̂)− E [ω̃0(D,Ft∗−1; π∗)]

)

= −
E
[
ω0(D,Ft∗−1; π∗)(Ct −mC

0,t(Ft∗−1;µ∗t ))
]

E [ω̃0(D,Ft∗−1; π∗)]

(
1√
n

n∑
h=1

ω̃0(Dh,Fht∗−1; π̂)− E [ω̃0(D,Ft∗−1; π∗)]

)
+ op(1)

= −
E
[
ω0(D,Ft∗−1; π∗)(Ct −mC

0,t(Ft∗−1;µ∗t ))
]

E [ω̃0(D,Ft∗−1; π∗)]

(
1√
n

n∑
h=1

ω̃0(Dh,Fht∗−1; π̂)− ω̃0(Dh,Fht∗−1; π∗)

)

−
E
[
ω0(D,Ft∗−1; π∗)(Ct −mC

0,t(Ft∗−1;µ∗t ))
]

E [ω̃0(D,Ft∗−1; π∗)]

(
1√
n

n∑
h=1

ω̃0(Dh,Fht∗−1; π∗)− E [ω̃0(D,Ft∗−1; π∗)]

)
+ op(1)

:= −B21 −B22

where the first equality holds by cross-multiplying and the definition of ω0, the second equality holds

by the weak law of large numbers and the continuous mapping theorem, and the third equality by

adding and subtracting terms.
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For B21, notice that

1√
n

n∑
h=1

ω̃0(Dh,Fht∗−1; π̂)− ω̃0(Dh,Fht∗−1; π∗)

=
1

n

n∑
h=1

(
(1−Dh)

(1− p(Fht∗−1; π∗))2

)√
n (p(Fht∗−1; π̂)− p(Fht∗−1; π∗)) + op(1)

=
1

n

n∑
h=1

(
(1−Dh)

(1− p(Fht∗−1; π∗))2

)
κps(Fht∗−1)′Q−1ps

1√
n

n∑
l=1

ιps(Dl,Flt∗−1) + op(1)

= E
[(

(1−D)

(1− p(Ft∗−1; π∗))2

)
κps(Ft∗−1)′

]
Q−1ps

1√
n

n∑
l=1

ιps(Dl,Flt∗−1) + op(1)

where the first equality holds by Lemma SA.1, the second equality holds by Equation (SA.4), and

the last equality holds by the weak law of large numbers and continuous mapping theorem. This

implies that

B21 =
1√
n

n∑
l=1

ψB21
0,t (Wlt) + op(1)

For B22, notice that it is immediately given by

B22 =
1√
n

n∑
l=1

ψB22
0,t (Wlt)

Now, we turn to Term C.

C =
1

n

n∑
l=1

ω(Dl,Flt∗−1; π∗)hor(Flt∗−1)′Q−10,or

1√
n

n∑
h=1

ιor(Cht, Dh,Fht∗−1) + op(1)

= E [ω(D,Ft∗−1; π∗)hor(Ft∗−1)′]Q−10,or

1√
n

n∑
l=1

ιor(Clt, Dl,Flt∗−1) + op(1)

=
1√
n

n∑
l=1

ψCt (Wlt) + op(1)

where the first equality holds by Equation (SA.6) and the second equality by the weak law of large

numbers and continuous mapping theorem.

Finally, for Term D, notice that it is immediately given by

D =
1√
n

n∑
l=1

ψDt (Wlt)

Combining the results for Terms A-D establishes the first part of the result. Asymptotic normality

holds by applying the central limit theorem jointly for t = t∗, . . . , T .
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In order to actually conduct inference, we use the multiplier bootstrap. To start with, we describe

the multiplier bootstrap procedure that we use. First, define Ψ̂ as the sample analogue of Ψ. Next,

let ξ denote an n-dimensional vector of iid random variables with mean zero, variance one, finite

third moment, and that is independent of the original data (e.g., two common choices for ξ are either

iid draws from N(0, 1) or to draw ξ equal to −1 or 1 each with probability 1/2). Then, we consider

a bootstrapped version of ÂTT
C

given by

ÂTT
C,∗

= ÂTT
C

+
1

n

n∑
l=1

ξlΨ̂(Wl)

Relative to the more common nonparametric bootstrap, there are two main advantages of the mul-

tiplier bootstrap. First, it is very fast to compute as it essentially only involves making random

draws from a simple distribution rather than re-estimating ÂTT
C

at every bootstrap iteration. Sec-

ond, since the multiplier bootstrap perturbs the influence function rather than re-drawing data, this

approach does not run into the practical problem of particular bootstrap iterations not being able

to estimate the parameters of interest (e.g., this can occur when there are discrete covariates where

some combinations occur infrequently).

The next result shows that the proposed multiplier bootstrap procedure follows the same limiting

distribution as the original estimator of ATTC .

Proposition SA.3. Under the Stochastic SIRD Model for Untreated Potential Outcomes and As-

sumptions 1 and SA.1 to SA.4,

√
n(ÂTT

C,∗
− ÂTT

C
)
d∗−→ N(0, V )

where V is the same as in Proposition SA.2 and
d∗−→ denotes convergence in bootstrap distribution.

Proof. Given the results in Proposition SA.2, the proof of Proposition SA.3 follows from the same

arguments as in the proof of Theorem 3 in Callaway and Sant’Anna (2021).

Recall that ATTC = (ATTt∗ , . . . , ATT
C
T )′ so that the results in Propositions SA.2 and SA.3 hold

jointly across post-treatment periods. It is therefore straightforward to construct uniform confidence

bands that asymptotically cover ATTC simultaneously with fixed probability 1 − α. In particular,

one can construct a uniform confidence band as follows.

Algorithm SA.1 (Multiplier Bootstrap for Uniform Confidence Band).

Step 1: Draw ξl, l = 1, . . . , n which are iid across l, have mean 0, variance 1, and finite third

moment
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Step 2: Set ÂTT
C,∗

= ÂTT
C

+
1

n

n∑
l=1

ξlΨ̂(Wl).

Step 3: For t = t∗, . . . , T , compute R̂∗t =
√
n(ÂTT

C,∗
t − ÂTT

C

t ) where ÂTT
C,∗
t is a particular

element of ÂTT
C,∗

from Step 2.

Repeat Steps 1-3 B times where B is the (large) number of bootstrap iterations.

Step 4: Compute V̂
1/2
t = (q0.75,t − q0.25,t)/(z0.75 − z0.25) where qp,t is the pth quantile of R̂∗t across

the B bootstrap iterations and zp is the pth quantile of the standard normal distribution.

Step 5: For each bootstrap draw, compute sup-t = maxt∈{t∗,...,T } |R̂∗t |V̂
−1/2
t

Step 6: Construct the critical value ĉ1−α as the (1−α) quantile of the B bootstrap draws of sup-t.

Step 7: Construct the uniform confidence band Ĉt = [ÂTT
C

t ± ĉ1−αV̂
−1/2
t /

√
n]

The next result shows that the uniform confidence band from Algorithm SA.1 has the asymptot-

ically correct coverage.

Proposition SA.4. Under the Stochastic SIRD Model for Untreated Potential Outcomes and As-

sumptions 1 and SA.1 to SA.4,

P (ATTCt ∈ Ĉt for all t ∈ {t∗, . . . , T })→ 1− α

as n→∞.

Proof. Given the result in Proposition SA.3, the result holds by the same argument as for Theorem

3 (and Corollary 1) in Callaway and Sant’Anna (2021).

To conclude, we provide the limiting distribution and briefly discuss an inference procedure for

the adjusted regression DID estimator of ATT Y discussed in the main text. The arguments only

require a minor extension of the results for ATTC given above; therefore, we only briefly sketch the

additional arguments for adjusted regression DID here.

For the arguments below, suppose that the Stochastic SIRD Model for Untreated Potential Out-

comes, Assumption 1, Assumption SA.1, assumptions analogous to Assumptions SA.2 to SA.4

but for current Covid-19 cases rather than cumulative cases all hold. In addition, for all t =

t∗, . . . , T , we assume that Q0,I
t := E[(1,∆(t∗−1,t)It)

′(1,∆(t∗−1,t)It)|D = 0] is positive definite and

that E[∆(t∗−1,t)Y 4
t |D = d] <∞ for d ∈ {0, 1}.

11



We also define

ψAY,t(Wlt) := −
(
E[D∆(t∗−1,t)Yt]

E[D]2
(Dl − E[D])

)
+

(
Dl

E[D]
∆(t∗−1,t)Ylt − E

[
D

E[D]
∆(t∗−1,t)Yt

])
ψBY,t(Wlt) := ητ,α(Dl,∆

(t∗−1,t)Ilt,∆
(t∗−1,t)Ylt)

′(1,E[∆(t∗−1,t)It(0)|D = 1])′

ψCY,t(Wlt) := α

{
−
(
E[D∆(t∗−1,t)It]

E[D]2
(Dl − E[D])

)
+

(
Dl

E[D]
∆(t∗−1,t)Ilt − E

[
D

E[D]
∆(t∗−1,t)It

])
− ψI,t(Wlt)

}
where ητ,α(D,∆(t∗−1,t)It,∆

(t∗−1,t)Yt) is defined below and where ψIt is the same as ψt in Proposi-

tion SA.2 except with I (the current number of Covid-19 cases) replacing C (the cumulative number

of Covid-19 cases) everywhere. Next, define

ψY,t(Wlt) := ψAY,t(Wlt)− ψBY,t(Wlt)− ψCY,t(Wlt)

and ΨY (W ) = (ψY,t∗(Wt∗), . . . , ψY,T (WT ))′. Define ATT Y = (ATT Yt∗ , . . . , ATT
Y
T )′ and ÂTT

Y
=

(ÂTT
Y

t∗ , . . . , ÂTT
Y

T )′. Then, the following results all hold using essentially the same arguments as

above:

√
n(ÂTT

Y

t − ÂTT
Y

t ) =
1√
n

n∑
l=1

ψY,t(Wlt) + op(1)

Moreover,

√
n(ÂTT

Y
− ATT Y )

d−→ N(0, VY )

where VY = E[ΨY (W )ΨY (W )′]. In addition, the multiplier bootstrap can be used to conduct inference

and uniform confidence bands can be constructed analogously as above. We show the result for the

influence function below. The remaining results hold immediately from the same arguments as above

given the distinct expression for the influence function in this case.

Start by noticing that

√
n(ÂTT

Y

t − ATT Yt ) =
1√
n

n∑
l=1

(
ω̂1(Dl)∆

(t∗−1,t)Ylt − E
[
D

E[D]
∆(t∗−1,t)Yt

])
−
√
n
(

(ˆ̃τt − τ̃t) + (α̂− α)Ê[∆(t∗−1,t)It(0)|D = 1]
)

− α
√
n
(
Ê[∆(t∗−1,t)It(0)|D = 1]− E[∆(t∗−1,t)It(0)|D = 1]

)
:= A−B − C

12



where

Ê[∆(t∗−1,t)It(0)|D = 1] =
1

n

n∑
l=1

(
Dl

D̄
∆(t∗−1,t)Ilt − ω̂(Dl,Flt∗−1)(Ilt − m̂C

0,t(Flt∗−1))
)

Following similar arguments as above, it follows that

A = −E[D∆(t∗−1,t)Yt]

E[D]2
1√
n

n∑
l=1

(Dl − E[D]) +
1√
n

n∑
l=1

(
Dl

E[D]
∆(t∗−1,t)Ylt − E

[
D

E[D]
∆(t∗−1,t)Yt

])
+ op(1)

=
1√
n

n∑
l=1

ψAY,t(Wlt) + op(1)

For term B, first notice that

√
n

(
ˆ̃τt − τ̃t
α̂− α

)
= Q0,I

t

−1 1√
n

n∑
l=1

(1−Dl)

(1− E[D])1/2
(1,∆(t∗−1,t)Ilt)

′∆(t∗−1,t)Ylt + op(1)

:=
1√
n

n∑
l=1

ητ,α(Dl,∆
(t∗−1,t)Ilt,∆

(t∗−1,t)Ylt) + op(1)

Thus,

B =
1√
n

n∑
l=1

ητ,α(Dl,∆
(t∗−1,t)Ilt,∆

(t∗−1,t)Ylt)
′(1,E[∆(t∗−1,t)It(0)|D = 1])′ + op(1)

=
1√
n

n∑
l=1

ψBY,t(Wlt) + op(1)

For Term C, first notice that

√
n
(
Ê[∆(t∗−1,t)It(0)|D = 1]− E[∆(t∗−1,t)It(0)|D = 1]

)
=

1√
n

n∑
l=1

(
ω̂1(Dl)∆

(t∗−1,t)Ilt − E
[
D

E[D]
∆(t∗−1,t)It

])
− 1√

n

n∑
l=1

(
ω̂(Dl,Flt∗−1)(Ilt − m̂I

0,t(Flt∗−1))− E
[
ω(D,Ft∗−1)(It −mI

0,t(Ft∗−1))
] )

:= C1 − C2

Using the same arguments as above, it immediately follows that

C1 = −E[D∆(t∗−1,t)It]

E[D]2
1√
n

n∑
l=1

(Dl − E[D]) +
1√
n

n∑
l=1

(
Dl

E[D]
∆(t∗−1,t)Ilt − E

[
D

E[D]
∆(t∗−1,t)It

])

For C2, notice that it is exactly the same (up to I replacing C) as in Proposition SA.2, which implies
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that

C2 =
1√
n

n∑
l=1

ψIt (Wlt) + op(1)

Multiplying the expressions for C1 and C2 by α implies that

C =
1√
n

n∑
l=1

ψCY,t(Wlt) + op(1)

Plugging back in the expressions for Terms A, B, and C provides the influence function.

SB Variation in Treatment Timing

In the application in the paper, an extra complication is that there is variation in the timing

of implementing Covid-related policies across different states. In this section, we provide additional

details along these lines that expand and formalize the discussion in Remark 2 in the main text.

For simplicity, we focus on the case where the researcher is interested in the effect of the policy on

cumulative Covid-19 cases rather than economic outcomes, but we note that analogous arguments

to the ones presented here apply to that case as well. We make the following assumption

Assumption SB.1 (Staggered Treatment Adoption). For all t = 2, . . . , T , Dlt−1 = 1 =⇒ Dlt = 1

Staggered treatment adoption says that once a location becomes treated, they remain treated in

subsequent periods. This assumption applies for shelter-in-place orders at least over the relatively

short time horizons that we consider in the application; even in cases where a location removes an

early pandemic policy, these policies are arguably “scarring” in the sense that locations do not go

back to an “untreated state” in periods after they removed the policy (see Sun and Abraham (2021)

for a good discussion of how scarring policies fit into the framework of staggered treatment adoption).

To deal with variation in treatment timing across locations, for this section, we slightly modify

the notation relative to the main text. First, we define a location’s “group” by the time period when

it becomes treated; that is, we set Gl to be the time period when location l implements the policy.

For locations that do not implement the policy in any time period, we set Gl = 0; to conserve on

notation below, it is helpful to additional define Ul = 1{Gl = 0}. Under Assumption SB.1, knowing a

location’s group implies that one knows that location’s entire path of participating in the treatment.

Because there is variation in treatment timing, in this section, we index potential outcomes by

group; that is, let Slt(g), Ilt(g), Rlt(g), δlt(g), and Clt(g) denote the values of the pandemic-related

outcomes for location l in time period t if the policy had been implemented in time period g for

that location. In this notation, as in the main text, untreated potential outcomes can be written

as Slt(0), Ilt(0), Rlt(0), δlt(0), and Clt(0). In this setup, the researcher observes Slt = Slt(Gl), Ilt =

Ilt(Gl), Rlt = Rlt(Gl), δlt = δlt(Gl), and Clt = Clt(Gl).
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Assumption SB.2 (No Anticipation). Slt(Gl) = Slt(0), Ilt(Gl) = Ilt(0), Rlt(Gl) = Rlt(0), δlt(Gl) =

δlt(0), and Clt(Gl) = Clt(0) for all t < Gl.

Assumption SB.2 says that, in pre-treatment periods, outcomes are not affected by participating

in the treatment in the future. Next, let G := support(G) \ {0} denote the set of groups that ever

participate in the treatment. The remainder of this section focuses on identifying treatment effects

for this set of groups. To proceed along these lines, following Callaway and Sant’Anna (2021), we

target identifying group-time average treatment effects which are defined as

ATTC(g, t) := E[Clt(g)− Clt(0)|G = g]

This is the mean difference between observed Covid-19 cases for locations in group g in time period

t relative to the number of Covid-19 cases that would have occurred if the policy had not been

implemented. Given that ATTC(g, t) can be identified, the arguments in Callaway and Sant’Anna

(2021) imply that a number of other, more aggregated treatment effect parameters can recovered as

weighted averages of ATTC(g, t). One main example, is an event study parameter ATTCES(e) which

is defined as the average treatment effect across groups in the time period (if it is available) when

that group has been treated for exactly e periods; this parameter is equal to a weighted average of

all available ATTC(g, t) parameters such that t = g + e where weights are given by each group’s

relative size. Another parameter is an overall treatment effect parameter ATTCO which is the average

treatment effect experienced by all locations that participate in the treatment in any time period

which can be recovered from ATT (g, t) by, for each group, averaging all of their available post-

treatment ATT (g, t)’s and then combining these group-specific parameters by averaging them with

weights given by relative group size. See Callaway and Sant’Anna (2021) for additional details and

other possible parameters of interest. Below we focus on identifying ATTC(g, t).

The next proposition shows that ATTC(g, t) is identified for t ≥ g (i.e., post-treatment periods)

under the Stochastic SIRD Model for Untreated Potential Outcomes from the main text. Towards

this end, we define some additional notation. Define pg := P(G = g), pg|{g,u} := P(G = g|1{G =

g} + U = 1), pg(Fg−1) := P(G = g|Fg−1,1{G = g} + U = 1). We also need to slightly modify

the Stochastic SIRD Model for Untreated Potential Outcomes to account for different groups and

variation in treatment timing. In particular, here we replace Equation (A.6) with

E[ut|Ft−1(0), . . . ,F1(0), G] = 0 for all t = 2, . . . , T (SB.1)

and we replace Equation (A.7) with

ut ⊥⊥ (G,Ft−1(0), . . . ,F1(0))|Ft−1(0) for all t = 2, . . . , T (SB.2)

These are analogous to the corresponding expressions in the main text but are imposed at the group

level rather than for just for treated and untreated locations (in the case where treatment timing
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is constant, these conditions are the same as the ones in the main text). Using the same sorts of

arguments as for Proposition 1 in the main text, one can show that, for all t ≥ g (i.e., post-treatment

periods)

E[Ct(0)|Fg−1, G = g] = E[Ct(0)|Fg−1, U = 1] (SB.3)

which implies that, conditional on the pre-treatment state of the pandemic, untreated locations can

be used to recover untreated cumulative cases that group g would have experienced if it had not been

treated. Notice that, in this expression, the “base period” g − 1 (which is the period right before

treatment for group g) plays the same role as t∗ − 1 in the main text (the period right before the

policy was implemented in the case where there is no variation in treatment timing).

Proposition SB.1. In the Stochastic SIRD Model for Untreated Potential Outcomes with the addi-

tional conditions in Equations (SB.1) and (SB.2), and under the additional overlap condition that

there exists some ε > 0 such that pg > ε and pg(Fg−1) < 1 − ε, then for any t ≥ g, ATTC(g, t) is

identified and can be expressed as

ATTC(g, t) = E
[
ωg(G,Fg−1)(Ct −mC

U,g,t(Fg−1))
∣∣∣1{G = g}+ U = 1

]
where

ωg(G,Fg−1) :=
1{G = g}
pg|{g,u}

−
pg(Fg−1)U

pg|{g,u}(1−pg(Fg−1))

E
[

pg(Fg−1)U

pg|{g,u}(1−pg(Fg−1))

∣∣∣1{G = g}+ U = 1
]

and

mC
U,g,t(Fg−1) := E[Ct|Fg−1, U = 1]

Proof. To start with, define the following notation,

ω1
g(G) :=

1{G = g}
pg|{g,u}

and ω0
g(G,Fg−1) :=

ω̃0
g(G,Fg−1)

E[ω̃0
g(G,Fg−1)|1{G = g}+ U = 1]

and where

ω̃0
g(G,Fg−1) :=

pg(Fg−1)U
pg|{g,u}(1− pg(Fg−1))

so that we can re-express the weights in the proposition as

ωg(G,Fg−1) = ω1
g(G)− ω0

g(G,Fg−1)
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Now, notice that

E[Ct(g)|G = g] = E
[
1{G = g}

pg
Ct

]
= E

[
1{G = g}

pg
Ct

∣∣∣1{G = g}+ U = 1

]
(pg + pu)

= E
[
1{G = g}
pg|{g,u}

Ct

∣∣∣1{G = g}+ U = 1

]
= E

[
ω1
g(G)Ct

∣∣∣1{G = g}+ U = 1
]

(SB.4)

where the first equality holds because Ct(g) are observed outcomes for group g, the second equality

holds by the law of iterated expectations, the third equality holds because pg|{g,u} = pg/(pg + pu),

and the last equality holds by the definition of ω1
g . Next, notice that

E[Ct(0)|G = g] = E
[
E[Ct(0)|Fg−1, G = g]

∣∣∣G = g
]

= E
[
E[Ct(0)|Fg−1, U = 1]

∣∣∣G = g
]

= E
[
mC
U,g,t(Fg−1)

∣∣∣G = g
]

= E
[
1{G = g}
pg|{g,u}

mC
U,g,t(Fg−1)

∣∣∣1{G = g}+ U = 1

]
= E

[
ω1
g(G)mC

U,g,t(Fg−1)
∣∣∣1{G = g}+ U = 1

]
(SB.5)

where the first equality holds by the law of iterated expectations, the second equality holds by

unconfoundedness of cumulative cases conditional on the pre-treatment state of the pandemic (i.e.,

in period g− 1) as in Equation (SB.3), the third equality holds by the definition of mC
U,g,t, the fourth

equality holds from similar arguments as were used for Equation (SB.4), and the last equality holds

by the definition of ω1
g . Subtracting Equation (SB.5) from Equation (SB.4), we have that

ATTC(g, t) = E[Ct(g)− Ct(0)|G = g]

= E
[
ω1
g(G)(Ct −mC

U,g,t(Fg−1))
∣∣∣1{G = g}+ U = 1

]
(SB.6)
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Now consider

E
[
ω̃0
g(G,Fg−1)(Ct −mC

U,g,t(Fg−1))
∣∣∣1{G = g}+ U = 1

]
= E

[
pg(Fg−1)U

pg|{g,u}(1− pg(Fg−1))
(Ct −mC

U,g,t(Fg−1))
∣∣∣1{G = g}+ U = 1

]
= E

[
(1− pg|{g,u})pg(Fg−1)
pg|{g,u}(1− pg(Fg−1))

(Ct −mC
U,g,t(Fg−1))

∣∣∣U = 1

]

= E

(1− pg|{g,u})pg(Fg−1)
pg|{g,u}(1− pg(Fg−1))

(
E[Ct|Fg−1, U = 1]−mC

U,g,t(Fg−1)
)

︸ ︷︷ ︸
=0

∣∣∣U = 1


= 0 (SB.7)

where the first equality holds by the definition of ω̃0
g , the second equality holds by the law of iterated

expectations, the third equality holds by the law of iterated expectations, and the last equality holds

immediately from the previous one. Finally, consider

E
[
ω̃0
g(G,Fg−1)

∣∣∣1{G = g}+ U = 1
]

= E
[

pg(Fg−1)U
pg|{g,u}(1− pg(Fg−1))

∣∣∣1{G = g}+ U = 1

]

= E

 pg(Fg−1)
pg|{g,u}(1− pg(Fg−1))

E[U |Fg−1,1{G = g}+ U = 1]︸ ︷︷ ︸
=1−pg(Fg−1)

∣∣∣1{G = g}+ U = 1


= E

[
E[1{G = g}|Fg−1,1{G = g}+ U = 1]

pg|{g,u}

∣∣∣1{G = g}+ U = 1

]
= E

[
1{G = g}
pg|{g,u}

∣∣∣1{G = g}+ U = 1

]
= 1 (SB.8)

where the first equality holds by the definition of ω̃0
g , the second equality holds by the law of iterated

expectations, the third equality holds by canceling terms and by the definition of pg(Fg−1), the fourth

equality holds by the law of iterated expectations, and the last equality holds by the definition of

pg|{g,u}. Combining Equation (SB.7) and Equation (SB.8), we have that

E
[
ω0
g(G,Fg−1)(Ct −mC

U,g,t(Fg−1))
∣∣∣1{G = g}+ U = 1

]
= 0 (SB.9)

Finally, subtracting Equation (SB.9) from Equation (SB.6), we have that

ATTC(g, t) = E
[(
ω1
g(G)− ω0

g(G,Fg−1)
)

(Ct −mC
U,g,t(Fg−1))

∣∣∣1{G = g}+ U = 1
]

= E
[
ωg(G,Fg−1)(Ct −mC

U,g,t(Fg−1))
∣∣∣1{G = g}+ U = 1

]
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where the second equality holds by the definition of ωg. This completes the proof.

SC Extensions to Stochastic SIRD Model

In this section, we provide more details related to Remark 3 in the main text that concerns

extensions to the Stochastic SIRD Model for Untreated Potential Outcomes. For simplicity, we focus

on the case where the infection rate may vary across locations/time but suppose that the recovery

rate λ and the death rate γ are constant across locations and time as in the main text. We also focus

on whether or not Proposition 1 holds; given that this condition holds the same sorts of arguments

in Theorem 2 will hold and can be used to recover ATTCt . We consider a slight variation of the

Stochastic SIRD Model for Untreated Potential Outcomes:

∆Clt(0) = exp(θlt)︸ ︷︷ ︸
=βlt

Ilt−1(0)

Nl

Slt−1(0)

where ∆Clt(0) is the number new cases if the policy were not implemented. This generalizes the

main case that we consider in the paper by letting βlt vary arbitrarily across locations and time (for

some of the arguments below, it is useful to enforce that infection rates must be positive which is the

reason that we introduce the exp term and θlt above). Without further restrictions, this is too general

of a model to get any traction on because there are essentially location-time specific pandemics. The

main case that we consider in the paper is closely related to the case when θlt = θ + vlt where,

similarly to the case in the main text, we impose the following assumptions regarding vlt:

E[vt|Ft−1(0), . . . ,F1(0), D = d] = 1 for all t = 2, . . . , T

and that

vt ⊥⊥ (D,Ft−2(0), . . . ,F1(0)|Ft−1(0) for all t = 2, . . . , T

The assumptions are analogous to Equations (A.6) and (A.7) in the main text with the only exception

being that, in the main text, we consider the case where the unobservables are additive rather than

multiplicative. That said, the same arguments for unconfoundedness as in the main text go through

for either case up to minor adjustments related to multiplicative unobservables.

For the remainder of this section, we consider other leading choices for structure to put on θlt.

Case 1: θlt = θt + vlt: This setup allows for the infection rate to change over time even in the

absence of the policy. Early in the pandemic, infection rates varying over time could occur due to

general changes in the availability of masks or common sources of information about how Covid-19

is transmitted across people. Unconfoundedness holds in this setup using very similar arguments to

those in the main text. In particular, Equation (B.2) can be replaced by Flt = rt(Flt−1, vlt) where
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the difference here is that r can vary over time. In this case, the results in Lemmas 1 and 2 go

through essentially immediately (just adjusting to have rt instead of r in the proofs). Given those

modifications, the remainder of the proof goes through. This implies that the unconfoundedness

strategy in the paper continues to be applicable in a setting where the infection rate varies over time

with a component that is common across locations.

Case 2: θlt = θt + θl + vlt This case allows for the infection rate to vary over time and to be

systematically different across different locations. For the arguments below, we follow the large-

n, small-T paradigm of treating θt as fixed parameters and θl as random. This is an empirically

relevant case and would allow for the transmission rate to depend on unobserved location-specific

characteristics (these could include things like a location’s population density, a location’s distribution

of age and/or pre-existing health conditions, among other possibilities). This is a case, however, where

the unconfoundedness strategy in the paper breaks down. In particular, notice that, we can write

log(∆Clt(0)) = θt + θl + vlt + log(Ilt−1(0))

where, for simplicity, we omit the term involving Slt−1(0)/Nl which is likely to be very close to 1 in

early pandemic applications (the same issues discussed below still arise if we keep this term). Then,

if we write down the same equation for log(∆Clt−1(0)) and subtract it, we get

∆ log(∆Clt(0)) = ∆θt + log

(
Ilt−1(0)

Ilt−2(0)

)
+ ∆vlt

which, similar to many fixed effects-type arguments, has differenced out the location-specific fixed

effect θl. The expression in the previous equation involves the “state” of the pandemic for the two

periods before treatment. However, even if vlt’s are serially uncorrelated, like a dynamic panel model,

there is endogeneity due to differencing out θl, and this implies that the strategy of just condition-

ing on even two periods of the pre-treatment pandemic state would not work for unconfoundedness.

That said, it seems like a viable alternative strategy would be to use ideas from the dynamic panel

literature (e.g., using further lags of pandemic variables as IVs), to estimate the parameters of the

pandemic model and then one could use that as the basis for estimating the ATT . As an inter-

esting side-comment, motivated by relatively similar arguments, several papers have used this same

transformation, ∆ log(∆Clt), as the outcome in two-way fixed effects event study regressions without

accounting for potential endogeneity. In contrast to the discussion above, this line of argument holds

in the case of a deterministic (rather than stochastic) SIRD model and then adding error terms after

arriving at the above transformation (roughly, this leads to vlt in the previous equation rather than

∆vlt). This approach side-steps the endogeneity discussed above, but, arguably, starting from the

stochastic SIRD model is more natural than adding error terms at the end. We do not provide a

proof, but if one accepts the sort of arguments that avoid endogeneity here, then it appears that

a version of unconfoundedness that conditions on two pre-treatment periods (rather than just one)
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would go through in this case.

Case 3: θlt = θt + h(Xl) + vlt: The motivation for this case is similar to previous one where there

may be trends in the infection rate over time and where different locations may have systematically

different infection rates. The main additional restriction here is that the systematic component of

location-specific differences in the infection rate is driven by observed location-specific characteristics

Xl (see Chernozhukov, Kasahara, and Schrimpf (2021) for a related discussion of parameterizing the

infection rate in this sort of way). For brevity, we do not provide the full proof here, but, heuristically,

the arguments from Case 1 above apply here after conditioning on location-specific characteristics

throughout the argument, and suggest that the unconfoundedness strategy considered in the paper

is compatible with this setup as long as the conditioning variables in unconfoundedness include both

Ft∗−1 (the pre-treatment state of the pandemic) and Xl (the characteristics of location l that can

affect the infection rate). This is also an empirically relevant case as, at least arguably, many of the

most important characteristics of particular locations related to their infection rates (e.g., population

density, etc.) are observable. Our arguments in the application are, at least implicitly, related to

this case as we additionally condition on a location’s population and region of the country (or for

the county-level results compare counties in bordering states).

SD Additional Results from Application

Possible Issues using County-Level Data

In the main text, we briefly mentioned some possible issues that could arise with using county-

level data relative to using state-level data; here, we expand on those comments. First, in the main

text, we emphasized that, oftentimes, there existed more similar treated and untreated counties than

treated and untreated states, both in terms of pre-treatment pandemic characteristics and other

characteristics like population density. And, while good county-level data exists, one drawback of

using county-level data is that the number of Covid-19 cases at the county level is generally small in

the early part of the pandemic. For example, on April 1, 20% of counties in Arkansas and 40% of

counties in Iowa had been recorded as having had exactly 0 Covid-19 cases. The unconfoundedness

approach discussed in the paper could be violated if, among counties reporting 0 cases right before

a SIPO was implemented, the first Covid-19 cases would have (absent the policy) tended to occur

earlier or later for treated counties relative to untreated counties.

Another issue is that spatial correlations may be more important with county-level data because

Covid-19 cases could spill over from one county to another; see Chandrasekhar, Goldsmith-Pinkham,

Jackson, and Thau (2021), Oka, Wei, and Zhu (2021), and Bisin and Moro (2022) for more discussion

along these lines. It would be an interesting extension to our approach to allow for spatial correlations

and spillovers.

There are also potentially some issues related to conducting inference. One issue is that, because
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we observe all counties in each state, it is somewhat unnatural to consider the counties as being draws

from a larger population of counties. One alternative approach is to think about conditional inference

where instead of considering the sampling procedure where outcomes, treatments, and covariates are

draws from a large population, instead one considers the treatment status and covariates fixed but

where the outcomes are sampled conditional on the treatment and covariates. Given existing work

on conditional inference (see Abadie, Imbens, and Zheng (2014) in general and Borusyak, Jaravel,

and Spiess (2022) as an example of conditional inference in the context of panel data and treatment

effects), these suggest that, at least in some cases, our inference procedures discussed in Appendix SA

may be conservative. Next, as discussed in the main text, our procedure that trims out some

observations from the treated group can change the interpretation of the estimated parameter from

an overall ATT parameter to an ATT that is local to locations where there are “similar” locations

in the untreated state. Regarding inference, we view this trimming as a pre-processing step along

the lines of Ho, Imai, King, and Stuart (2007) and Rubin (2008) because it does not involve concern

the outcome. Finally, since the policies that we consider are at the state-level, a common choice

in empirical research would be to cluster data at the state-level. In our setting, this is infeasible,

especially for our results that only use two states. To get around this sort of issue, our approach is to

carefully check for other common policies/shocks (and their timing) which are likely to be the main

source of a “common shock” across counties in the same state. We generally find quite similar timing

of other policies across bordering states (see Table 4 in the main text for more details), but differences

in the mix/timing of policies across a pair of states would cast doubt on interpreting differences in

outcomes across counties with similar pre-treatment characteristics as being (fully) due to a SIPO.

See Section 5 of Roth, Sant’Anna, Bilinski, and Poe (2022) for a an interesting discussion of viewing

“common shocks” as an identification issue rather than just an inference issue in a similar setting to

the current one where the policy occurs at a more aggregate level than the unit of observation and

there are very few aggregate units.

Additional Details on Covid-Related Policies

Table 4, in the main text, provides the timing of five main Covid-related policies for the group of

thirteen states considered in the part of the paper that uses county-level data. This section briefly

provides some clarifications on particular policies, primarily regarding untreated states that did not

implement a shelter-in-place order. See Fullman et al. (2021) and Weill, Stigler, Deschenes, and

Springborn (2021) for substantially more details about the timing of policies and more local (e.g.,

city- or county-level policies) during the early part of the pandemic. Fullman et al. (2021) do not

record any type of SIPO for Arkansas. On May 1, Iowa “strongly encourage[d] all vulnerable Iowans

(i.e. those with pre-existing medical conditions and those older than 65) to limit activities outside of

their home”. On April 6, Nebraska’s governor urged Nebraskans to stay at home. On March 17 and

March 24, Oklahoma recommended that older and vulnerable people stay at home. South Dakota

had a stay at home mandate for two counties that was primarily aimed at older and vulnerable
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individuals and issued a statewide stay at home recommendation for vulnerable individuals on April

6. Finally, Fullman et al. (2021) classified both Tennessee and South Dakota’s school closure policies

as not being mandates (we listed both states as having school closures in Table 4 in the main text),

but their notes indicate that it is debatable whether these policies should be considered as mandates,

and it appears that schools in both states were closed for the remainder of the school year.
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Additional Figures

Figure 1: County-Level Estimates under Unconfoundedness for States Bordering Arkansas
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(d) Mississippi and Arkansas
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(e) Tennessee and Arkansas
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(f) Kansas and Arkansas

Notes: The figure provides estimates of SIPOs effects on Covid-19 cases for all states bordering Arkansas using the

unconfoundedness approach discussed in the main text and using Arkansas as the comparison state. Of these states,

Oklahoma did not actually implement a SIPO, and we use a placebo policy date for Oklahoma of April 1. Pre-treatment

estimates are reported in red while post-treatment estimates are reported in blue. The pre-treatment estimates use the

immediately preceding day as the base period while all the post-treatment periods use the period immediately before

the treatment as the base period. The dashed lines provide 90% confidence intervals. Standard errors are clustered at

the county level. Finally, the vertical axis is the same as for the corresponding figures in the main text and constant

across panels in the figure; in some cases, this results in the confidence intervals falling outside of the displayed values.
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Figure 2: County-Level Estimates under Unconfoundedness for States Bordering Iowa
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(a) South Dakota and Iowa
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(b) Wisconsin and Iowa
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(c) Nebraska and Iowa
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(e) Minnesota and Iowa
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(f) Missouri and Iowa
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(g) Kansas and Iowa

Notes: The figure provides estimates of SIPOs effects on Covid-19 cases for all states bordering Iowa using the

unconfoundedness approach discussed in the main text and using Iowa as the comparison state. Of these states,

Nebraska and South Dakota did not actually implement a SIPO, and we use a placebo policy date for these states

of April 1. Pre-treatment estimates are reported in red while post-treatment estimates are reported in blue. The

pre-treatment estimates use the immediately preceding day as the base period while all the post-treatment periods use

the period immediately before the treatment as the base period. The dashed lines provide 90% confidence intervals.

Standard errors are clustered at the county level. Finally, the vertical axis is the same as for the corresponding figures

in the main text and constant across panels in the figure; in some cases, this results in the confidence intervals falling

outside of the displayed values.
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Figure 3: County-Level Estimates under Difference-in-Differences for States Bordering Arkansas
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(e) Tennessee and Arkansas
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(f) Kansas and Arkansas

Notes: The figure provides estimates of SIPOs effects on Covid-19 cases for all states bordering Arkansas using

difference-in-differences and using Arkansas as the comparison state. Of these states, Oklahoma did not actually

implement a SIPO, and we use a placebo policy date for Oklahoma of April 1. Pre-treatment estimates are reported in

red while post-treatment estimates are reported in blue. The pre-treatment estimates use the immediately preceding

day as the base period while all the post-treatment periods use the period immediately before the treatment as the

base period. The dashed lines provide 90% confidence intervals. Standard errors are clustered at the county level.

Finally, the vertical axis is the same as for the corresponding figures in the main text and constant across panels in

the figure; in some cases, this results in the confidence intervals falling outside of the displayed values.
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Figure 4: County-Level Estimates under Difference-in-Differences for States Bordering Iowa
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(a) South Dakota and Iowa
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(g) Kansas and Iowa

Notes: The figure provides estimates of SIPOs effects on Covid-19 cases for all states bordering Iowa using the

unconfoundedness approach discussed in the main text and using Iowa as the comparison state. Of these states,

Nebraska and South Dakota did not actually implement a SIPO, and we use a placebo policy date for these states

of April 1. Pre-treatment estimates are reported in red while post-treatment estimates are reported in blue. The

pre-treatment estimates use the immediately preceding day as the base period while all the post-treatment periods use

the period immediately before the treatment as the base period. The dashed lines provide 90% confidence intervals.

Standard errors are clustered at the county level. Finally, the vertical axis is the same as for the corresponding figures

in the main text and constant across panels in the figure; in some cases, this results in the confidence intervals falling

outside of the displayed values.
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Figure 5: Estimates of SIPO Orders on Travel using State-Level Data
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(a) Standard DID
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(b) Regression DID
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(c) Adjusted Regression DID

Notes: The figure contains event study type estimates of the effect of SIPOs on the percentage change in retail and

recreation travel using the state-level data discussed in the main text. e = 0 corresponds to the time period when the

policy was implemented. Negative values of e correspond to pre-treatment estimates of the effect of the policy and

can be thought of as pre-tests, and positive values of e correspond to estimates of the effect of the policy at different

lengths of exposure to the treatment. Panel (a) provides estimates using standard DID (without accounting for cases),

Panel (b) provides regression DID estimates (accounting for cases but not that the policy may have a direct effect on

cases), and Panel (c) provides adjusted regression DID estimates (accounting for cases and allowing for the policy to

have had an effect on cases as is proposed in the text). The dashed line provides 90% confidence intervals. Standard

errors are clustered at the state level.
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