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Abstract
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1 Introduction

Measurement error is a widespread challenge in empirical work in economics. It is well doc-

umented that many important economic variables are often measured with error (e.g., income

(Bound and Krueger (1991), Pischke (1995), and Bound, Brown, and Mathiowetz (2001)), con-

sumption (Attanasio, Battistin, and Ichimura (2007)), health status (Bound, Schoenbaum, Stine-

brickner, and Waidmann (1999)), government transfers (Meyer, Mok, and Sullivan (2009)), and

participation in social programs (Bollinger and David (1997)), among many others). Measure-

ment error can arise due to misreporting (e.g., a survey respondent incorrectly reporting their

health insurance coverage) or for other reasons. In the context of our application on intergen-

erational income mobility, economists have primarily been interested in the effect of parents’

permanent income on child’s permanent income. A key empirical challenge in this literature

is that, instead of observing permanent incomes, researchers typically observe annual income

(or some other shorter-term measure of income). The modern literature on intergenerational

income mobility (e.g., Solon (1992) and much subsequent work) considers annual income as an

error-ridden measure of permanent income and has developed a number of techniques to deal

with measured-with-error versions of permanent incomes, particularly in the context of linear

models.1

In some settings, it is well-established how to deal with measurement error, or it is at least

well-known what the consequences of measurement error are. A leading example is that, in

the presence of classical measurement error, a mismeasured right-hand side variable in a linear

model leads to attenuation bias, while a mismeasured left-hand side variable does not lead to

inconsistency of the parameter estimates in the same setting. In the current paper, we consider

more complicated target parameters that are nonlinear functionals of the joint distribution of a

continuous outcome and a continuous treatment variable in a setting where both the outcome

and the treatment could be mismeasured.2

It is useful to give some examples of the types of parameters that we consider in the paper.

One example is transition matrices, which summarize transition probabilities from a starting

point in the distribution of the treatment variable to an ending point in the distribution of

the outcome. In the context of intergenerational mobility, transition matrices provide a way

to see how likely children are to move to different parts of the income distribution, conditional

on what part of the income distribution their parents were in. Work on transition matrices

includes Jantti et al. (2006), Bhattacharya and Mazumder (2011), Black and Devereux (2011),

Richey and Rosburg (2018), and Millimet, Li, and Roychowdhury (2020). Another example is

Spearman’s Rho — the rank-rank correlation of the outcome and the treatment variable. This

parameter has received considerable recent attention in the intergenerational mobility literature

1Much of the literature has focused on estimating Intergenerational Elasticities (IGEs) which are the coefficient on the log
of parents’ income in a regression of the log of child’s income on the log of parents’ income. This literature demonstrates that
accounting for measurement error leads to notable quantitative differences in estimates of intergenerational mobility. See, for
example, Solon (1999), Mazumder (2005), and Haider and Solon (2006), among others.

2As a comment on terminology, we refer to the class of parameters that are possibly nonlinear functionals of the joint
distribution as distributional effects. Slightly abusing terminology, we use the term treatment to denote the right-hand side
variable of primary interest. Under additional conditions, the distributional effects we consider can have a causal interpretation,
but this is not a central issue for our main arguments. We refer to other right-hand side variables as covariates and assume
that they are not measured with error.
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(Chetty, Hendren, Kline, and Saez (2014), Collins and Wanamaker (2017), Chetty and Hendren

(2018), and Chetty, Hendren, Jones, and Porter (2020)). Third, another class of parameters are

those that are functionals of the entire distribution of the outcome as a function of the treatment;

these parameters are related to the literature on continuous treatment effects and include specific

examples like the fraction of children whose income is below the poverty line as a function of

parents’ income (Richey and Rosburg (2016) and Callaway and Huang (2020)). We consider

these parameters, along with several more, in substantially more detail in the next section.

What each of the above parameters has in common is that they depend on the joint dis-

tribution of the outcome (child’s permanent income) and the treatment (parents’ permanent

income), possibly conditional on covariates. Thus, our main methodological contributions con-

cern identifying joint distributions in the presence of measurement error in both the outcome

and the treatment. The main case that we consider in the paper is the one where a researcher

has access to a single measurement of the outcome and of the treatment. In this case, we impose

two main conditions. First, we impose “classical” measurement error conditions; in particular,

we impose that measurement errors are additively separable, independent of the true value of

the outcome/treatment and other covariates, and independent of each other.3 The second main

assumption that we make is on auxiliary, preliminary models for the outcome and the treat-

ment conditional on other covariates. In particular, we assume that both the outcome and the

treatment are generated by a quantile regression (QR) model that is linear in parameters across

all quantiles. Besides these two main conditions, we do not require an instrument, repeated

measurements, or distributional assumptions about the measurement errors for identification.

The first part of our identification argument concerns separately recovering the marginal dis-

tributions of the outcome and the treatment conditional on other covariates in the presence of

measurement error. For this step, our arguments follow from Hausman, Liu, Luo, and Palmer

(2021), who show that the structure imposed by the QR model is enough to identify the QR

parameters as well as the distribution of the measurement error in the case with classical measure-

ment error in the outcome variable. Applying this argument to both our outcome and treatment

implies that the conditional quantiles and conditional distributions of the outcome and treat-

ment are identified.4 However, identifying these marginal distributions is not enough to identify

the distributional effect parameters that we are ultimately interested in, since these parameters

depend on the joint distribution of the outcome and the treatment. From Sklar’s Theorem (Sklar

(1959)), a well-known result in the literature on copulas, we know that joint distributions can

3In the intergenerational mobility literature, the assumption of classical measurement error is typically considered more
plausible for some ages of children and parents (typically mid-career ages). We discuss how to adjust our arguments to the case
of “life-cycle” measurement error (as in Haider and Solon (2006)) rather than classical measurement error; see Remark 2 and
Appendix SC in the Supplementary Appendix for more details.

4This part of our identification strategy can be viewed as semiparametric in the sense that it depends on the two QR models
being correctly specified, but it does not place restrictions (besides regularity conditions) on the distribution of the measurement
error. This discussion also highlights a connection between this part of our identification strategy and early work on measurement
error, where it was common to make distributional assumptions about the measurement error without restricting the distribution
of the true outcome/treatment (Carroll and Hall (1988), Stefanski and Carroll (1990), Fan (1991), and Diggle and Hall (1993)).
If we consider the QR model as being a (flexible) distributional assumption for the true outcome/treatment, then the first
stage of our identification strategy reverses the variables on which distributional assumptions are placed: for our approach, we
effectively make distributional assumptions about the true outcome/treatment without substantively restricting the distribution
of the measurement error. A helpful byproduct of semiparametric identification is that, like early work on measurement error,
our approach does not require repeated measurements (Li and Vuong (1998)).
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be written as the copula (which captures the dependence between two random variables) of the

marginal distributions of the outcome and the treatment. We show that, under the conditions

above, the copula is also identified. This means that the joint distribution is identified, and

hence, all of the distributional effect parameters that we consider are also identified.

For estimation, we propose a three-step approach to estimating the joint distribution of the

outcome and the treatment conditional on covariates and then recovering parameters of interest

from the joint distribution. In the first step, we estimate the quantile regression parameters and

then convert these into estimates of the marginal distributions of the outcome/treatment condi-

tional on covariates. Our estimation approach here is new. We implement an EM-type algorithm

that iterates back and forth between making draws of the measurement error (conditional on the

values of the parameters) and estimating new values of the parameters. In the second step, we

estimate the copula parameters using a simulated maximum likelihood approach that plugs in

the first step estimators. To simplify estimation, we assume that the copula is known up to a

finite number of parameters (in particular, we consider copulas from an Archimedean family or

the Gaussian copula). This step provides an estimate of the joint distribution. Third, we can

manipulate the estimated joint distribution into any parameters of interest. We also derive the

asymptotic properties of our estimators and show that the empirical bootstrap can be used to

conduct inference.

We apply our approach to study intergenerational income mobility using recent data from

the 1997 cohort of the National Longitudinal Survey of Youth (NLSY97). This is a rich dataset

where we observe much information about families and can link child’s income with their parents’

income. We employ the 1997 wave of the NLSY97 to obtain information about parents’ income

and the 2015 wave of the NLSY to obtain the child’s income. However, there are some notable

challenges. First, we only observe parents’ income in a single year. Second, although in principle

we observe child’s income in every period where they participate in the survey, children are

still relatively young, and, in light of much work in the intergenerational mobility literature,

it seems most appropriate to only use their income in more recent waves. Our main results

indicate that (i) adjusting for measurement error and (ii) using our copula-based approach relative

to quantile regression of child’s income directly on parents’ income and covariates are both

important. Accounting for measurement error in child’s and parents’ income tends to reduce

various estimates of intergenerational mobility, resulting in estimates that are more similar to

those in the literature where multiple observations of income are available relative to estimates

coming directly from the observed data that do not account for measurement error.

Related Work

Our work is related to an extensive literature on measurement error in econometrics (see Haus-

man (2001) for an overview of the literature). Our paper builds on the literature that recovers

the distribution of a variable of interest in the presence of measurement error (important early

examples include Carroll and Hall (1988), Stefanski and Carroll (1990), Fan (1991), and Diggle

and Hall (1993)). These papers relied on parametric assumptions about the distribution of the

measurement error; Li and Vuong (1998) relax the distributional assumption on the measurement

error when there are repeated measurements available.
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Notable advances in measurement error problems have also been made for nonlinear models,

particularly for the case of the right-hand side (RHS) mismeasured variable (e.g., Hsiao (1989),

Li (2000, 2002), Hausman, Newey, Ichimura, and Powell (1991), Hausman, Newey, and Powell

(1995), and Schennach (2004, 2008)). Dealing with the left-hand side (LHS) measurement error

in a nonlinear context has received much less attention. This is unfortunate since what we

know about the linear setting with either RHS or LHS measurement error does not generally

carry over to nonlinear models (some examples include Hausman, Abrevaya, and Scott-Morton

(1998), Cosslett (2004), Abrevaya and Hausman (1999), and Cavanagh and Sherman (1998)).

Furthermore, even less consideration has been given to nonlinear models with both RHS and LHS

measurement error. Rare exceptions include Lewbel (1996) that studies parametric Engel curves

with measurement error on both sides of the equation and De Nadai and Lewbel (2016) that

extends Schennach (2007) to allow for both RHS and LHS measurement error in nonparametric

models.

Within the measurement error literature, the current paper is most closely related to work on

quantile regression with measurement error. The econometric literature for estimating quantile

regressions with RHS measurement error includes Schennach (2008), Wei and Carroll (2009),

Chesher (2017), and Firpo, Galvao, and Song (2017). Our approach, however, is more closely

related to quantile regression with LHS measurement error. Hausman, Liu, Luo, and Palmer

(2021) show that the parameters of a linear quantile regression model are identified when there

is measurement error in the outcome variable without imposing distributional assumptions on

the measurement error or requiring instruments or repeated observations. Our approach builds

on this as we use their identification arguments in our first step to show that the marginal

distributions of the outcome and the treatment are identified. On the other hand, our estima-

tors of the conditional quantiles are different from those proposed in Hausman, Liu, Luo, and

Palmer (2021); we propose an EM-type algorithm while their estimators are based on maximum

likelihood.

Finally, there are a few related papers that examine measurement error in the context of non-

linear approaches to understanding intergenerational mobility. Millimet, Li, and Roychowdhury

(2020) consider transition matrices, particularly in the case where individuals can be misclassified

into the wrong cell. Nybom and Stuhler (2017) and Kitagawa, Nybom, and Stuhler (2018) study

rank-rank correlations (i.e., Spearman’s Rho) in the presence of measurement error. Nybom and

Stuhler (2017) consider measurement error in the ranks of child’s income and parents’ income

rather than in the levels of income. The approach in Kitagawa, Nybom, and Stuhler (2018)

builds on the small variance approximations of Chesher (1991) to recover rank-rank correlations

when there is measurement error in the levels of child’s and parents’ income. An, Wang, and Xiao

(2020) study a nonparametric version of the IGE in the presence of non-classical measurement

error (particularly, life-cycle measurement error).

Organization of the paper

The paper is organized as follows. In Section 2, we introduce a number of parameters that

depend on the joint distribution of the outcome and the treatment. Section 3 considers identifi-

cation of these parameters of interest, allowing for measurement error. In Section 4, we propose
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a three-step estimation procedure to estimate the parameters of interest, and, in Section 5, we

study the asymptotic properties of the estimators. Our application on intergenerational income

mobility using our approach is in Section 6. Final remarks are contained in Section 7.

2 Parameters of Interest

Notation

Let Y ∗ denote the outcome of interest and T ∗ denote a continuous treatment variable. We

allow both Y ∗ and T ∗ to be mismeasured. Also, let X denote a K × 1 vector of covariates that

are correctly measured.

All of the parameters that we consider are features of the joint distribution FY ∗T ∗|X . Later,

our identification arguments will center on identifying this joint distribution. For now, notice

that, in the absence of measurement error, this joint distribution is directly identified by the

sampling process. In the presence of measurement error, identifying this distribution is non-

trivial. We take this issue up in Section 3 below, but for now, we consider a wide variety of

parameters that are features of this joint distribution and can, therefore, be obtained if this joint

distribution is identified.

We divide the parameters in this section into two categories that we call Conditional Distribution-

type parameters and Copula-type parameters. In the context of intergenerational mobility, the

first category includes parameters such as the fraction of children whose income is below the

poverty line as a function of parents’ income; we can also consider this parameter after adjusting

for differences in the distribution of characteristics (e.g., race and education) across different val-

ues of parents’ income. Another parameter in this class is quantiles of child’s income conditional

on parents’ income and other background characteristics (or after adjusting for differences in

other background characteristics). This category also includes parameters from the treatment

effects literature (e.g., quantile treatment effects and dose-response functions) as well as counter-

factual distributions and distributional policy effects. These types of parameters are of general

interest in the case where a researcher is interested in the effect of a continuous treatment on

features of the distribution of some outcome.

The copula-type parameters that we consider include transition matrices, measures of upward

mobility (i.e., the probability that child’s rank in the income distribution is greater than their

parents’ rank), and rank-rank correlations. Each of these is a nonlinear measure of intergenera-

tional income mobility and has received considerable interest in recent work on intergenerational

mobility (though not much attention has been paid to measurement error for these types of

parameters).

2.1 Conditional Distribution-type Parameters

The parameters that we consider in this section come from the distribution of Y ∗ conditional

on T ∗ and X, which is given by

FY ∗|T ∗X(y|t, x) = P(Y ∗ ≤ y|T ∗ = t,X = x) (1)
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and which will be identified when the joint distribution of (Y ∗, T ∗) conditional on X is iden-

tified. In our application on intergenerational income mobility, this conditional distribution is

the distribution of child’s income conditional on parents’ income and on other characteristics.

One parameter of particular interest is given by setting y equal to the poverty line, varying T ∗

(parents’ income), and fixing characteristics X. This gives the fraction of children with income

below the poverty line as a function of parents’ income and holding other characteristics fixed.

Another parameter of interest is the quantiles of Y ∗ conditional on T ∗ and X. The quantiles are

given by

QY ∗|T ∗X(τ |t, x) = inf
{
y : FY ∗|T ∗X(y|t, x) ≥ τ

}
(2)

for τ ∈ (0, 1). These conditional quantiles are what would be recovered in the absence of mea-

surement error using quantile regression. Quantile regression has been used in the context of

intergenerational mobility in Eide and Showalter (1999), Grawe (2004), and Bratberg, Nilsen,

and Vaage (2007).5

In many applications, it makes sense to integrate out the covariates from the above condi-

tional distributions. Manipulations of the distribution of covariates (while fixing the conditional

distribution FY ∗|T ∗X) are called counterfactual distributions. Work on counterfactual distribu-

tions (without measurement error) includes DiNardo, Fortin, and Lemieux (1996), Machado and

Mata (2005), Melly (2005), Chernozhukov, Fernandez-Val, and Melly (2013), Rothe (2010), and

Callaway and Huang (2020). There are multiple possibilities here, but the most common one is

FC
Y ∗|T ∗(y|t) =

∫
X
FY ∗|T ∗X(y|t, x) dFX(x) (3)

which adjusts the distribution of covariates at every value of T ∗ to be given by the overall

population distribution of covariates.

2.2 Copula-type Parameters

The next set of parameters that we consider depends on the copula of the outcome and

the treatment. The copula is the joint distribution of the ranks of random variables. That

is, CY ∗T ∗(r, s) = P
(
FY ∗(Y ∗) ≤ r,FT ∗(T ∗) ≤ s

)
. Sklar’s Theorem, which is one of the most

well-known results in the literature on copulas, says that joint distributions can be written as

the copula of the marginal distributions, where the copula contains the information about the

dependence between the two random variables.6

Parameters that depend on the copula of child’s income and parents’ income are common in

the intergenerational mobility literature. Intuitively, one reason why these types of parameters

are useful is that they only depend on child and parent ranks in the income distribution and

will not be contaminated with information related to how income distributions change across

5The conditional mean of Y ∗ given T ∗ can also be recovered from the conditional distribution or the conditional quantiles.
For example, E[Y ∗|T ∗ = t,X = x] =

∫ 1

0
QY ∗|T∗,X(τ |t, x) dτ . In the context of intergenerational mobility, this parameter is a

nonparametric/nonlinear version of the IGE. Work on nonlinear IGEs includes Behrman and Taubman (1990), Bratsberg et al.
(2007), Björklund, Roine, and Waldenström (2012), Murtazashvili (2012), Murtazashvili, Liu, and Prokhorov (2015), Landersø
and Heckman (2017), Callaway and Huang (2019), An, Wang, and Xiao (2020), and Kourtellos, Marr, and Tan (2020).

6Joe (1997) and Nelsen (2007) are leading references on copulas.
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generations (Chetty, Hendren, Kline, and Saez (2014), Chetty et al. (2014), and Nybom and

Stuhler (2017)). Main examples include transition matrices, upward mobility parameters, and

rank-rank correlations. We consider each of these in turn next.

Transition Matrices

Transition matrices are one of the main tools to study intergenerational mobility (Jantti et al.

(2006), Bhattacharya and Mazumder (2011), Black and Devereux (2011), Richey and Rosburg

(2018), and Millimet, Li, and Roychowdhury (2020)). However, not much attention has been

paid to transition matrices allowing for measurement error (see Millimet, Li, and Roychowdhury

(2020) for an exception, though their arguments are substantially different from ours). Particular

cells in transition matrices are given by

θTM (r1, r2, s1, s2) = P
(
r1 ≤ FY ∗(Y ∗) ≤ r2|s1 ≤ FT ∗(T ∗) ≤ s2

)
where (r1, r2) and (s1, s2) all take values from 0 to 1 (in a typical case, these are chosen so that

cells in the transition matrix have cutoffs at the quartiles of the income distribution for children

and parents). Notice that transition matrices can be written in terms of the copula of child’s

income and parents’ income. In particular,

θTM (r1, r2, s1, s2) =
P
(
r1 ≤ FY ∗(Y ∗) ≤ r2, s1 ≤ FT ∗(T ∗) ≤ s2

)
P
(
s1 ≤ FT ∗(T ∗) ≤ s2

)
=
CY ∗T ∗(r2, s2)− CY ∗T ∗(r1, s2)− CY ∗T ∗(r2, s1) + CY ∗T ∗(r1, s1)

s2 − s1
(4)

Upward Mobility

Another parameter of interest in the intergenerational mobility literature is the probability

that child’s income rank is greater than their parents’ income rank. Following Bhattacharya and

Mazumder (2011), we define this as a function of parents’ income rank,

θU (∆, s1, s2) = P
(
FY ∗(Y ∗) > FT ∗(T ∗) + ∆|s1 ≤ FT ∗(T ∗) ≤ s2

)
The leading case here is when ∆ = 0 (other values of ∆ allow for one to consider the probability

of child’s income rank exceeding parents’ income rank by ∆). In this case, θU (0, s1, s2) is the

fraction of children who have a higher rank in the income distribution than their parents’ rank in

the income distribution, conditional on their parents’ rank falling in a particular range. Notice

that θU can be written in terms of the copula of parents’ income and child’s income. That is,

θU (∆, s1, s2) =
P
(
FY ∗(Y ∗) > FT ∗(T ∗) + ∆, s1 ≤ FT ∗(T ∗) ≤ s2

)
s2 − s1

=

∫ s2

s1

∫ 1

ṽ+∆
cY ∗T ∗(ũ, ṽ) dũdṽ

/
(s2 − s1)

where the first equality holds by writing the conditional distribution as the joint distribution

divided by the marginal distribution (and because the ranks of parents’ income are uniformly
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distributed), and the second equality holds because the numerator depends on the joint distri-

bution of the ranks of child’s income and parents’ income (i.e., the copula).7

Rank-Rank Correlations

Finally, we consider the rank-rank correlation, which has received much attention in the in-

tergenerational mobility literature (Chetty, Hendren, Kline, and Saez (2014), Collins and Wana-

maker (2017), Chetty and Hendren (2018), and Chetty, Hendren, Jones, and Porter (2020)).

This is the correlation between the rank of child’s income and the rank of parents’ income. The

primary advantage of the rank-rank correlation over the more traditional intergenerational elas-

ticity is that the rank-rank correlation does not depend on (changes in) the marginal distributions

of income over time, which is often a desirable feature of an intergenerational mobility measure.

In the language of the literature on copulas and dependence measures, rank-rank correlations

are called Spearman’s Rho. The rank-rank correlation is given by

ρS = 12

∫ 1

0

∫ 1

0
CY ∗T ∗(r, s) dr ds− 3

which, like the other parameters in this section, depends solely on the copula of child’s income

and parents’ income.

Remark 1. In Appendix SB in the Supplementary Appendix, we show that, under the assump-

tion of unconfoundedness, many of the parameters discussed above have a causal interpretation.

For example, FC
Y ∗|T ∗(y|t), in Equation (3) above, corresponds to a distributional version of a dose

response function, which is a common target parameter in the literature (e.g., Hirano and Imbens

(2004), Flores (2007), Flores, Flores-Lagunes, Gonzalez, and Neumann (2012), Galvao and Wang

(2015)). Thus, under unconfoundedness, our framework extends work on causal inference with

a continuous treatment to settings where the outcome and treatment are measured with error.

3 Identification

The previous section suggests that one could obtain all the parameters of interest from the

joint distribution of Y ∗ and T ∗ conditional on X. In our setting, this is challenging because

Y ∗ and T ∗ are mismeasured. We make the following assumptions about the nature of the

measurement errors:

Assumption 1 (Measurement Error).

(i) Y = Y ∗ + UY ∗ and T = T ∗ + UT ∗

(ii) (UY ∗ , UT ∗) ⊥⊥ (Y ∗, T ∗, X)

(iii) UY ∗ ⊥⊥ UT ∗

7A related parameter to the upward mobility parameter discussed here is the probability that a child’s income itself is greater
than their parents’ income. The conditional-on-covariates version of this parameter is given by P(Y ∗ > t|T ∗ = t,X = x) =
1− FY ∗|T∗X(t|t, x); thus, this parameter can be immediately derived from the conditional distribution in Equation (1), though
we note that it should be classified as a conditional distribution-type parameter rather than a copula-type parameter.
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Assumption 1 is a “classical” measurement error assumption. Assumption 1(i) says that the

researcher observes Y and T which are mismeasured versions of Y ∗ and T ∗. Assumption 1(ii)

says that the measurement error (UY ∗ , UT ∗) is independent of Y ∗, T ∗, and X. In terms of our

application, it says that the joint distribution of the measurement errors does not depend on

the true value of child’s permanent income, the true value of parents’ permanent income, and

observed covariates. This type of assumption is very common both in the literature on nonlinear

models with measurement error (e.g., Assumption 1(i) and (ii) are the same as the assumptions

in Hausman, Liu, Luo, and Palmer (2021) applied to both the outcome conditional on covariates

and the treatment conditional on covariates; similar assumptions are also made in Li and Vuong

(1998) and Firpo, Galvao, and Song (2017), among many others) as well as in the literature on

intergenerational mobility that allows for measurement error (e.g., the main case considered in

Kitagawa, Nybom, and Stuhler (2018) involves classical measurement error though they discuss

how their arguments can continue to apply under certain violations of classical measurement

error).

Assumption 1(iii) says that UY ∗ and UT ∗ are mutually independent. For our application on

intergenerational mobility, this assumption says that the measurement error in child’s permanent

income is independent of the measurement error in parents’ permanent income. This sort of

assumption will hold as long as shocks to parents’ income are independent of shocks to child’s

income, which seems plausible because parents’ income and child’s income are typically observed

many years apart. Related assumptions that measurement error for child’s income and parents’

income are uncorrelated are common in the literature (see, for example, Assumption 2 and

related discussion in An, Wang, and Xiao (2020)); instead of uncorrelatedness, we require full

independence due to focusing on parameters that depend on the entire joint distribution of child’s

and parents’ income.

Remark 2. A leading alternative setup for measurement error in the intergenerational mobility

literature is life-cycle measurement error (see Jenkins (1987) and Haider and Solon (2006) as well

as Vogel (2006), Black and Devereux (2011), Nybom and Stuhler (2016), and An, Wang, and

Xiao (2020) for additional related discussion). Here, a typical setup would impose that

YaY = λYaY Y
∗ + UY ∗,aY and TaT = λTaT T

∗ + UT ∗,aT

where aY and aT denote particular ages at which child’s income and parents’ income could be

observed. This modification to Assumption 1 allows for things like income at younger ages to

be systematically lower than permanent income and for the distribution of the measurement

error to change at different ages. This sort of model is also consistent with the common finding

that estimates of intergenerational mobility tend to be higher when child’s income is observed

when they are relatively young. We discuss how to adapt our arguments to the case of life-

cycle measurement error in detail in Appendix SC in the Supplementary Appendix. One of

the conditions that is often invoked in the life-cycle measurement error literature is that there

exist known ages, typically thought to be starting in the early thirties and perhaps lasting until

the late forties (Haider and Solon (2006) and Nybom and Stuhler (2016)), when λYaY = 1 and

λTaT = 1. Thus, even in the presence of life-cycle measurement error, one simple way to get back
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to the case with classical measurement error is to use observations from prime-age children and

parents only — this is the approach that we take in the application.8

Remark 3. Another way to relax the classical measurement error assumption would be to allow

for the independence conditions in Assumption 1(ii) and Assumption 1(iii) to hold conditional on

X (instead of the measurement error also being independent of X). In that case, our arguments

exploiting quantile regression do not go through, but it seems likely that one could identify

the joint distribution of (Y ∗, T ∗) conditional on covariates building on existing arguments on

recovering distributions of mismeasured variables, particularly in settings where the researcher

has access to repeated measurements. In general, many approaches exist for identifying these

distributions even in the presence of complicated forms of non-classical measurement error (see

Hu (2017) for a recent review). In applications where repeated observations are available, it

would seem possible to substitute these types of approaches for quantile regression in the first

step of our identification arguments.9 See Remarks 4 and 5 for additional discussion on the pros

and cons of using quantile regression in the first step.

3.1 Identifying Parameters of Interest

Recall that all the parameters of our interest will be identified if the joint distribution of Y ∗

and T ∗ conditional on X is identified. Besides the assumptions on measurement error above,

the main additional condition that we require is that the quantiles of the outcome conditional

on the covariates and the quantiles of the treatment conditional on the covariates are linear in

parameters across all quantiles.

Next, we present a series of results to identify this joint distribution. As a first step, recall

that by Sklar’s Theorem (Sklar (1959)), joint distributions can be written as the copula of their

marginals, i.e.,

FY ∗T ∗|X(y, t | x) = CY ∗T ∗|X
(
FY ∗|X(y | x),FT ∗|X(t | x) | x

)
(5)

where CY ∗T ∗|X is the copula of Y ∗ and T ∗ conditional on X which captures the dependence

between the ranks of Y ∗ and T ∗ conditional on X. Equation (5) is helpful because it splits

the identification challenge into two parts: (i) identifying the marginal distributions and (ii)

identifying the copula. This section provides two results showing that (i) the distributions of

the outcome/treatment conditional on covariates are identified, and (ii) the conditional copula

in Equation (5) is identified. Taken together, these results show that the joint distribution is

identified and, therefore, that all of our parameters of interest are also identified.

8This strategy might not always be available, but, especially for applications like ours that use NLSY data where there is
little variation in child’s age, this is a viable approach.

9One common strategy in the intergenerational mobility literature is to average repeated measures of annual income into a
single measure of permanent income and then subsequently ignore measurement error. Generally, in nonlinear settings (such
as ours), approaches using averaging would require consistent estimation of permanent income, which, due to the incidental
parameters problem, would require the number of time periods to grow to infinity (see, e.g., Kato, Galvao Jr, and Montes-Rojas
(2012) and Fernández-Val and Weidner (2016)). For these arguments to work, it seems likely that a researcher would already
have access to an individual’s entire annual earnings history. In this case, there is no measurement error issue at all, as one can
simply compute permanent income. Even in the context of linear models, averaging a few years of earnings may be of limited
use in accounting for measurement error, especially when transitory income shocks can be persistent (Mazumder (2005)).
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Before stating these results, we make the following additional assumption.

Assumption 2 (Quantile Regression).

(i) Y ∗ = QY ∗|X(VY ∗ | X) = X ′βY ∗(VY ∗) with VY ∗ |X ∼ U [0, 1].

(ii) T ∗ = QT ∗|X(VT ∗ | X) = X ′βT ∗(VT ∗) with VT ∗ |X ∼ U [0, 1].

Assumption 2 imposes a quantile regression type of model for Y ∗ and T ∗ in terms of X.

Assumption 2 implies that Y ∗ and T ∗ arise from models that are both monotonically increasing

in a scalar unobservable as well as being known up to the parameters βY ∗(·) and βT ∗(·), respec-
tively. Next, we introduce some additional assumptions for recovering the distributions of the

outcome/treatment conditional on covariates in the presence of measurement error.

Assumption 3 (Additional Assumptions for QR with Measurement Error). For j ∈ {Y ∗, T ∗},
we make the following assumptions:

(i) βj(τ) is in the space M [B1 × B2 × · · · × BK ] (with K the dimension of X) where the

functional space M is the collection of all functions b = (b1, . . . , bK) : [0, 1] → [B1×· · ·×BK ] with

Bk a closed bounded interval of R for k = 1, . . . ,K such that x′b(τ) : [0, 1] → R is monotonically

increasing in τ for all x ∈ support(X). Each component βjk(·) is twice continuously differentiable

with uniformly bounded derivatives.

(ii) E[XX ′] is nonsingular. There exists at least one covariate X1, such that conditional

on the remaining covariates X−1, X1 | X−1 has a continuous distribution with strictly positive

density on an open set and the corresponding coefficient βj1(·) is strictly monotonic.

(iii) The measurement error Uj has a continuously differentiable density, mean zero, and

satisfies the condition that there exists a constant C > 0 such that for all k > 0,E[|Uj |k] < k! ·Ck.

Assumption 3 reproduces Assumptions 1-3 in Hausman, Liu, Luo, and Palmer (2021) with

slight changes in notation. Part (i) is mainly a technical condition. The condition that the

mapping τ 7→ x′βj(τ) is monotonically increasing is used to define the admissible class of quantile

regression models in Proposition 1 below. Without such a restriction, rearrangements of quantile

indices would yield observationally equivalent models once measurement error is introduced. Part

(ii) is the most substantive part of the assumption. It requires (a) continuous variation in at

least one covariate labeled X1 and (b) a strictly monotone coefficient path for that covariate

across quantiles. In the context of our application, a natural candidate for X1 is age. The strict

monotonicity requirement encodes a shape restriction on heterogeneous returns to age across the

conditional income distribution; e.g., the marginal effect of age should increase with τ . This sort

of condition would hold if those at the higher parts of the conditional income distribution see

faster income growth with respect to age than those at lower parts of the conditional distribution.

Part (iii) imposes standard regularity conditions on the measurement error (smooth density, mean

zero, and rules out thick tails) that are common in the measurement error literature and ensures

the deconvolution is well-posed. All of these conditions are likely to be relatively mild in our

application.

Hausman, Liu, Luo, and Palmer (2021) show that QR parameters are identified in exactly the

sort of setup discussed above. Notice that identification of βY ∗(·) and βT ∗(·) also implies that the

distributions of the outcome/treatment conditional on covariates are also identified. The next

proposition states this result.
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Proposition 1. Under Assumptions 1 to 3, βj(·) and FUj are uniquely identified within the class

of quantile regression models satisfying Assumptions 1 to 3 for j ∈ {Y ∗, T ∗}.

The proof of Proposition 1 is provided in Appendix A. With the quantiles identified, one

can obtain the marginals simply by inverting the quantiles. The next part of our identification

argument shows that the copula of Y ∗ and T ∗ conditional on covariates, CY ∗T ∗|X , is identified.

Theorem 1. Under Assumptions 1 to 3, and under the assumption that the characteristic func-

tions of UY ∗ and UT ∗ are non-vanishing, CY ∗T ∗|X is identified.

The proof of Theorem 1 is provided in Appendix A. Together, Proposition 1 and Theorem 1

imply that the joint distribution FY ∗T ∗|X is identified — Proposition 1 implies that the marginals

are identified (because the conditional quantiles can be inverted) and Theorem 1 implies that the

conditional copula is identified. These results also imply that all of our parameters of interest

— both the Conditional Distribution-type parameters and the Copula-type parameters — are

identified.

Remark 4. The quantile regression structure imposed in Assumption 2 is crucial for being able

to identify the conditional distributions of the outcome and the treatment without requiring

repeated measurements of the outcome and treatment. It does not require the parameters βY ∗(·)
and βT ∗(·) to have a structural/causal interpretation, but it does require that both models of

the conditional quantiles are correctly specified. There is an interesting connection between

this requirement and early work on identifying the distribution of a variable of interest in the

presence of measurement error (e.g., Carroll and Hall (1988), Stefanski and Carroll (1990), Fan

(1991), and Diggle and Hall (1993)); this literature often invoked parametric assumptions on the

measurement error (e.g., that the measurement error follows a normal distribution) which enabled

recovering the distribution of the random variable of interest without extra requirements such

as repeated measurements. Instead of making a parametric assumption about the measurement

error, Assumption 2 amounts to a flexible parametric assumption on the variable of interest while

leaving the distribution of the measurement error unrestricted up to some regularity conditions.

Remark 5. Assumption 2 is relatively less important for showing the result in Theorem 1; for

example, given that the conditional distributions of the outcome and treatment are identified

and that the distributions of the measurement errors in the outcome and treatment equation

are identified, Theorem 1 does not otherwise rely on Assumption 2. This suggests that our

arguments in the second step are likely to go through under alternative first step assumptions.

In particular, in applications where a researcher has access to repeated measurements of the

outcome and treatment, it might be attractive to impose less structure than is provided by the

quantile regression setup in Assumption 2.

Remark 6. A leading alternative to our approach would be to use quantile regression of the

outcome conditional on the treatment and covariates. We are unaware of work that allows for

measurement error in both the outcome and the treatment in a quantile regression setup. Condi-

tional on handling measurement error, this setup would deliver the Conditional Distribution-type

parameters that we consider; however, it would not immediately deliver the Copula-type param-

eters that we consider.
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4 Estimation

This section considers estimating the parameters of interest from Section 2 in the presence of

measurement error based on our identification results from Section 3. We make some simplifying

assumptions next that make estimation simpler; in general, we have tried to strike a balance

between generality and being able to implement our model in a practical way in realistic appli-

cations, though noting that one could proceed in a less restrictive way here at the cost of more

complicated estimation. In Appendix D, we assess the performance of our estimation strategy

using Monte Carlo simulations.

Assumption 4 (Random Sampling). {Yi, Ti, Xi}ni=1 are i.i.d. draws from the joint distribution

FY TX .

Assumption 5 (Distribution of Measurement Error). UY ∗ ∼ FUY ∗ (·|σY ∗) and UT ∗ ∼ FUT∗ (·|σT ∗)

where σY ∗ and σT ∗ are finite-dimensional parameters.

Assumption 6 (Copula). The conditional copula CY ∗T ∗|X(·, · | x) is invariant in x ∈ support(X)

and is denoted by CY ∗T ∗|X(r, s; δ) for some finite-dimensional parameter δ. It is twice continu-

ously differentiable in (r, s) ∈ (0, 1)2, and its density

cY ∗T ∗|X(r, s; δ) :=
∂2

∂r ∂s
CY ∗T ∗|X(r, s; δ)

is strictly positive, uniformly bounded in its arguments, and twice continuously differentiable in

δ.

Assumption 7 (Splines). Let L denote a (fixed) number of knots and consider the sequence of

equally spaced τ , 0 < τ1 < τ2 < · · · < τL < 1. For any τ ∈ [τ1, τL] and j ∈ {Y ∗, T ∗},

βj(τ) = βj(τl) + (τ − τl)
βj(τu)− βj(τl)

τu − τl

where τl = sup{u ∈ {τ1, . . . , τL} : u ≤ τ} and τu = inf{u ∈ {τ1, . . . , τL} : u ≥ τ}; i.e., τl is the

closest smaller value of τ for which βj(τ) has been estimated and τu is the closest larger value of

τ for which βj(τ) has been estimated. For τ < τ1 and τ ≥ τL:

βY ∗(τ) =

βY ∗(τ1) +
log(τ/τ1)
1−τ1

e1, τ < τ1

βY ∗(τL)− log((1−τ)/(1−τL))
τL

e1, τ ≥ τL

where e1 denotes the K×1 standard basis vector with 1 as its first element and zeroes everywhere

else.

Assumption 4 says that we have access to a sample of n i.i.d. draws of Y , T , and X. As-

sumption 5 says that the distribution of the measurement errors UY ∗ and UT ∗ is known up to a

finite number of parameters. In practice, we will assume that UY ∗ and UT ∗ are both mixtures

of normal distributions. This is similar to what Hausman, Liu, Luo, and Palmer (2021) do in

their application, and mixtures of normals are likely to have good approximating properties for
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continuously distributed measurement error.10 The first part of Assumption 6 says that the

conditional copula does not vary across different values of the covariates (note that this does not

imply that it is equal to the unconditional copula). This sort of condition is frequently invoked in

the literature on conditional copulas, where it is often referred to as the “simplifying assumption”

as it greatly simplifies estimating conditional copulas. Despite being a common assumption, it

is a strong assumption (see, for example, the discussion in Derumigny and Fermanian (2017) as

well as Veraverbeke, Omelka, and Gijbels (2011) and Gijbels, Veraverbeke, and Omelka (2011));

Nagler (2025) provides a recent systematic discussion of the plausibility of this assumption both

in terms of models that rationalize it and in terms of empirical evidence on its plausibility across

several different applications. The second part of Assumption 6 says that the conditional copula

of Y ∗ and T ∗ is known up to a finite number of parameters. In principle, the conditional copula

could be nonparametrically estimated (Theorem 1 implies that it is identified, though it does not

provide a directly estimable expression). While possible, proceeding this way is likely to be quite

complicated in practice (see, for example, Li and Vuong (1998), Li (2002), Veraverbeke, Omelka,

and Gijbels (2011), and Firpo, Galvao, and Song (2017)). Instead, we proceed by considering the

case where CY ∗T ∗|X is specified parametrically. Assumption 7 allows us to recover the process

βj(·) from estimating a finite number of βj(τ), i.e., estimate them over a finite grid of τ and

interpolate the process from the particular set of βj(τ) that we estimate (see Wei and Carroll

(2009) and Arellano and Bonhomme (2016) for similar assumptions in related contexts).11

4.1 Step 1: Estimating Conditional Quantiles

The first step is to estimate QY ∗|X(τ | x) = x′βY ∗(τ) and QT ∗|X(τ | x) = x′βT ∗(τ). In this

section, we outline the estimation procedure for QY ∗|X and note that the arguments for QT ∗|X

hold analogously.

First, notice that if UY ∗ were observed, then we could estimate the QR parameters by quantile

regression of (Y − UY ∗) on X. Next, let ψτ (w) = τ − 1{w < 0} which is the derivative of the

check function ρτ (w) = (τ − 1{w < 0})w. If Y ∗ were observed, the first-order condition for

estimating the QR parameters is given by

0 = E
[
Xψτ

(
Y ∗ −X ′βY ∗(τ)

)]
= E

[
Xψτ

(
Y − UY ∗ −X ′βY ∗(τ)

)]
This is an infeasible moment condition because Y ∗ (and UY ∗) is unobserved. However, notice

that it can be rewritten as

0 = E

[
X

∫
U
ψτ

(
Y − u−X ′βY ∗(τ)

)
fUY ∗ |Y,X(u|Y,X) du

]
(6)

10A side-effect of assuming that the distributions of measurement error are known up to a finite number of parameters is
that the smoothness of the measurement error—e.g., ordinary-smooth vs. super-smooth measurement error—does not affect
the rate of convergence of our estimator or our inference procedure. This is in contrast with Hausman, Liu, Luo, and Palmer
(2021), whose main estimator does not specify a parametric model for the measurement error, and, hence, the smoothness of
the measurement error affects inference and rates of convergence.

11The parameters ρS and θU (∆, s1, s2) depend on integrals over the distributional tails. The second part of Assumption 7
complements the first part by specifying a spline model for the extreme intervals, following Arellano and Bonhomme (2016,
Appendix D) and Geraci and Bottai (2007).
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Further, notice that from Bayes’ Theorem,

fUY ∗ |Y,X(u|y, x) =
fY |UY ∗ ,X(y|u, x)fUY ∗ |X(u | x)

fY |X(y | x)
(7)

and that

fY |UY ∗ ,X(y|u, x) = fY ∗|X(y − u | x) and fUY ∗ |X(u | x) = fUY ∗ (u)

which hold by Assumption 1(i)12 and Assumption 1(ii). Moreover, given βY ∗(·), the conditional

cdf of Y ∗ can be recovered as FY ∗|X(y | x) =

∫ 1

0
1{x′βY ∗(τ) ≤ y} dτ . In estimation, this

transformation ensures that the conditional cdf will be increasing in y (Chernozhukov, Fernandez-

Val, and Galichon (2010)). Similarly, the conditional density of Y ∗ can be recovered as fY ∗|X(y |
x) =

[
x′β∂Y ∗

(
FY ∗|X(y | x)

)]−1
where β∂Y ∗(τ) := ∂βY ∗ (τ)

∂τ (see, for example, Rothe and Wied

(2020)). Equation (6) thus suggests a two-step estimation procedure. In the first step, make

draws from fUY ∗ |Y,X ; in the second step, run QR using the observed Y , X, and the simulated

measurement error. In practice, we use the following estimation scheme, iterating back and forth

between making draws of the measurement error and estimating the parameters using QR and

maximum likelihood.

Algorithm 1.

Initialize:

1. Set the counter l = 0. Set initial values of the parameters {β̂(l)Y ∗ , σ̂
(l)
Y ∗}. Set a tolerance

level ε = o
(
n−1/2

)
.

Iterate:

2. Set l = l + 1. For i = 1, . . . , n, make S draws from f̂UY ∗ |Y,X(u|Yi, Xi) ∝ f̂Y ∗|X(Yi − u |
Xi; β̂

(l−1)
Y ∗ )f̂UY ∗ (u|σ̂

(l−1)
Y ∗ ).

3. Using the nS pseudo-observations from Step 2 above, estimate β̂
(l)
Y ∗ using quantile re-

gression of Yi − Uis as the outcomes and Xi as the covariates. Estimate σ̂
(l)
Y ∗ using the

same nS observations.

4. If
∥∥∥(β̂(l)Y ∗ , σ̂

(l)
Y ∗

)
−
(
β̂
(l−1)
Y ∗ , σ̂

(l−1)
Y ∗

)∥∥∥ < ε, return
(
β̂
(l)
Y ∗ , σ̂

(l)
Y ∗

)
, else continue iterating.

4.2 Step 2: Estimating the copula parameter

Under Assumption 6, the copula CY ∗T ∗|X is known up to a finite number of parameters. In

this section, we propose to estimate the copula parameters by simulated maximum likelihood.

Building up to an estimation routine based on maximum likelihood, first notice that the

12To see the first part, notice that P(Y ≤ y|X,UY ∗ = u) = P(Y ∗ ≤ y − u | X) which holds by Assumption 1(ii) and then the
result follows immediately.
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observed distribution of mismeasured variables Y and T is given by

P(Y ≤ ȳ, T ≤ t̄|X = x) = P(Y ∗ + UY ∗ ≤ ȳ, T ∗ + UT ∗ ≤ t̄|X = x)

=

∫
1{y + u ≤ ȳ, t+ v ≤ t̄}fY ∗T ∗|X(y, t | x)fUY ∗ (u)fUT∗ (v) dy dt du dv

=

∫
CY ∗T ∗|X

(
FY ∗|X(ȳ − u|x),FT ∗|X(t̄− v|x)

)
fUY ∗ (u)fUT∗ (v) du dv

(8)

where the second equality holds by Assumption 1, and the third holds (after some manipulation)

by Theorem 1 and Assumption 6. Note that Proposition 1 implies that FY ∗|X , FT ∗|X , fUY ∗ , and

fUT∗ are identified; they are each known up to a finite number of parameters by Assumptions 5

to 7. What remains is estimating the copula parameters.

Equation (8) suggests estimating the copula parameters by maximum likelihood, and it implies

fY T |X(ȳ, t̄ | x) =
∫
cY ∗T ∗|X

(
FY ∗|X(ȳ − u | x),FT ∗|X(t̄− v | x); δ

)
× fY ∗|X(ȳ − u | x)fT ∗|X(t̄− v | x)fUY ∗ (u)fUT∗ (v) du dv

= E

[
cY ∗T ∗|X

(
FY ∗|X(ȳ − UY ∗ | x),FT ∗|X(t̄− UT ∗ | x); δ

)
fY ∗|X(ȳ − UY ∗ | x)fT ∗|X(t̄− UT ∗ | x)

]
where cY ∗T ∗|X is the copula pdf, and the expectation is over the measurement error variables

UY ∗ and UT ∗ . The copula parameter can be estimated by maximizing the log-likelihood function.

Let

L̂
(S)
i (δ) =

S∑
s=1

cY ∗T ∗|X
(
F̂Y ∗|X(Yi − U

(s)
Y ∗ | Xi), F̂T ∗|X(Ti − U

(s)
T ∗ | Xi); δ

)
× f̂Y ∗|X(Yi − U

(s)
Y ∗ |Xi)f̂T ∗|X(Ti − U

(s)
T ∗ |Xi)

where U
(s)
Y ∗ and U

(s)
T ∗ are draws from f̂UY ∗UT∗ |Y,X(·|Yi, Xi; σ̂) for σ̂ = (σ̂Y ∗ , σ̂T ∗). Then, we estimate

the copula parameter by

δ̂ = argmax
δ

n∑
i=1

log
(
L̂
(S)
i (δ)

)
.

4.3 Step 3: Estimating Parameters of Interest

4.3.1 Conditional Distribution-type Parameters

First, we focus on estimating the Conditional Distribution-type parameters such as FY ∗|T ∗X

and QY ∗|T ∗X . Bouyé and Salmon (2009) study the relationship between copulas and quantile

regression in the bivariate case (see also Chen and Fan (2006)). The bivariate case is the relevant

case for the setup in the current paper, as the results for quantile regression and a bivariate

copula go through in our case, with everything holding conditional on X. The results of Bouyé
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and Salmon (2009, p. 726) imply that

FY ∗|T ∗X(y|t, x) = C2|X
(
FY ∗|X(y | x),FT ∗|X(t | x)

)
(9)

where C2|X(u1, u2) =
∂CY ∗T∗|X(u1,u2)

∂u2
which provides an alternative expression for FY ∗|T ∗X (here

we also use Assumption 6 which says that the conditional copula does not vary with x). Under

the conditions that C2|X is invertible in its first argument, the quantiles can be directly obtained

by

QY ∗|T ∗X(τ |t, x) = QY ∗|X

(
C−1
2;1|X

(
τ ; FT ∗|X(t | x)

) ∣∣∣ x) (10)

where C−1
2;1|X(·; ·) is the inverse of C2|X with respect to its first argument.

Example 1 (Archimedean Family of Copulas). An Archimedean copula is given by

C(u1, u2) = ψ−1
(
ψ(u1) + ψ(u2)

)
where ψ is called a generator function (see Nelsen (2007) for more details). The results of Bouyé

and Salmon (2009, p. 729) imply that

FY ∗|T ∗X(y|t, x) =
ψ′(FT ∗|X(t | x)

)
ψ′
(
ψ−1

[
ψ
(
FT ∗|X(t | x)

)
+ ψ

(
FY ∗|X(y | x)

)])
and

QY ∗|T ∗X(τ |t, x) = QY ∗|X

(
ψ−1

[
ψ

(
ψ′−1

(
1

τ
ψ′(FT ∗|X(t | x)

)))
− ψ

(
FT ∗|X(t | x)

)] ∣∣∣∣∣ x
)

Example 2. The Clayton copula is a particular Archimedean family with C(u1, u2; δ) = (u−δ
1 +

u−δ
2 − 1)−1/δ where we restrict δ > 0; the generator function is given by ψ(s; δ) = δ−1(s−δ − 1),

and one can show that

FY ∗|T ∗X(y|t, x) =
[
1 + FT ∗|X(t | x)δ

(
FY ∗|X(y | x)−δ − 1

)]−(1+δ)/δ

and

QY ∗|T ∗X(τ |t, x) = QY ∗|X

([
(τ−δ/(1+δ) − 1)FT ∗|X(t | x)−δ + 1

]−1/δ
∣∣∣∣∣ x
)

The Clayton copula has the nice property of having a one-to-one correspondence with Kendall’s

Tau.

Example 3 (Gaussian Copula). The Gaussian copula is given by C(u1, u2; ρ) = Φ2

(
Φ−1(u1),Φ

−1(u2); ρ
)

where Φ is the cdf of a standard normal random variable and Φ2 is the cdf of a pair of random

variables that are jointly normally distributed with mean 0, variance 1, and correlation coefficient
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ρ. Then,

FY ∗|T ∗X(y|t, x) = Φ

(
Φ−1

(
FY ∗|X(y | x)

)
− ρΦ−1

(
FT ∗|X(t | x)

)√
1− ρ2

)

and

QY ∗|T ∗X(τ |t, x) = QY ∗|X

(
Φ(ρΦ−1

(
FT ∗|X(t | x)

)
+
√
1− ρ2Φ−1(τ)

∣∣∣ x)
See Bouyé and Salmon (2009) for more discussion of particular parametric families of copulas

and quantile regression.

4.3.2 Copula-type Parameters

Next, we consider estimating our Copula-type parameters. One thing to notice is that the

copula that we estimated was the conditional copula, but the copula parameters that we focus

on are functionals of the unconditional copula. Thus, the key step to estimating the Copula-type

parameters is to back out the unconditional copula from our estimates of the conditional copula

and conditional distributions of Y ∗ and T ∗. In particular, notice that

ĈY ∗T ∗(r, s) :=
1

n

n∑
i=1

CY ∗T ∗|X
(
F̂Y ∗|X(F̂−1

Y ∗(r) | Xi), F̂T ∗|X(F̂−1
T ∗ (s) | Xi); δ̂

)
is an estimator of the unconditional copula. Then, to estimate particular cells in the transition

matrix, one can simply plug into Equation (4); i.e.,

θ̂TM (r1, r2, s1, s2) =
ĈY ∗T ∗(s2, r2)− ĈY ∗T ∗(s1, r2)− ĈY ∗T ∗(s2, r1) + ĈY ∗T ∗(s1, r1)

s2 − s1

Similarly, a plug-in estimator via numerical integration of the upward mobility parameter is given

by

θ̂U (∆, s1, s2) :=

∫ 1

0

∫ 1

0

1{r > s+∆}1{s1 ≤ s ≤ s2}
(s2 − s1)

f̂Y ∗T ∗
(
F̂−1
Y ∗(r), F̂

−1
T ∗ (s)

)
f̂Y ∗
(
F̂−1
Y ∗(r)

)
f̂T ∗
(
F̂−1
T ∗ (s)

) dr ds.
where

f̂Y ∗T ∗
(
y, t
)
=

1

n

n∑
i=1

cY ∗T ∗|X
(
F̂Y ∗|X(y | Xi), F̂T ∗|X(t | Xi); δ̂

)
f̂Y ∗|X(y | Xi)f̂T ∗|X(t | Xi)

is an estimator of the unconditional joint pdf.

5 Inference

In this section, we develop the asymptotic properties of our estimators. We focus on showing

asymptotic normality and bootstrap validity of the estimators of our main target parameters.

The key ingredient for providing these results is to establish asymptotic normality of our first
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step estimators of the QR and measurement error parameters. Algorithm 1 delivers estimates of

the QR and measurement error parameters at convergence. Thus, the estimated parameters solve

the sample first-order conditions up to an asymptotically negligible term, and we can use proof

techniques similar to those for establishing the limiting distribution of M-estimators. In partic-

ular, after establishing the consistency of our first step estimators, we linearize the score around

the population parameters and apply the Central Limit Theorem (CLT). The main technical

challenge lies in handling the nuisance conditional density arising from the measurement-error

component. Specifically,

fUY ∗ |Y,X(u | y, x;σY ∗) :=

[
x′β∂Y ∗

(∫ 1
0 1{x

′βY ∗(τ̃) ≤ (y − u)} dτ̃
)]−1

fUY ∗ (u;σY ∗)∫
U fY |UY ∗ ,X(y | ũ, x) fUY ∗ (ũ;σY ∗) dũ

,

where this expression follows from Equation (7) after invoking Assumption 5. This expression

makes explicit the dependence on σY ∗ , the quantile-slope function β∂Y ∗(τ) := ∂βY ∗(τ)/∂τ , as

well as the entire quantile coefficient process
{
βY ∗(τ) : τ ∈ (0, 1)

}
. Consequently, conventional

asymptotic arguments that treat each index τ separately are not applicable. Note that, for the

discussion of results for our first step estimators, we present results for (Y ∗, X ′, UY ∗), but cor-

responding results apply for (T ∗, X ′, UT ∗) using analogous arguments. Finally, given asymptotic

normality of our estimator of the QR parameters, we conclude this section by proving asymptotic

normality and bootstrap validity for all of our main target parameters.

5.1 Consistency of First Step Estimators of QR and Measurement Error Pa-

rameters

To start with, we show the consistency of our first step estimators of the quantile regression

parameters and measurement error parameters. This part relies on the identification result in

Proposition 1. We make the following assumption.

Assumption 8 (Compact parameter space and uniform interior). Let T := [τ1, τL], 0 < τ1 <

τL < 1, Γβ ⊂ RK , and Γδ ⊂ RP be compact with nonempty interior, and Γσ = [σ, σ] with

0 ≤ σ < σ <∞. Define Γ := Γβ × Γσ × Γδ. For all τ ∈ T ,

(
βY ∗(τ)′, σY ∗ , δ′

)′ ∈ int(Γ), and inf
τ∈T

dist
(
(βY ∗(τ)′, σY ∗ , δ′)′, ∂Γ

)
≥ κ

for some κ > 0, where dist(·, ∂Γ) is the Euclidean distance to the boundary of Γ.

Assumption 8 is a standard regularity condition on the parameter space commonly imposed in

the analysis of M-estimators. Importantly, the product space Γ does not depend on τ , and we

focus on T := [τ1, τL], a compact subset of (0, 1).

For the proof of consistency, we first proceed by providing a representation of the population

criterion corresponding to Algorithm 1. The population criterion for a fixed quantile index τ ∈ T
is given by

Qτ (β, σ) = E
[∫

U
ρτ
(
Y − u−X ′β

)
fUY ∗ |Y,X(u | Y,X;σ) du

]
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where (βY ∗(τ)′, σY ∗)′ := argmin
(β′,σ)′∈Γ

Qτ (β, σ).

The next crucial ingredient for the consistency result is uniform convergence in probability of

the sample criterion. Define the empirical (Monte–Carlo) conditional density built from the S

draws Uis, s = 1, . . . , S for each i by

f̂
(S)
UY ∗ |Y,X(u | Yi, Xi; σ̂Y ∗) :=

1

S

S∑
s=1

δUis(u)

where δUis(u) is the Dirac point mass at u. Consider the following sample criterion:

Qn,τ (β, σ) =
1

n

n∑
i=1

[∫
U
ρτ
(
Yi − u−X ′

iβ
)
f̂
(S)
UY ∗ |Y,X(u | Yi, Xi;σ)du

]

with the estimator in Algorithm 1 defined by
(
β̂Y ∗(τ)′, σ̂Y ∗

)′
:= argmin

(β′,σ)′∈Γ
Qn,τ (β, σ), τ ∈ {τ1, . . . , τL}.

For each i ∈ {1, . . . , n} and σ ∈ Γσ, let Ki,σ be the transition kernel of the Markov chain

{Ui1, . . . , UiS}(σ) on U , conditional on (Yi, Xi), with invariant law FUY ∗ |Y,X(· | Yi, Xi;σ) where

FUY ∗ |Y,X
(
(−∞, u] | Yi, Xi;σ

)
:= FUY ∗ |Y,X(u | Yi, Xi;σ). The following assumption is imposed on

the convergence of the Markov chain uniformly in σ.

Assumption 9 (MCMC Chain). There exists q : U → [1,∞), M <∞, and ρ ∈ (0, 1) such that,

for all u ∈ U , s ≥ 1,

sup
σ∈Γσ

∥∥Ks
i,σ(u, ·)−FU |Y,X(· | Yi, Xi;σ)

∥∥
TV

≤ M q(u) ρs

where sup
σ∈Γσ

E[q(Ui0(σ)) | Yi, Xi] <∞ almost surely (a.s.) and ∥ · ∥TV denotes the total variation

norm.

Assumption 9 enables the use of a conditional strong law of large numbers, ensuring that the

Monte Carlo approximation error is Op(S
−1/2). Sufficient conditions for Assumption 9 are pro-

vided, for example, by Rosenthal (1995). Notably, Assumption 9 implies that the Markov chain

{Ui1, . . . , UiS}(σ) for each i is β-mixing (see Doukhan (1995, p.89)), which in turn guarantees

that the Monte Carlo approximation error is Op(S
−1/2); see, e.g., Prakasa Rao (2009, Theorem

10). We also make the following assumption.

Assumption 10 (Dominance). There exists a positive constant C <∞ such that almost surely

(a.s.), (a) E[∥X∥2]+E[∥Y ∥2] ≤ C; (b) sup
σ∈Γσ

fUY ∗ |Y,X(u | Y,X;σ) ≤ C; (c) sup
σ∈Γσ

∫
U
u2fUY ∗ |Y,X(u |

Y,X;σ) ≤ C; (d) fY ∗|X(y | X) ∈ (0,∞) and continuous in y ∈ Y; (e) fUY ∗ |Y,X(u | Y,X;σ) is

continuously differentiable with respect to σ, and E
[( ∫

U

∣∣uf∂UY ∗ |Y,X(u | Yi, Xi;σY ∗)
∣∣ du)2] ≤ C.

Assumption 10 is a standard regularity condition that imposes boundedness and smoothness

conditions on the outcomes, covariates, and measurement error.

The following lemma provides a uniform weak law of large numbers result necessary for

establishing the consistency of the estimator in Algorithm 1.
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Lemma 1. Suppose Assumptions 4, 5 and 8 to 10 hold, then as n→ ∞ and n/S → 0,

sup
(τ,σ)′∈T ×Γσ

∣∣∣Qn,τ

(
β(τ), σ

)
−Qτ

(
β(τ), σ

)∣∣∣ p−→ 0.

The proof of Lemma 1 is provided in the Supplementary Appendix. Next, the following

theorem provides the consistency result of
(
β̂Y ∗(τ)′, σ̂Y ∗

)
uniformly in T .

Theorem 2. Suppose Assumptions 1 to 5 and 7 to 10 hold, then as n→ ∞ and n/S → 0,

sup
τ∈T

∥∥(β̂Y ∗(τ)′, σ̂Y ∗
)′ − (βY ∗(τ)′, σY ∗

)′∥∥ = op(1).

The proof of Theorem 2 is provided in Appendix B.

5.2 Asymptotic Normality

This section establishes joint asymptotic linearity and normality for the stacked (LK+1)× 1

parameter vector
(
(β̂ L

Y ∗ − β L
Y ∗)′, σ̂Y ∗ − σY ∗

)′
, where β L

Y ∗ := (βY ∗(τ1)
′, . . . , βY ∗(τL)

′)′. This

result provides the foundation for deriving the limiting distributions of the target parameters

introduced in Section 2.

Theorem 3. Suppose Assumptions 1 to 5 and 7 to 10 hold. Further, assume the L(K+1)×(LK+

1) matrix HL
Y ∗ in (A8) is full column rank, then as (n/S) → 0, (a)

((
β̂L
Y ∗ −βL

Y ∗
)′
, σ̂Y ∗ − σY ∗

)′
has the following asymptotically linear representation:

√
n

[
β̂L
Y ∗ − βL

Y ∗

σ̂Y ∗ − σY ∗

]
=
(
HL

Y ∗
′HL

Y ∗
)−1HL

Y ∗
′√
nCL

n,Y ∗ + op(1)

and, (b)

√
n

[
β̂L
Y ∗ − βL

Y ∗

σ̂Y ∗ − σY ∗

]
d−→ N

(
0, ΩL

Y ∗
)

where E
[
CL
n,Y ∗

]
= 0 and ΩL

Y ∗ :=
(
HL

Y ∗
′HL

Y ∗
)−1HL

Y ∗
′(

lim
n→∞

nVar
[
CL
n,Y ∗

])
HL

Y ∗
(
HL

Y ∗
′HL

Y ∗
)−1

.

The proof of Theorem 3 is provided in Appendix B. The condition that (n/S) → 0 requires S to

go to infinity faster than n. In practice, this can be achieved by setting S = an1+d, a > 0, d > 0.

Next, we state a corollary to this result that says that our estimator of FY ∗|X(y|x), which
is directly estimable given our estimates of the QR parameters and is an important input for

estimating our main target parameters, is also asymptotically normal.

Corollary 1. Suppose Assumptions 1 to 5 and 7 to 10 hold, then

√
n
(
F̂Y ∗|X(y | x)− FY ∗|X(y | x)

) d−→ N
(
0, σ(FY ∗|X(y | x))

)
,

where σ(FY ∗|X(y | x)) is explicitly defined in Appendix B.3.

The proof of Corollary 1 is provided in Appendix B. The next proposition shows that our

estimator of the parameters of the conditional copula is also asymptotically normal.
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Proposition 2. Suppose Assumptions 1 to 10 hold, then

√
n
(
δ̂ − δ

) d−→ N
(
0, Σ(δ)

)
,

where Σ(δ) is explicitly defined in Appendix B.4.

Finally, our main result in this section is to show that our estimators of the main target

parameters discussed above are all asymptotically normal and that the empirical bootstrap can

be used to approximate their limiting distribution.

Theorem 4. Suppose Assumptions 1 to 10 hold, then

(a)
√
n
(
F̂Y ∗T ∗|X(y, t | x)− FY ∗T ∗|X(y, t | x)

) d−→ N
(
0, σ(FY ∗T ∗|X(y, t | x))

)
;

(b)
√
n
(
F̂Y ∗|T ∗X(y|t, x)− FY ∗|T ∗X(y|t, x)

) d−→ N
(
0, σ(FY ∗|T ∗X(y|t, x))

)
;

(c)
√
n
(
Q̂Y ∗|T ∗X(τ | t, x)−QY ∗|T ∗X(τ | t, x)

) d−→ N
(
0, σ(QY ∗|T ∗X(τ | t, x))

)
;

(d)
√
n
(
θ̂TM (r1, r2, s1, s2)− θTM (r1, r2, s1, s2)

) d−→ N
(
0, σ(θTM (r1, r2, s1, s2))

)
;

(e)
√
n(ρ̂S − ρS)

d−→ N
(
0, σ(ρS)

)
; and

(f)
√
n
(
θ̂U (∆, s1, s2)− θU (∆, s1, s2)

) d−→ N
(
0, σ(θU (∆, s1, s2))

)
.

where each of the asymptotic variances is defined in the proof of Theorem 4. In addition, the

empirical bootstrap consistently estimates the limiting distribution of each estimator.

We provide proofs of part (a) of Theorem 4 and bootstrap validity in Appendix B, and we

provide the proofs of parts (b)-(f) in Appendix SA in the Supplementary Appendix.

6 Intergenerational Income Mobility allowing for Measurement

Error

In this section, we use the methods developed in the previous sections to estimate a variety

of distributional effect parameters in an application about intergenerational mobility, allowing

for measurement error in both parents’ permanent income and child’s permanent income, and

assess how much allowing for measurement error affects the resulting estimates.

Data

The data that we use comes from the 1997 National Longitudinal Survey of Youth (NLSY97).

The NLSY97 represents the 1997 cohort of the National Longitudinal Survey that contains

detailed panel data on individuals who were 12-16 years old at the start of 1997. It is a very

useful resource for studying recent intergenerational income mobility. Following much work on

intergenerational income mobility, we focus on a subset of the data involving fathers and sons.

We use the logarithm of son’s total labor income in 2014 (which is self-reported in the 2015 survey

wave) as the outcome variable. In 2014, survey respondents were between 29 and 33 years old.13

13This is essentially right at the start of the age range where the literature has generally observed that annual incomes are
not systematically different from permanent incomes (Haider and Solon (2006) and Nybom and Stuhler (2016)). Thus, for the
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Table 1: Summary Statistics

Q1 Q2 Q3 Q4

Son’s Income 46.17 50.82 59.18 66.34
(33.77) (34.91) (42.2) (46.89)

Father’s Income 19.46 43.2 64.22 112.28
(9.64) (5.66) (6.48) (51.19)

% White 0.53 0.67 0.74 0.84
(0.50) (0.47) (0.44) (0.37)

% Black 0.14 0.13 0.13 0.06
(0.35) (0.34) (0.33) (0.24)

% Hispanic 0.32 0.19 0.12 0.09
(0.47) (0.40) (0.33) (0.28)

Son’s Age 1997 14.15 14.16 14.27 14.27
(1.43) (1.48) (1.51) (1.47)

Father’s Age 1997 40.61 40.91 41.97 42.79
(7.30) (5.87) (5.44) (4.98)

Father’s Educ. 11.38 13.03 13.92 15.32
(3.45) (2.46) (2.45) (2.76)

Notes: The table provides summary statistics by father’s income quartiles in each
column. Son’s income and father’s income are reported in thousands of dollars.
Standard deviations of each variable are reported in parentheses.

Sources: NLSY97, as described in text.

We use the logarithm of father’s total labor income in 1996 (in 2014 dollars) as the treatment

variable. We drop all father-son pairs in which either the father or the son has zero or missing

earnings.

The main advantages of using the NLSY97 relative to other datasets, such as the Panel Study

of Income Dynamics (PSID), are (i) the NLSY97 sample sizes tend to be larger, and there are

more individuals who are of a similar age, and (ii) the NLSY97 tends to have more individual level

covariates that can be included in our analysis. The main complication is that we do not observe

permanent incomes. For fathers, we only observe a single year of income from the first year of

the survey. For sons, we only use income reported for the year 2014 and discard information

about income in subsequent years. Having one observation of father’s and son’s incomes fits into

the methodological framework considered in the paper.

Besides the income variables for fathers and sons, we also observe race, ethnicity, ages of

both fathers and sons, and the father’s education (in years). We drop observations that are

missing values for any of these. This results in a dataset with 1,096 observations. Summary

statistics for our dataset are available in Table 1. Each column provides average values of each

variable by quartile of father’s income. Like almost all work on intergenerational mobility, we

see that son’s income is increasing in father’s income and that sons from low-income families

tend to have higher incomes than their fathers, while sons from high-income families tend to

have lower incomes than their fathers. The estimated intergenerational elasticity (IGE) is 0.054

results below, we do not make any adjustments related to life-cycle measurement error as discussed in Appendix SC in the
Supplementary Appendix.
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in our data. This is broadly similar to early studies of intergenerational income mobility that

ignored measurement error in income variables. However, the estimated value of the IGE using

our data is small relative to more recent IGE estimates that account for measurement error in

income in a linear regression framework. In terms of other covariates, the percentage of sons

that are white, father’s age, and father’s education are all increasing with father’s income. The

percentage of sons who are black and the percentage of sons who are Hispanic both decrease with

fathers’ income. The son’s age in 1997 does not appear to be correlated with father’s income.

Implementation Details

In this section, the only covariates we include are son’s age and father’s age; this specification

is common in the intergenerational mobility literature. In Appendix SD in the Supplementary

Appendix, we provide additional results that condition on more covariates. For our first step

quantile regression estimates (that allow for measurement error), we estimate βj(τ) over L = 25

equally spaced values of τ from 0.02 to 0.98. We initialize Algorithm 1 by setting β̂
(0)
j (τ) equal

to the estimates of the QR parameters ignoring measurement error. We specify the measurement

error for both son’s permanent income and father’s permanent income as a mixture of two normal

distributions. The parameters for the mixture of normals are each mixture component’s mean

and variance, and the mixture probability. We initialize the two means to be -1 and 1, both

variances to be 1, and the mixture probability to be 0.5. At each iteration, given estimates of(
β̂
(l−1)
j (·), σ̂(l−1)

j

)
from the previous iteration, for each observation, we make 100 measurement

error draws using the last 100 draws from a Metropolis–Hastings algorithm, after discarding 200

burn-in draws. The proposal distribution is a Gaussian random walk with variance fixed at 1.

As discussed in Algorithm 1, we update the QR parameters using quantile regression accounting

for the measurement error draws. We update the parameters for the measurement error itself by

fitting a two-component mixture of normals on the measurement error draws. For this step, we

use the R mixtools package (Benaglia, Chauveau, Hunter, and Young (2010)), which implements

a standard (and relatively computationally cheap) EM-algorithm for estimating mixture models

(see also McLachlan, Lee, and Rathnayake (2019)). Finally, we set the tolerance level ε to be

equal to
(
L(K−1)+3m

)
/40 where K is the number of regressors andm is the number of mixture

components for the measurement error (here m = 2 and K = 3, which includes an intercept).

For estimating the conditional copula in the second step of our estimation procedure, we specify

that the conditional copula is a Clayton copula and estimate its parameter. In Appendix SD in

the Supplementary Appendix, we provide analogous results to the ones in this section that use a

Gaussian copula instead. To estimate the copula parameter, we use 250 simulated measurement

error draws in our simulated maximum likelihood procedure. We report standard errors and

confidence intervals below that come from using the empirical bootstrap with 100 iterations.

Copula-type Parameters

To start with, we consider copula-type parameters: rank-rank correlations, transition matri-

ces, and upward mobility measures. Although our estimation approach involves estimating quan-

tile regressions conditional on covariates (and accounting for measurement error), the copula-type
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Table 2: Transition Matrix

Father’s Income Quartile

1 2 3 4

4 0.126 0.222 0.288 0.364
(0.037) (0.012) (0.013) (0.036)

3 0.165 0.256 0.287 0.291
(0.029) (0.004) (0.014) (0.014)

2 0.241 0.278 0.255 0.226
(0.007) (0.015) (0.004) (0.013)

1 0.468 0.244 0.170 0.119

S
o
n
’s

In
co
m
e
Q
u
ar
ti
le

(0.071) (0.008) (0.029) (0.036)

(a) Measurement Error

Father’s Income Quartile

1 2 3 4

4 0.161 0.234 0.255 0.376
(0.020) (0.029) (0.026) (0.026)

3 0.197 0.215 0.303 0.266
(0.026) (0.033) (0.032) (0.027)

2 0.328 0.230 0.314 0.175
(0.031) (0.035) (0.038) (0.030)

1 0.303 0.277 0.175 0.190

S
o
n
’s

In
co
m
e
Q
u
ar
ti
le

(0.026) (0.027) (0.023) (0.026)

(b) Observed

Notes: The table provides estimates of transition matrices either allowing for measurement error using the techniques developed
in the paper (Panel (a)) or coming directly from the observed data (Panel (b)). The columns are organized by quartiles of
father’s income; e.g., columns labeled “1” use data from fathers whose income is in the first quartile. Similarly, rows are
organized by quartiles of son’s income. Standard errors are computed using the bootstrap.

Sources: NLSY97, as described in text.

parameters that we consider are unconditional and, therefore, can be directly compared to rank-

rank correlations, transition matrices, or upward mobility measures computed directly from the

observed data. We report both of these types of results in this section, which provides a straight-

forward way to compare our estimates that allow for measurement error with estimates that

ignore measurement error.

We start with rank-rank correlations. Using the raw data (and ignoring measurement error),

our estimate of the rank-rank correlation is 0.208 (s.e.=0.034). By contrast, our estimate of the

rank-rank correlation that allows for measurement error is 0.345 (s.e.=0.104). The difference

between these estimates is large — our estimates that adjust for measurement error suggest

substantially less intergenerational mobility (due to the rank-rank correlations being higher)

than is implied by the estimates that use the observed data directly.14

The results on transition matrices are presented in Table 2. First, ignoring measurement error

(as in Panel (b)), the estimated transition matrix indicates a large degree of intergenerational

income mobility. While sons generally are somewhat more likely to stay in the same income quar-

tile as their father, large movements in the income distribution do not appear to be uncommon.

14Among the distributional effect parameters that we consider, the effect of measurement error on rank-rank correlations has
been considered in more depth in the literature relative to other parameters. First, using administrative data from Sweden
with a long earnings history, Nybom and Stuhler (2017) provide results (see, in particular, Panel c of their Figure 1) comparing
estimates of intergenerational rank-rank correlations for children at different ages to rank-rank correlations using the entire
earnings history (and thus accounting for measurement error). At age 30, which is comparable to our estimates reported above
that ignore measurement error, they estimate a rank-rank correlation of about 0.18. When they use the full earnings history,
which is infeasible for us but comparable to our estimates that account for measurement error, they estimate a rank-rank
correlation of about 0.26. This is fairly similar to our estimate, perhaps reflecting somewhat lower intergenerational mobility in
the United States than in Sweden. Second, Chetty, Hendren, Kline, and Saez (2014) use administrative data from the United
States for parent-child pairs that are 29-32 in 2011 and 2012, which is very similar to the ages and years that we consider. Their
main rank-rank correlation estimate is 0.341, which is remarkably close to ours. We note that these estimates being this similar
to each other is likely to be partially a coincidence, as (i) our estimates are not especially precise and (ii) their estimates only
use two periods of income, which may not be enough for the averaged income to reflect permanent income.
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Table 3: Upward Mobility

Father’s Income Quartile

1 2 3 4

Measurement Error

0.776 0.617 0.430 0.175

(0.034) (0.005) (0.020) (0.018)

Observed

0.830 0.573 0.387 0.167

(0.022) (0.029) (0.026) (0.024)

Notes: The table provides estimates of upward mobility allowing for
measurement error using the techniques developed in the paper (top panel)
or coming directly from the observed data (bottom panel). The columns
are organized by quartiles of father’s income; e.g., columns labeled “1” use
data from fathers whose income is in the first quartile. Standard errors are
computed using the bootstrap.
Sources: NLSY97, as described in text.

For example, for a son whose father was in the lowest quartile of the income distribution, our es-

timate shows that the probability that the son is in the lowest quartile of the income distribution

is 30%, but that the probability that the son moves to the top quartile of the income distribution

is 16%. Similarly, for fathers in the top quartile of the income distribution, we estimate the

probability that their son is in the top quartile of the income distribution to be 38% and that

the probability that their son is in the bottom quartile of the income distribution to be 19%.

Allowing for measurement error (as in Panel (a)) indicates substantially less intergenerational

mobility. For example, for fathers in the lowest quartile of the permanent income distribution, we

estimate that 47% of their sons stay in the lowest quartile of the permanent income distribution

and only 13% move to the top quartile of the permanent income distribution. For fathers in the

top quartile of the permanent income distribution, we estimate that 36% of their sons stay in

the top quartile while only 12% move to the bottom quartile.

Finally, we present upward mobility estimates in Table 3. These are estimates of the fraction

of sons whose rank in the income distribution exceeds the rank of their fathers. We present

these results by quartile of father’s income as well as separately by whether we use our approach

that allows for measurement error or just use the observed data directly. Compared to using the

observed data directly, the upward mobility estimates allowing for measurement error are lower

when the father is in the first quartile of the permanent income distribution and higher when the

father is in the second, third, or fourth quartile of the permanent income distribution. As for

the other parameters in this section, these results suggest that allowing for measurement error

reduces estimates of intergenerational income mobility.

Conditional Distribution-type Results

The next set of results that we present corresponds to the Conditional Distribution-type pa-

rameters. In this section, we primarily compare estimates using our approach that allows for

27



Figure 1: Quantiles of Son’s Income as a Function of Father’s Income
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(b) QR No Measurement Error

Notes: The figure provides estimates of quantiles of son’s income as a function of father’s income and conditional on son’s age

and father’s age being equal to their averages in the sample. The estimates in Panel (a) come from the approach suggested in the

current paper that allows for measurement error. The estimates in Panel (b) ignore measurement error and come from quantile

regression of observed son’s income on observed father’s income and covariates. The three lines in each panel are estimates of

the 10th percentile, median, and 90th percentile of son’s income, which are estimated at the 10th, 20th, . . . , and 90th percentiles

of father’s income. Standard errors are computed using the bootstrap.

measurement error to estimates of conditional distribution-type parameters that ignore mea-

surement error and come directly from quantile regression estimates of son’s income on father’s

income, son’s age, and father’s age.

Figure 1 contains estimates of conditional quantiles (the 10th percentile, median, and 90th

percentile) of son’s income as a function of father’s income, where son’s age and father’s age (both

in 1997) are set at their average values in our sample (14 and 42, respectively).15 Estimates of

these conditional quantiles are reported at the 10th, 20th, . . . , and 90th percentiles of observed

father’s income. These are unequally spaced values of father’s income, but they range from about

$18,000 to just over $96,000. Panel (a) contains estimates using our approach that allows for

measurement error, and Panel (b) contains estimates coming from quantile regression of son’s

income on father’s income and covariates ignoring measurement error.

We start by discussing the estimates that ignore measurement error in Panel (b). By construc-

tion, the quantile regression estimates in Panel (b) are linear. Ignoring measurement error, the

slopes of the quantile regression estimates are very flat, indicating little effect of father’s income

on son’s income. For interpreting the results, we mainly discuss results conditional on father’s

income being in the 10th percentile (which is roughly equal to the poverty line) and in the 90th

percentile. Using quantile regression and ignoring measurement error, the 10th percentile of son’s

income conditional on having father’s income at the 10th percentile (and conditional on having

average values for father’s age and son’s age) is estimated to be $17,700, the median is estimated

to be $44,200, and the 90th percentile is estimated to be $93,200. For sons whose father is in

the 90th percentile of the income distribution, the distribution of their income is very similar —

15We estimate these conditional quantiles by inverting the sample analogue of Equation (9), which ensures monotonicity of
the conditional quantiles.
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Figure 2: Poverty Rate
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Notes: The figure provides estimates of son’s poverty rate as a function of father’s income and conditional on son’s age and

father’s age being equal to their averages in the sample. The estimates in Panel (a) come from the approach suggested in

the current paper that allows for measurement error. The estimates in Panel (b) ignore measurement error and come from

inverting quantile regressions of observed son’s income on observed father’s income and covariates. The poverty line is set at

(the logarithm of) $20,000. Standard errors are computed using the bootstrap.

we estimate that the 10th percentile (conditional on having average values for father’s age and

son’s age) is $17,900, the median is $49,300, and the 90th percentile is $97,200.16

Moving to results that allow for measurement error (these are in Panel (a) of Figure 1),

there are notable differences. The slopes of the estimates are steeper, which indicates a stronger

relationship between father’s and son’s permanent income. For sons whose father’s permanent

income is in the 10th percentile, allowing for measurement error substantially reduces the median

and 90th percentile of their permanent income distribution — the median is now estimated to be

$36,000 and the 90th percentile to be $72,000. The other major difference is in the lower part of

the permanent income distribution for sons whose fathers had high permanent incomes. There,

we estimate that the 10th percentile of permanent income is $33,500 and the median permanent

income is $59,000 — these are both notably higher than our earlier quantile regression estimates

that ignored measurement error.

Next, we consider estimates of the fraction of sons whose income is below the poverty line

(which we set at $20,000) as a function of father’s income and conditional on father’s and son’s

ages being set at their average in our sample. Using quantile regression (and ignoring measure-

ment error), we estimate that 12.9% of sons whose father’s income is in the 10th percentile have

income that is below the poverty line. For sons whose father’s income was in the 90th percentile,

we estimate that 11.9% have income that is below the poverty line. Allowing for measurement

error again has a large effect and indicates substantially less intergenerational mobility. For sons

whose father’s permanent income is in the 10th percentile, we estimate that 9.2% have perma-

16For τ ∈ {0.1, 0.5, 0.9}, from our quantile regression estimates of the log of son’s income on the log of father’s income and
father’s and son’s age, the estimated effect of father’s income is small (ranging from 0.005 to 0.067) but positive across all values
of τ . The estimated effect is only statistically significant for τ = 0.5. This immediately translates to the small estimated effects
of father’s income in Panel (b) of Figure 1.
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nent income below the poverty line, but for sons whose father’s permanent income is in the 90th

percentile, we estimate that only 0.6% have permanent income below the poverty line.

Our results in this section indicate that accounting for measurement error generally reduces

estimates of various ways to summarize intergenerational income mobility, which is in line with

the literature in many different contexts (e.g., Solon (1992), Mazumder (2005), Haider and Solon

(2006), Nybom and Stuhler (2016), and An, Wang, and Xiao (2020)). These results especially

matter in the tails of the distribution where the sensitivity to measurement error is higher, which

is also in line with the literature (e.g., Bhattacharya and Mazumder (2011) and Nybom and

Stuhler (2017)).

7 Conclusion

In this paper, we developed a new method to obtain the joint distribution of an outcome

and a continuous treatment conditional on covariates when the outcome and the treatment are

potentially measured with error. Our main innovation and departure from the existing literature

was to model both the outcome and the treatment as a function of the covariates; that is,

changing the problem from measurement error on the left and right to two cases of measurement

error on the left. Then, we showed that the copula of the outcome and treatment was identified

in this setup, which, in turn, implies that a large number of distributional effect parameters of

interest are identified.

We applied our approach to study intergenerational income mobility. We use this as a lead-

ing example for our approach because researchers studying intergenerational income mobility

typically only have noisy measurements of an individual’s permanent income. In addition, we

used recent data from the NLSY where only one observation of child’s and parents’ income was

available, which means that many existing approaches to accounting for measurement error are

not applicable. We found that accounting for measurement error led to substantially lower es-

timates of a variety of measures of intergenerational mobility relative to implementing common

alternative approaches while ignoring measurement error.
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A Proofs of Results in Section 3

Proof of Proposition 1

Proof. The result holds immediately from Hausman, Liu, Luo, and Palmer (2021, Theorem

1).

Proof of Theorem 1

Proof. Let ϕX(t1, t2) = E
[
exp(it1Y + it2T ) | X

]
denote the characteristic function of the ob-

served (Y, T ) conditional on X. Let ϕ∗X(t1, t2) = E
[
exp(it1Y

∗ + it2T
∗) | X

]
denote the charac-

teristic function of (Y ∗, T ∗) conditional on X and let ϕUY ∗ and ϕUT∗ denote the characteristic

functions of UY ∗ and UT ∗ , respectively. Then,

ϕX(t1, t2) = ϕ∗X(t1, t2)ϕUY ∗ (t1)ϕUT∗ (t2)

which holds by Assumption 1. Further, ϕUY ∗ and ϕUT∗ are identified due to the result in Propo-

sition 1. This implies

ϕ∗X(t1, t2) =
ϕX(t1, t2)

ϕUY ∗ (t1)ϕUT∗ (t2)

which holds because the characteristic functions of UY ∗ and UT ∗ are non-vanishing. This proves

that the joint distribution of (Y ∗, T ∗) | X is identified, which implies that the copula is identified.

B Proofs of Results in Section 5

B.1 Proof of Theorem 2

Proof. Under the conditions of Proposition 1, namely Assumptions 1 to 3 and Lemma 1, the

proof of this part follows from a straightforward modification of existing results, e.g., Hansen

(2022, Proof of Theorem 22.1). The details are therefore omitted.

B.2 Proof of Theorem 3

Proof. Part (a):

The (k+1)× 1 population first-order conditions with respect to
(
βY ∗(τ)′, σY ∗

)′
are given by

E
[
X ·

∫
U
ψτ

(
Y − u−X ′βY ∗(τ)

)
fUY ∗ |Y,X(u | Y,X;σY ∗) du

]
= 0 (A1)

E
[ ∫

U
ρτ
(
Y − u−X ′βY ∗(τ)

)
· f∂UY ∗ |Y,X(u | Y,X;σY ∗)du

]
= 0 (A2)

where f∂UY ∗ |Y,X(u | Y,X;σY ∗) :=
∂

∂σY ∗
fUY ∗ |Y,X(u | Y,X;σY ∗). (A1) can be alternatively ex-
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pressed as

0 =E
[
X

∫
U
ψτ

(
Y − u−X ′βY ∗(τ)

)
fUY ∗ |Y,X(u | Y,X) du

]
=(τ − 1)E[X] +E

[
X

∫
U
1{u ≤ Y −X ′βY ∗(τ)}fUY ∗ |Y,X(u | Y,X) du

]
=(τ − 1)E[X] + E

[
X · FUY ∗ |Y,X

(
Y −X ′βY ∗(τ) | Y,X

)]
. (A1’)

The following decomposition of the sample moment condition corresponding to (A1), for

τ ∈ T satisfies

op(n
−1/2) =

1

nS

n∑
i=1

S∑
s=1

[
Xiψτ

(
Yi − Uis −X ′

iβ̂Y ∗(τ)
)]

(A3)

=:
1

n

n∑
i=1

Xi

∫
U
ψτ

(
Yi − u−X ′

iβ̂Y ∗(τ)
)
f̂
(S)
UY ∗ |Y,X(u | Yi, Xi; σ̂Y ∗) du

=
1

n

n∑
i=1

Xi

{∫
U

[
ψτ

(
Yi − u−X ′

iβ̂Y ∗(τ)
)(

f̂
(S)
UY ∗ |Y,X(u | Yi, Xi; σ̂Y ∗)− f̂UY ∗ |Y,X(u | Yi, Xi; σ̂Y ∗)

)]
du
}

︸ ︷︷ ︸
Ri,MC=Op(S−1/2)

+
1

n

n∑
i=1

Xi

∫
U

[
ψτ

(
Yi − u−X ′

iβ̂Y ∗(τ)
)(

f̂UY ∗ |Y,X(u | Yi, Xi; σ̂Y ∗)− f̂UY ∗ |Y,X(u | Yi, Xi;σY ∗)
)
du
]

︸ ︷︷ ︸
B1n

+
1

n

n∑
i=1

Xi

∫
U

ψτ

(
Yi − u−X ′

iβ̂Y ∗(τ)
) (
f̂UY ∗ |Y,X(u | Yi, Xi;σY ∗)− fUY ∗ |Y,X(u | Yi, Xi;σY ∗)

)
︸ ︷︷ ︸

Ri,MC

du


︸ ︷︷ ︸

B2n

+
1

n

n∑
i=1

Xi

∫
U

[
ψτ

(
Yi − u−X ′

iβ̂Y ∗(τ)
)
fUY ∗ |Y,X(u | Yi, Xi;σY ∗) du

]
︸ ︷︷ ︸

B3n

where f̂UY ∗ |Y,X(u | Yi, Xi; σ̂Y ∗) :=

[
X ′

iβ̂
∂
Y ∗ (τ̂y(Yi − u))

]−1∫
U fY |UY ∗ ,X(Yi | ũ, Xi) fUY ∗ |X(ũ; σ̂Y ∗) dũ

fUY ∗ (u; σ̂Y ∗) and τ̂y(Yi−

u) :=

∫ 1

0
1{X ′

iβ̂Y ∗(τ̃) ≤ (Yi − u)} dτ̃ thanks to Assumption 7. The normalizing property of the

MCMC algorithm ensures f̂UY ∗ |Y,X(u | Yi, Xi;σ) is a proper pdf, i.e., integrates to one, uniformly

in Γσ.

Thanks to Assumption 9 and that |ψτ (·)| ≤ 1, the Monte Carlo approximation error Ri,MC =

Op(S
−1/2) = op(n

−1/2) for each i ∈ {1, . . . , n} since n/S = o(1) following the argument used in

the proof of Lemma 1 analogously.

Thanks to the differentiability of fUY ∗ (u;σ) with respect to σ (Assumption 10(e)), it follows

from the Mean-Value Theorem (MVT) that

f̂UY ∗ |Y,X(u | Yi, Xi; σ̂Y ∗)− f̂UY ∗ |Y,X(u | Yi, Xi;σY ∗) = f̂∂UY ∗ |Y,X(u | Yi, Xi; σ̄Y ∗)(σ̂Y ∗ − σY ∗)
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for some σ̄Y ∗ that satisfies |σ̄Y ∗ − σY ∗ | ≤ |σ̂Y ∗ − σY ∗ |. It follows from the above that

B1n =
1

n

n∑
i=1

Xi

∫
U

[
ψτ

(
Yi − u−X ′

iβ̂Y ∗(τ)
)
f̂∂UY ∗ |Y,X(u | Yi, Xi; σ̄Y ∗) du

]
(σ̂Y ∗ − σY ∗).

From Lemma 3, the Monte Carlo approximation error has the following representation:

Ri,MC : =
(
f̂UY ∗ |Y,X(u | Yi, Xi;σY ∗)− fUY ∗ |Y,X(u | Yi, Xi;σY ∗)

)
=

L∑
ℓ=1

R̂ℓ,fUY ∗ |Y,X
(u, Yi, Xi;σY ∗)′

(
β̂Y ∗(τℓ)− βY ∗(τℓ)

)
.

Thus,

B2n =
L∑

ℓ=1

1

n

n∑
i=1

{∫
U

[
ψτ

(
Yi − u−X ′

iβ̂Y ∗(τ)
)
XiR̂ℓ,fUY ∗ |Y,X

(u, Yi, Xi;σY ∗)′ du
]}

︸ ︷︷ ︸
Rβ,ℓ,n(τ)

(
β̂Y ∗(τℓ)− βY ∗(τℓ)

)

= :
L∑

ℓ=1

Rβ,ℓ,n(τ)
(
β̂Y ∗(τℓ)− βY ∗(τℓ)

)
.

In addition to Assumption 7, fUY ∗ |Y,X(u | Yi, Xi;σ) is continuous in u, thus the resulting

CDF FUY ∗ |Y,X(u | Yi, Xi;σY ∗) is continuously differentiable in u. By the MVT, FUY ∗ |Y,X(Yi −
X ′

iβ̂Y ∗(τ) | Yi, Xi) = FUY ∗ |Y,X(Yi−X ′
iβY ∗(τ) | Yi, Xi)−fUY ∗ |Y,X(Yi−X ′

iβ̄Y ∗(τ) | Yi, Xi)X
′
i

(
β̂Y ∗(τ)−

βY ∗(τ)
)
. It follows from the representation in (A1’) that

B3n =
1

n

n∑
i=1

Xi

∫
U

[
ψτ

(
Yi − u−X ′

iβ̂Y ∗(τ)
)
fUY ∗ |Y,X(u | Yi, Xi;σY ∗) du

]
= (τ − 1)

1

n

n∑
i=1

Xi +
1

n

n∑
i=1

Xi

∫
U

[
1{u ≤ Yi −X ′

iβ̂Y ∗(τ)}fUY ∗ |Y,X(u | Yi, Xi;σY ∗) du
]

= (τ − 1)
1

n

n∑
i=1

Xi +
1

n

n∑
i=1

XiFUY ∗ |Y,X(Yi −X ′
iβ̂Y ∗(τ) | Yi, Xi)

= (τ − 1)
1

n

n∑
i=1

Xi +
1

n

n∑
i=1

XiFUY ∗ |Y,X(Yi −X ′
iβY ∗(τ) | Yi, Xi)

−
{ 1

n

n∑
i=1

XiX
′
ifUY ∗ |Y,X(Yi −X ′

iβ̄Y ∗(τ) | Yi, Xi)
}(
β̂Y ∗(τ)− βY ∗(τ)

)
.
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Putting terms together,

op(n
−1/2)

=−
{ 1

n

n∑
i=1

Xif̂UY ∗ |Y,X(Yi −X ′
iβ̄Y ∗(τ) | Yi, Xi)X

′
i

}
︸ ︷︷ ︸

Aβ,n(τ)

(
β̂Y ∗(τ)− βY ∗(τ)

)

+

L∑
ℓ=1

Rβ,ℓ,n(τ)
(
β̂Y ∗(τℓ)− βY ∗(τℓ)

)
+

1

n

n∑
i=1

Xi

∫
U

[
ψτ

(
Yi − u−X ′

iβ̂Y ∗(τ)
)
f̂∂UY ∗ |Y,X(u | Yi, Xi; σ̄Y ∗) du

]
︸ ︷︷ ︸

Bβ,n(τ)

(σ̂Y ∗ − σY ∗)

+ (τ − 1)
1

n

n∑
i=1

Xi +
1

n

n∑
i=1

XiFUY ∗ |Y,X(Yi −X ′
iβY ∗(τ) | Yi, Xi)︸ ︷︷ ︸

Cβ,n(τ)

= : Aβ,n(τ)
(
β̂Y ∗(τ)− βY ∗(τ)

)
+

L∑
ℓ=1

Rβ,ℓ,n(τ)
(
β̂Y ∗(τℓ)− βY ∗(τℓ)

)
+ Bβ,n(τ)(σ̂Y ∗ − σY ∗) + Cβ,n(τ).

(A4)

Recalling that ρτ (w) is differentiable in w, the following decomposition of the sample moment

corresponding to (A2), for τ ∈ (0, 1) holds:

op(n
−1/2) +Op(S

−1/2)

=
1

n

n∑
i=1

[ ∫
U
ρτ
(
Yi − u−X ′

iβ̂Y ∗(τ)
)
f̂∂UY ∗ |Y,X(u | Yi, Xi; σ̂Y ∗)du

]
(A5)

=
1

n

n∑
i=1

∫
U

(
ρτ
(
Yi − u−X ′

iβ̂Y ∗(τ)
)
− ρτ

(
Yi − u−X ′

iβY ∗(τ)
) )
f̂∂UY ∗ |Y,X(u | Yi, Xi; σ̂Y ∗) du

+
1

n

n∑
i=1

∫
U
ρτ
(
Yi − u−X ′

iβY ∗(τ)
) (
f̂∂UY ∗ |Y,X(u | Yi, Xi; σ̂Y ∗)− f̂∂UY ∗ |Y,X(u | Yi, Xi;σY ∗)

)
du

+
1

n

n∑
i=1

∂

∂σ

∫
U
ρτ
(
Yi − u−X ′

iβY ∗(τ)
) (
f̂UY ∗ |Y,X(u | Yi, Xi;σY ∗)− fUY ∗ |Y,X(u | Yi, Xi;σY ∗)

)
︸ ︷︷ ︸

Ri,MC

du

+
1

n

n∑
i=1

∫
U
ρτ
(
Yi − u−X ′

iβY ∗(τ)
)
f∂UY ∗ |Y,X(u | Yi, Xi;σY ∗) du

=: −
{ 1

n

n∑
i=1

∫
U

[
ψτ

(
Yi − u−X ′

iβ̄Y ∗(τ)
)
f̂∂UY ∗ |Y,X(u | Yi, Xi; σ̂Y ∗) du

]
X ′

i

}
︸ ︷︷ ︸

Aσ,n(τ)

(
β̂Y ∗(τ)− βY ∗(τ)

)

+
{ 1

n

n∑
i=1

∫
U
ρτ
(
Yi − u−X ′

iβY ∗(τ)
)
f̂∂∂UY ∗ |Y,X(u | Yi, Xi; σ̄Y ∗) du

}
︸ ︷︷ ︸

Bσ,n(τ)

(σ̂Y ∗ − σY ∗)
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+
L∑

ℓ=1

Rσ,ℓ,n(τ)
(
β̂Y ∗(τℓ)− βY ∗(τℓ)

)
+

1

n

n∑
i=1

∫
U
ρτ
(
Yi − u−X ′

iβY ∗(τ)
)
f∂UY ∗ |Y,X(u | Yi, Xi;σY ∗) du︸ ︷︷ ︸

Cσ,n(τ)

=: Aσ,n(τ)
(
β̂Y ∗(τ)− βY ∗(τ)

)
+

L∑
ℓ=1

Rσ,ℓ,n(τ)
(
β̂Y ∗(τℓ)− βY ∗(τℓ)

)
+ Bσ,n(τ)(σ̂Y ∗ − σY ∗) + Cσ,n(τ).

(A6)

where under the conditions of Lemma 3,

1

n

n∑
i=1

∂

∂σ

∫
U
ρτ
(
Yi − u−X ′

iβY ∗(τ)
) (
f̂UY ∗ |Y,X(u | Yi, Xi;σY ∗)− fUY ∗ |Y,X(u | Yi, Xi;σY ∗)

)
du

=

L∑
ℓ=1

1

n

n∑
i=1

{∫
U

[
ρτ
(
Yi − u−X ′

iβY ∗(τ)
) ∂

∂σ
R̂ℓ,fUY ∗ |Y,X

(u, Yi, Xi;σY ∗)′ du
]}

︸ ︷︷ ︸
Rσ,ℓ,n(τ)

×
(
β̂Y ∗(τℓ)− βY ∗(τℓ)

)

=:

L∑
ℓ=1

Rσ,ℓ,n(τ)
(
β̂Y ∗(τℓ)− βY ∗(τℓ)

)
.

Define

An(τ) :=

[
Aβ,n(τ)

Aσ,n(τ)

]
︸ ︷︷ ︸
(K+1)×K

, Rℓ,n(τ) :=

[
Rβ,ℓ,n(τ)

Rσ,ℓ,n(τ)

]
︸ ︷︷ ︸
(K+1)×K

, Bn(τ) :=

[
Bβ,n(τ)

Bσ,n(τ)

]
︸ ︷︷ ︸
(K+1)×1

, and Cn(τ) := −

[
Cβ,n(τ)

Cσ,n(τ)

]
︸ ︷︷ ︸
(K+1)×1

.

Then, stacking both expanded moments (A4) and (A6) vertically obtains

An(τ)
(
β̂Y ∗(τ)− βY ∗(τ)

)
+

L∑
ℓ=1

Rℓ,n(τ)
(
β̂Y ∗(τℓ)− βY ∗(τℓ)

)
+ Bn(τ)(σ̂Y ∗ − σY ∗) = Cn(τ) + op(n

−1/2),

which, evaluated at each τ = τℓ′ ∈ {τ1, . . . , τL} (from Assumption 7) gives,

(
An(τℓ′) + Rℓ′,n(τℓ′)

)(
β̂Y ∗(τℓ′)− βY ∗(τℓ′)

)
+

L∑
ℓ̸=ℓ′

Rℓ,n(τℓ′)
(
β̂Y ∗(τℓ)− βY ∗(τℓ)

)
+ Bn(τℓ′)(σ̂Y ∗ − σY ∗) = Cn(τℓ′) + op(n

−1/2).
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For example, the above evaluated at ℓ′ = 1 has the matrix form

[
An(τ1) + R1,n(τ1)

∣∣∣ R2,n(τ1)
∣∣∣ · · ·

∣∣∣ RL,n(τ1)
∣∣∣ Bn(τ1)

]
︸ ︷︷ ︸

(K+1)×(LK+1)



β̂Y ∗(τ1)− βY ∗(τ1)

β̂Y ∗(τ2)− βY ∗(τ2)
...

β̂Y ∗(τL)− βY ∗(τL)

σ̂Y ∗ − σY ∗


︸ ︷︷ ︸

(LK+1)×1

= Cn(τ1)︸ ︷︷ ︸
(K+1)×1

+op(n
−1/2).

Next, stacking vertically across τ ∈ {τ1, . . . , τL},


An(τ1) + R1,n(τ1) R2,n(τ1) · · · RL,n(τ1) Bn(τ1)

R1,n(τ2) An(τ2) + R2,n(τ2) · · · RL,n(τ2) Bn(τ2)
...

...
. . .

...
...

R1,n(τL) R2,n(τL) · · · An(τL) + RL,n(τL) Bn(τL)


︸ ︷︷ ︸

L(K+1)×(LK+1)



β̂Y ∗(τ1)− βY ∗(τ1)

β̂Y ∗(τ2)− βY ∗(τ2)
...

β̂Y ∗(τL)− βY ∗(τL)

σ̂Y ∗ − σY ∗


︸ ︷︷ ︸

(LK+1)×1

=


Cn(τ1)

Cn(τ2)
...

Cn(τL)


︸ ︷︷ ︸
L(K+1)×1

+op(n
−1/2).

(A7)

Define

HL
Y ∗ := plim

n→∞


An(τ1) + R1,n(τ1) R2,n(τ1) · · · RL,n(τ1) Bn(τ1)

R1,n(τ2) An(τ2) + R2,n(τ2) · · · RL,n(τ2) Bn(τ2)
...

...
. . .

...
...

R1,n(τL) R2,n(τL) · · · An(τL) + RL,n(τL) Bn(τL)

 , (A8)

(
β̂L
Y ∗ − βL

Y ∗
)
:=


β̂Y ∗(τ1)− βY ∗(τ1)

β̂Y ∗(τ2)− βY ∗(τ2)
...

β̂Y ∗(τL)− βY ∗(τL)

 , and CL
n,Y ∗ :=


Cn(τ1)

Cn(τ2)
...

Cn(τL)

 .

Then under the full column rank condition on HL
Y ∗ in the theorem, HL

Y ∗
′HL

Y ∗ is invertible. In

addition to the conditions of Theorem 2, one obtains the asymptotically linear representation

√
n

[
β̂L
Y ∗ − βL

Y ∗

σ̂Y ∗ − σY ∗

]
=
(
HL

Y ∗
′HL

Y ∗
)−1HL

Y ∗
′√
nCL

n,Y ∗ + op(1)

Part (b):

By (A1’) and (A2),

Cn(τ) =
1

n

n∑
i=1

[
Xi

(
(τ − 1) + FUY ∗ |Y,X(Yi −X ′

iβY ∗(τ) | Yi, Xi)
)∫

U ρτ (Yi − u−X ′
iβY ∗(τ)) f∂UY ∗ |Y,X(u | Yi, Xi;σY ∗) du

]
=:

1

n

n∑
i=1

Cin(τ)

is mean-zero for any τ ∈ (0, 1). This implies E[CL
n,Y ∗ ] = 0. Further, under Assumption 4 and
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Assumption 10(a),

E
[∥∥Xi

(
(τ − 1) + FUY ∗ |Y,X(Yi −X ′

iβY ∗(τ) | Yi, Xi)
)∥∥2] ≤ E[∥X∥2] ≤ C.

Define E∗
iτ := Yi − X ′

iβY ∗(τ). Note that ρτ (w) ≤ |w| and ρτ (w) is 1-Lipschitz. By the triangle

inequality,

∣∣∣ ∫
U
ρτ
(
Yi − u−X ′

iβY ∗(τ)
)
f∂UY ∗ |Y,X(u | Yi, Xi;σY ∗) du

∣∣∣
=
∣∣∣ ∫

U
(ρτ (E∗

iτ − u)− ρτ (E∗
iτ ) + ρτ (E∗

iτ )) f
∂
UY ∗ |Y,X(u | Yi, Xi;σY ∗) du

∣∣∣
≤
∣∣∣ ∫

U

(
ρτ (E∗

iτ − u)− ρτ (E∗
iτ )
)
· f∂UY ∗ |Y,X(u | Yi, Xi;σY ∗) du

∣∣∣+ ρτ (E∗
iτ )
∣∣∣ ∫

U
f∂UY ∗ |Y,X(u | Yi, Xi;σY ∗) du

∣∣∣
≤
∫
U
|u| ·

∣∣f∂UY ∗ |Y,X(u | Yi, Xi;σY ∗)
∣∣ du =

∫
U

∣∣uf∂UY ∗ |Y,X(u | Yi, Xi;σY ∗)
∣∣ du

since
∫
U f

∂
UY ∗ |Y,X(u | Yi, Xi;σY ∗) du = ∂

∂σ

∫
U fUY ∗ |Y,X(u | Yi, Xi;σY ∗) du = ∂

∂σ1 = 0 holds under

Assumption 10(b) by the dominance convergence theorem. From the foregoing and Assump-

tion 10(e),

E

[∣∣∣ ∫
U
ρτ
(
Yi − u−X ′

iβY ∗(τ)
)
f∂UY ∗ |Y,X(u | Yi, Xi;σY ∗) du

∣∣∣2] ≤ E

[( ∫
U

∣∣uf∂UY ∗ |Y,X(u | Yi, Xi;σY ∗)
∣∣ du)2]

≤ C.

Considering both bounds, E
[∥∥Cin(τ)

∥∥2] ≤ 2C < ∞ whence E
[∥∥CL

iY ∗

∥∥2] ≤ 2CL < ∞ with

CL
iY ∗ :=


Cin(τ1)

Cin(τ2)
...

Cin(τL)

.
The conclusion follows from the Multivariate Lindeberg-Lévy Central Limit Theorem (CLT)

and the Continuous Mapping Theorem (CMT).

B.3 Proof of Corollary 1

Proof. The estimator of FY ∗|X(y | x) is given by F̂Y ∗|X(y | x) =
∫ 1

0
1{x′β̂Y ∗(τ̃) ≤ y} dτ̃ . Thanks

to the strict monotonicity of the map τ 7→ x′βY ∗(τ) and its sample counterpart analogously,

there exist unique values τy ∈ (0, 1) and τ̂y such that x′βY ∗(τy) = y and x′β̂Y ∗(τ̂y) = y. Consider

the function ĥ(τ) := y − x′β̂Y ∗(τ). By Assumption 7 and the MVT,

0 = ĥ(τ̂y)

= ĥ(τy) + ĥ∂(τ̄y)(τ̂y − τy)

= y − x′β̂Y ∗(τy)− x′β̂∂Y ∗(τ̄y)(τ̂y − τy)

= −x′
(
β̂Y ∗(τy)− βY ∗(τy)

)
− x′β̂∂Y ∗(τ̄y)(τ̂y − τy).
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Notice that under Assumption 2, τy = FY ∗|X(y | x) and τ̂y = F̂Y ∗|X(y | x) by the definition of

the quantile function and its estimator. Thus by Assumption 10(d), the Continuous Mapping

Theorem (CMT) and Theorem 2,

√
n
(
F̂Y ∗|X(y | x)− FY ∗|X(y | x)

)
= − 1

x′β̂∂Y ∗(τ̄y)
x′
√
n
(
β̂Y ∗(τy)− βY ∗(τy)

)
= −fY ∗|X(y | x)x′

√
n
(
β̂Y ∗(τy)− βY ∗(τy)

)
+ op(1).

It follows from the foregoing, Assumption 7, and (A10) that

√
n
(
F̂Y ∗|X(y | x)− FY ∗|X(y | x)

)
= −fY ∗|X(y | x)

L∑
ℓ=1

ωℓ,β(τy)x
′√n

(
β̂Y ∗(τℓ)− βY ∗(τℓ)

)
+ op(1)

= −fY ∗|X(y | x)
[
ω1,β(τy)x

′, . . . , ωL,β(τy)x
′, 0
]

︸ ︷︷ ︸
ML

FY (y,x)′

√
n

[
β̂L
Y ∗ − βL

Y ∗

σ̂Y ∗ − σY ∗

]
+ op(1).

The conclusion follows from the CMT and Theorem 3 with σ(FY ∗|X(y | x)) := ML
FY (y, x)

′ΩL
Y ∗ML

FY (y, x).

B.4 Proof of Proposition 2

Proof. Consider the simulated maximum likelihood estimator

δ̂ = argmax
δ

n∑
i=1

log
(
L̂
(S)
i (δ)

)
where

L̂
(S)
i (δ) =

∫
U×U

[
cY ∗T ∗|X

(
F̂Y ∗|X(Yi − u | Xi), F̂T ∗|X(Ti − v | Xi); δ

)
× f̂Y ∗|X(Yi − u|Xi)f̂T ∗|X(Ti − v|Xi)

× f̂
(S)
UY ∗ |Y,X(u | Yi, Xi; σ̂Y ∗)f̂

(S)
UT∗ |Y,X(v | Yi, Xi; σ̂T ∗)

]
dudv.

Similarly, define

L̂i(δ) :=

∫
U×U

[
cY ∗T ∗|X

(
F̂Y ∗|X(Yi − u | Xi), F̂T ∗|X(Ti − v | Xi); δ

)
× f̂Y ∗|X(Yi − u|Xi)f̂T ∗|X(Ti − v|Xi)

× f̂UY ∗ |Y,X(u | Yi, Xi; σ̂Y ∗)f̂UT∗ |Y,X(v | Yi, Xi; σ̂T ∗)
]
dudv and

Li(δ) :=

∫
U×U

[
cY ∗T ∗|X

(
FY ∗|X(Yi − u | Xi),FT ∗|X(Ti − v | Xi); δ

)
× fY ∗|X(Yi − u|Xi)fT ∗|X(Ti − v|Xi)

× fUY ∗ |Y,X(u | Yi, Xi;σY ∗)fUT∗ |Y,X(v | Yi, Xi;σT ∗)
]
dudv.

Let

Ŝ(S)
i (δ) := ∇δ log L̂

(S)
i (δ) =

∇δL̂
(S)
i (δ)

L̂
(S)
i (δ)

, Hi(δ) := ∇2
δ logLi(δ) =

∇2
δLi(δ)

Li(δ)
−∇δLi(δ)∇δLi(δ)

′

Li(δ)2
,
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∇δLi(δ) =

∫∫
cδ(·; δ) fY ∗|X fT ∗|X fUY ∗ |Y,X fUT∗ |Y,X du dv, and

∇2
δLi(δ) =

∫∫
cδδ(·; δ) fY ∗|X fT ∗|X fUY ∗ |Y,X fUT∗ |Y,X du dv

where cδ(·, ·; δ) := ∂
∂δ cY ∗T ∗|X(·, ·; δ) and cδδ(·, ·; δ) := ∂2

∂δ∂δ′ cY ∗T ∗|X(·, ·; δ).
Granted the differentiability of cY ∗T ∗|X(·, ·; δ) (Assumption 6), and that δ̂ is the maximizer,

the following first-order condition holds:

0 =

n∑
i=1

Ŝ(S)
i (δ̂)

=

n∑
i=1

Ŝi(δ̂) + op(n
−1/2)

=

n∑
i=1

Si(δ̂) +

n∑
i=1

(
Ŝi(δ̂)− Si(δ̂)

)
+ op(n

−1/2)

=:

n∑
i=1

Si(δ̂) +

n∑
i=1

∆i(δ̂; ·̂ − ·) + op(n
−1/2)

where Si(δ) := ∇δ logLi(δ). The second equality holds under Assumptions 6, 9 and 10 and the

condition n/S = o(1).

Under Assumption 6, the copula density function is twice continuously differentiable with

respect to δ. Plugging in a first–order expansion of Si(δ̂) around δ into the first-order condition

then gives

op(n
−1/2) =

1

n

n∑
i=1

Si(δ) +
( 1
n

n∑
i=1

Hi(δ)
)
(δ̂ − δ) +

1

n

n∑
i=1

∆i(δ̂; ·̂ − ·)

where E[Si(δ)] = 0. Therefore,

√
n(δ̂ − δ) = −

[ 1
n

n∑
i=1

Hi(δ)
]−1
{

1√
n

n∑
i=1

Si(δ) +
1√
n

n∑
i=1

∆i(δ̂; ·̂ − ·)

}
+ op(1) (A9)
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where ∆i(δ̂; ·̂ − ·) has the following weighted sum representation:

∆i(δ̂; ·̂ − ·) : = Ŝi(δ̂)− Si(δ̂)

= ∇δ

(
log L̂i(δ̂)− logLi(δ̂)

)
= L̂i(δ̂)

−1∇δ

(
L̂i(δ̂)− Li(δ̂)

)
−
(
L̂i(δ̂)Li(δ̂)

)−1∇δLi(δ̂)
(
L̂i(δ̂)− Li(δ̂)

)
=:

∫ (∫
W

(FY )
i (u, v; δ̂) dv

) (
F̂Y ∗|X − FY ∗|X

)
(Yi − u | Xi) du

+

∫ (∫
W

(fY )
i (u, v; δ̂) dv

) (
f̂Y ∗|X − fY ∗|X

)
(Yi − u | Xi) du

+

∫ (∫
W

(fUY
)

i (u, v; δ̂) dv
) (
f̂UY ∗ |Y,X − fUY ∗ |Y,X

)
(u | Yi, Xi) du

+

∫ (∫
W

(FT )
i (u, v; δ̂) du

) (
F̂T ∗|X − FT ∗|X

)
(Ti − v | Xi) dv

+

∫ (∫
W

(fT )
i (u, v; δ̂) du

) (
f̂T ∗|X − fT ∗|X

)
(Ti − v | Xi) dv

+

∫ (∫
W

(fUT
)

i (u, v; δ̂) du
) (
f̂UT∗ |Y,X − fUT∗ |Y,X

)
(v | Yi, Xi) dv.

First, from the proof of Corollary 1,

√
n
(
F̂Y ∗|X − FY ∗|X

)
(Yi − u | Xi) = ML

FY (Yi − u,Xi)
′√n

[
β̂L
Y ∗ − βL

Y ∗

σ̂Y ∗ − σY ∗

]
+ op(1).

Second, from Lemma 3(a) and the conditions of Theorem 2,

√
n
(
f̂Y ∗|X − fY ∗|X

)
(Yi − u | Xi) =

L∑
ℓ=1

R̂ℓ,fY ∗|X (Yi − u,Xi)
′√n

(
β̂Y ∗(τℓ)− βY ∗(τℓ)

)
=
[
R̂1,fY ∗|X (Yi − u,Xi)

′ . . . R̂L,fY ∗|X (Yi − u,Xi)
′ 0

]√
n

[
β̂L
Y ∗ − βL

Y ∗

σ̂Y ∗ − σY ∗

]

=: ML
fY ∗|X

(Yi − u,Xi)
√
n

[
β̂L
Y ∗ − βL

Y ∗

σ̂Y ∗ − σY ∗

]
+ op(1).

Lastly, under Assumption 10(e), the conditions of Lemma 3(b), and the conditions of Theo-

rem 2,

√
n
(
f̂UY ∗ |Y,X(u | Yi, Xi; σ̂Y ∗)− fUY ∗ |Y,X(u | Yi, Xi;σY ∗)

)
=

√
n
(
f̂UY ∗ |Y,X − fUY ∗ |Y,X

)
(u | Yi, Xi;σY ∗) +

√
n
(
f̂UY ∗ |Y,X(u | Yi, Xi; σ̂Y ∗)− f̂UY ∗ |Y,X(u | Yi, Xi;σY ∗)

)
=

L∑
ℓ=1

R̂ℓ,fUY ∗ |Y,X
(u, Yi, Xi;σY ∗)′

√
n
(
β̂Y ∗(τℓ)− βY ∗(τℓ)

)
+ f̂∂UY ∗ |Y,X(u | Yi, Xi; σ̄Y ∗)

√
n(σ̂Y ∗ − σY ∗)

=
[
R̂1,fUY ∗ |Y,X

(u, Yi, Xi;σY ∗)′, . . . , R̂L,fUY ∗ |Y,X
(u, Yi, Xi;σY ∗)′ f̂∂UY ∗ |Y,X(u | Yi, Xi; σ̄Y ∗)

]√
n

[
β̂L
Y ∗ − βL

Y ∗

σ̂Y ∗ − σY ∗

]

=: ML
fUY ∗ |Y,X

(u;Yi, Xi)
′√
n

[
β̂L
Y ∗ − βL

Y ∗

σ̂Y ∗ − σY ∗

]
+ op(1).
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Putting together the foregoing, and applying arguments with respect to Y ∗ analogously for T ∗,

√
n∆i(δ̂; ·̂ − ·) =

{∫ [(∫
W

(FY )
i (u, v; δ̂) dv

)
ML

FY (Yi − u,Xi)
′

+
(∫

W
(fY )
i (u, v; δ̂) dv

)
ML

fY ∗|X
(Yi − u,Xi)

′

+
(∫

W
(fUY

)

i (u, v; δ̂) dv
)
ML

fUY ∗ |Y,X
(u;Yi, Xi)

′ ]
du

}√
n

[
β̂L
Y ∗ − βL

Y ∗

σ̂Y ∗ − σY ∗

]

+

{∫ [(∫
W

(FT )
i (u, v; δ̂) du

)
ML

FT (Ti − v,Xi)
′

+
(∫

W
(fT )
i (u, v; δ̂) du

)
ML

fT∗|X
(Ti − v,Xi)

′

+
(∫

W
(fUT

)

i (u, v; δ̂) du
)
ML

fUT∗ |T,X
(v;Ti, Xi)

′
]
dv

}√
n

[
β̂L
T ∗ − βL

T ∗

σ̂T ∗ − σT ∗

]
+ op(1)

=: ML
i∆Y (Yi, Xi; δ̂)

′√n

[
β̂L
Y ∗ − βL

Y ∗

σ̂Y ∗ − σY ∗

]
+ML

i∆T (Yi, Xi; δ̂)
′√n

[
β̂L
T ∗ − βL

T ∗

σ̂T ∗ − σT ∗

]
+ op(1).

Plugging the above into (A9) and applying the CMT,

√
n(δ̂ − δ) = −H−1

δ

1√
n

n∑
i=1

Si(δ)−H−1
δ

1

n

n∑
i=1

ML
i∆Y (Yi, Xi; δ̂)

′√n

[
β̂L
Y ∗ − βL

Y ∗

σ̂Y ∗ − σY ∗

]

−H−1
δ

1

n

n∑
i=1

ML
i∆T (Yi, Xi; δ̂)

′√n

[
β̂L
T ∗ − βL

T ∗

σ̂T ∗ − σT ∗

]
+ op(1)

= −H−1
δ

1√
n

n∑
i=1

Si(δ)−H−1
δ ML ′

∆Y

√
n

[
β̂L
Y ∗ − βL

Y ∗

σ̂Y ∗ − σY ∗

]
−H−1

δ ML ′
∆T

√
n

[
β̂L
T ∗ − βL

T ∗

σ̂T ∗ − σT ∗

]
+ op(1)

=:
1√
n

n∑
i=1

ψδ
i + op(1)

d−→ N (0,Σ(δ))

where Σ(δ) = E
[
ψδψδ ′], Hδ := plim

n→∞

1

n

n∑
i=1

Hi(δ) and ML
∆ j := plim

n→∞

1

n

n∑
i=1

ML
i∆ j(Yi, Xi; δ̂), j ∈

{Y, T}. Since a linear combination of asymptotically linear quantities is asymptotically linear, the

concluding part follows from the CMT, Theorem 3, in addition to the condition E[∥S(δ)∥2] <∞
which is guaranteed under Assumptions 6 and 10.

B.5 Proof of Theorem 4

We provide the proofs of the first result in Theorem 4 and of bootstrap validity in this

subsection. The proofs of the remaining parts are provided in the Supplementary Appendix.

B.5.1 Proof of Theorem 4(a)

The following lemma provides a proof of part (a) of Theorem 4.
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Lemma 2. Suppose Assumptions 1 to 10 hold, then
√
n
(
F̂Y ∗T ∗|X(y, t | x)−FY ∗T ∗|X(y, t | x)

) d−→
N
(
0, σ(FY ∗T ∗|X(y, t | x))

)
.

Proof. Recall FY ∗T ∗|X(y, t | x) = CY ∗T ∗|X
(
FY ∗|X(y | x),FT ∗|X(t | x) | x

)
= CY ∗T ∗|X

(
FY ∗|X(y |

x),FT ∗|X(t | x); δ
)
and the estimator is given by F̂Y ∗T ∗|X(y, t | x) = CY ∗T ∗|X

(
F̂Y ∗|X(y |

x), F̂T ∗|X(t | x); δ̂
)
. Consider the following decomposition:

√
n
(
F̂Y ∗T ∗|X(y, t | x)− FY ∗T ∗|X(y, t | x)

)
=

√
n
(
CY ∗T ∗|X

(
F̂Y ∗|X(y | x), F̂T ∗|X(t | x); δ̂

)
− CY ∗T ∗|X

(
FY ∗|X(y | x),FT ∗|X(t | x); δ

))
=

√
n
(
CY ∗T ∗|X

(
F̂Y ∗|X(y | x), F̂T ∗|X(t | x); δ̂

)
− CY ∗T ∗|X

(
FY ∗|X(y | x), F̂T ∗|X(t | x); δ̂

))
+
√
n
(
CY ∗T ∗|X

(
FY ∗|X(y | x), F̂T ∗|X(t | x); δ̂

)
− CY ∗T ∗|X

(
FY ∗|X(y | x), FT ∗|X(t | x); δ̂

))
+
√
n
(
CY ∗T ∗|X

(
FY ∗|X(y | x), FT ∗|X(t | x); δ̂

)
− CY ∗T ∗|X

(
FY ∗|X(y | x), FT ∗|X(t | x); δ

))
.

Let τy := FY ∗|X(y | x) and τt := FT ∗|X(t | x). Since (1) CY ∗T ∗|X(τy, τt; δ) is continuously differen-

tiable in (τy, τt, δ
′)′ ∈ T 2 ×Γδ, with partials C1 = ∂C/∂u, C2 = ∂C/∂v, and Cδ (Assumption 6),

it follows from the above decomposition and the CMT that

√
n
(
F̂Y ∗T ∗|X(y, t | x)− FY ∗T ∗|X(y, t | x)

)
=C1(τy, τt; δ)

√
n
(
F̂Y ∗|X(y | x)− FY ∗|X(y | x)

)
+ C2(τy, τt; δ)

√
n
(
F̂T ∗|X(t | x)− FT ∗|X(t | x)

)
+ Cδ(τy, τt; δ)

)′√
n(δ̂ − δ) + op(1)

=:
1√
n

n∑
i=1

ψ
(a)
i + op(1)

d−→ N (0, σ(FY ∗T ∗|X(y, t|x)))

where σ(FY ∗T ∗|X(y, t|x)) = E
[
(ψ(a))2

]
. Since a linear combination of asymptotically linear

quantities is asymptotically linear, the conclusion follows from Corollary 1 (applied analogously

to T ), Proposition 2, and the CMT.

B.5.2 Validity of the Bootstrap

Given our previous results establishing the limiting distributions of the QR parameters, mea-

surement error parameters, copula parameters, and target parameters, the validity of the boot-

strap follows from standard arguments that closely parallel the arguments provided above. For

brevity, we only sketch these arguments here. To start with, we consider the validity of the boot-

strap for the QR parameters and measurement error parameters. The bootstrap version of these

estimators is defined by replacing the score equations (Equations A3 and A5) with their weighted

counterparts, where each observation is multiplied by bootstrap weights wi drawn independently

of the data with mean one and variance one (for the empirical bootstrap, these are multinomial

weights). Then, the validity of the bootstrap holds by linearizing the weighted score equations

around the original estimates (which follows using an analogous argument to the one provided

above), and then employing the bootstrap CLT (Præstgaard and Wellner (1993)). Finally, the

validity of the bootstrap for the target parameters in Theorem 4 follows using similar arguments
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to the ones provided in the proof of Theorem 4 in conjunction with the bootstrap delta method

(van der Vaart and Wellner (1996)).

C Supporting Lemmas

Lemma 3. Under Assumption 7,

(a)
(
f̂Y ∗|X(y | x)− fY ∗|X(y | x)

)
=

L∑
ℓ=1

R̂ℓ,fY ∗|X (y, x)
′ (β̂Y ∗(τℓ)− βY ∗(τℓ)

)
and

(b)
(
f̂UY ∗ |Y,X(u | Yi, Xi;σY ∗)− fUY ∗ |Y,X(u | Yi, Xi;σY ∗)

)
=

L∑
ℓ=1

R̂ℓ,fUY ∗ |Y,X
(u, Yi, Xi;σY ∗)′

(
β̂Y ∗(τℓ)− βY ∗(τℓ)

)
for some random vectors R̂ℓ,fY ∗|X (y, x) and R̂ℓ,fUY ∗ |Y,X

(u, σY ∗ , Yi, Xi), ℓ ∈ {1, . . . , L}.

Proof. Part (a):

Recall fY ∗|X(y | x) =
[
x′β∂Y ∗

(
FY ∗|X(y | x)

)]−1
with the estimator f̂Y ∗|X(y | x) =

[
x′β̂∂Y ∗

(
F̂Y ∗|X(y |

x)
)]−1

. Let τy := FY ∗|X(y | x) and τ̂y := F̂Y ∗|X(y | x), then

(
f̂Y ∗|X(y | x)− fY ∗|X(y | x)

)
=
[
x′β̂∂Y ∗ (τ̂y)

]−1 −
[
x′β∂Y ∗ (τy)

]−1

= −
[
β̂∂Y ∗

(
τ̂y
)′
xx′β∂Y ∗

(
τy
)]−1

× x′
(
β̂∂Y ∗(τ̂y)− β∂Y ∗(τy)

)
.

Thanks to Assumption 7, the process βY ∗(·) is piecewise linear. Thus, on each open interval

between knots, βY ∗(·) is linear and the second derivative is zero. At each knot τℓ, ℓ ∈ {1, . . . , L},
the first derivative has a jump and the second derivative does not exist (unless the slopes match

there). Since L is finite, the set of knots has Lebesgue measure zero and thus, β∂∂Y ∗(τ) :=
∂2βY ∗ (τ)

∂τ2
= 0 for Lebesgue-almost everywhere τ ∈ T . Further, under Assumption 7, the indices

in the set are evenly spaced, i.e., τℓ = τ1 + (ℓ− 1)ϵ, ϵ := τ2 − τ1, and

βY ∗(τ) =

L−1∑
ℓ=1

1{τ ∈ (τℓ, τℓ+1)}
(
βY ∗(τℓ) +

τ − τℓ
ϵ

(
βY ∗(τℓ+1)− βY ∗(τℓ)

))
+

L∑
ℓ=1

1{τ = τℓ}βY ∗(τℓ)

=

L∑
ℓ=1

[
1{ℓ ≤ L− 1}1{τ ∈ [τℓ, τℓ+1)}

(
1− τ−τℓ

ϵ

)
+ 1{ℓ ≥ 2}1{τ ∈ (τℓ−1, τℓ)} τ−τℓ−1

ϵ

]
βY ∗(τℓ)

=:

L∑
ℓ=1

ωℓ,β(τ)βY ∗(τℓ). (A10)

Hence

∂

∂τ
βY ∗(τ) =

L∑
ℓ=1

ω∂
ℓ,β(τ)βY ∗(τℓ)

where ω∂
ℓ,β(τ) := ϵ−1

(
1{ℓ ≥ 2}1{τ ∈ [τℓ−1, τℓ)} − 1{ℓ ≤ L− 1}1{τ ∈ (τℓ, τℓ+1)}

)
.

47



Thus,

β̂∂Y ∗(τ̂y)− β∂Y ∗(τy) =
(
β̂∂Y ∗(τ̂y)− β∂Y ∗(τ̂y)

)
+
(
β∂Y ∗(τ̂y)− β∂Y ∗(τy)

)
=

∂

∂τ

(
β̂Y ∗(τ̂y)− βY ∗(τ̂y)

)
+ β∂∂Y ∗(τ̄y)(τ̂y − τy)

=
∂

∂τ

(
β̂Y ∗(τ̂y)− βY ∗(τ̂y)

)
=

L∑
ℓ=1

ω∂
ℓ,β(τ̂y)

(
β̂Y ∗(τℓ)− βY ∗(τℓ)

)
.

Putting terms together,

(
f̂Y ∗|X(y | x)− fY ∗|X(y | x)

)
= −

[
β̂∂Y ∗

(
τ̂y
)′
xx′β∂Y ∗

(
τy
)]−1

x′
L∑

ℓ=1

ω∂
ℓ,β(τ̂y)

(
β̂Y ∗(τℓ)− βY ∗(τℓ)

)
=:

L∑
ℓ=1

R̂ℓ,fY ∗|X (y, x)
′ (β̂Y ∗(τℓ)− βY ∗(τℓ)

)
. (A11)

Part (b):

From part (a) above,

(
f̂UY ∗ |Y,X(u | Yi, Xi;σY ∗)− fUY ∗ |Y,X(u | Yi, Xi;σY ∗)

)
=

fUY ∗ (u;σY ∗)∫
U fY |UY ∗ ,X(Yi | ũ, Xi) fUY ∗ |X(ũ;σY ∗) dũ

(
f̂Y ∗|X(Yi | Xi)− fY ∗|X(Yi | Xi)

)
=

fUY ∗ (u;σY ∗)∫
U fY |UY ∗ ,X(Yi | ũ, Xi) fUY ∗ |X(ũ;σY ∗) dũ

×
L∑

ℓ=1

R̂ℓ,fY ∗|X (Yi, Xi)
′ (β̂Y ∗(τℓ)− βY ∗(τℓ)

)
=:

L∑
ℓ=1

R̂ℓ,fUY ∗ |Y,X
(u, Yi, Xi;σY ∗)′

(
β̂Y ∗(τℓ)− βY ∗(τℓ)

)
.

D Monte Carlo Simulations

In this section, we provide some Monte Carlo simulations to demonstrate the performance of

our proposed approach. For the simulations below, we generate the outcome and the treatment

according to

Yi = β0Y ∗(ViY ∗) + β1Y ∗(ViY ∗)Xi + UiY ∗

Ti = β0T ∗(ViT ∗) + β1T ∗(ViT ∗)Xi + UiT ∗

where, for τ ∈ [0, 1], we set

β0Y ∗(τ) = 1 + 3τ − τ2

β1Y ∗(τ) = exp(τ)

48



β0T ∗(τ) = 1 +
√
τ

β1T ∗(τ) = 0.1 exp(τ)

We set VY ∗ and VT ∗ to be draws from a parametric copula CVY ∗VT∗ |X which we vary across

simulations. In particular, we vary this copula between a Clayton copula with parameter δ = 1.5

and a Gaussian copula with parameter ρ = 0.5.

UY ∗ and UT ∗ are i.i.d. draws from N (0, σ2j ) for j ∈ {Y ∗, T ∗}, and we vary σ2j across simula-

tions. Larger values of σ2j indicate more measurement error, and, in particular, we consider the

cases where σ2j is equal to 1, 0.25, 0.01, and 0, which roughly correspond to a relatively large

amount of measurement error, a relatively small amount of measurement error, a very small

amount of measurement error, and no measurement error at all. Finally, we set X ∼ U [0, 1].

Table 4 contains the results from the Monte Carlo simulations. The first set of results compares

the performance of our first step estimators (which account for measurement error in the outcome)

with quantile regression that ignores measurement error (these results are in the columns labeled

“QR Coef.”). For this part, we estimate the quantile regression parameters for the outcome across

a grid of 10 equally spaced values of τ from 0.02 to 0.98. The numbers in those columns correspond

to an aggregated version of root mean squared error — in each Monte Carlo simulation, we

compute the squared error of the estimate of β0Y ∗(τ) and β1Y ∗(τ), average these across all 20

parameter estimates, and then calculate the square root of the mean of this quantity across Monte

Carlo simulations. For the first step quantile regression estimates, we find that our approach

performs substantially better than ignoring measurement error in the case when the measurement

error is large, each approach performs similarly in the case with small measurement error, and

ignoring measurement error tends to perform better when the amount of measurement error

is very small or non-existent. Additionally, both approaches perform moderately better with

larger sample sizes. And the results are qualitatively similar for both the Clayton copula and

the Gaussian copula that we consider.
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Table 4: Monte Carlo Simulations

QR Coef. Cop. Param Transition Mat. Pov. Rate

ME s.d. ME No ME ME No ME ME No ME Obs. ME No ME QR No ME

n = 250, Clayton Copula (δ = 1.5)
1 0.463 0.637 0.930 1.358 0.098 0.139 0.147 0.036 0.154 0.151
0.5 0.364 0.335 0.554 1.126 0.058 0.107 0.117 0.023 0.078 0.078
0.1 0.361 0.191 1.263 0.329 0.038 0.033 0.050 0.033 0.013 0.011
0 0.368 0.195 1.402 0.212 0.039 0.023 0.045 0.033 0.011 0.015

n = 1000, Clayton Copula (δ = 1.5)
1 0.344 0.546 0.866 1.345 0.086 0.136 0.141 0.026 0.154 0.149
0.5 0.288 0.235 0.404 1.097 0.048 0.103 0.109 0.025 0.077 0.077
0.1 0.331 0.099 1.316 0.276 0.033 0.028 0.032 0.033 0.009 0.007
0 0.335 0.097 1.578 0.102 0.037 0.017 0.025 0.033 0.005 0.013

n = 250, Gaussian Copula (ρ = 0.5)
1 0.464 0.647 0.369 0.419 0.083 0.100 0.111 0.029 0.118 0.104
0.5 0.361 0.333 0.195 0.298 0.045 0.074 0.087 0.054 0.057 0.041
0.1 0.364 0.200 0.343 0.062 0.075 0.022 0.048 0.081 0.017 0.028
0 0.364 0.192 0.358 0.050 0.086 0.021 0.047 0.081 0.017 0.034

n = 1000, Gaussian Copula (ρ = 0.5)
1 0.341 0.543 0.283 0.413 0.067 0.099 0.103 0.017 0.119 0.102
0.5 0.290 0.234 0.177 0.283 0.036 0.071 0.078 0.061 0.057 0.038
0.1 0.332 0.100 0.374 0.036 0.080 0.016 0.027 0.082 0.008 0.026
0 0.335 0.097 0.378 0.025 0.091 0.016 0.026 0.082 0.009 0.031

Notes: The table reports root mean squared error for (i) estimates of quantile regression parameters (columns labeled “QR

Coef”), (ii) estimates of the conditional copula parameter (columns labeled “Cop. Param”), (iii) estimates of the transition

matrix (columns labeled “Transition Mat.”), and (iv) estimates of the poverty rate (columns labeled “Pov.Rate”). The column

labeled “ME s.d.” refers to the standard deviation of the measurement error for Y and T (which are set to be equal to

each other). Columns labeled “ME” use the approach suggested in the paper; columns labeled “No ME” ignore measurement

error but otherwise follow the same estimation strategy consisting of first step quantile regressions followed by estimating the

conditional copula; the column labeled “Obs.” directly uses the observed data to calculate the unconditional transition matrix,

and the column labeled “QR No ME” ignores measurement error and inverts quantile regression estimates into estimates of the

poverty rate. The rows differ by (i) the amount of measurement error, (ii) the number of observations, and (iii) the particular

conditional copula used. The results are based on 1000 Monte Carlo simulations.
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The second set of results is for estimates of the copula parameter (these results are in the

columns labeled “Cop. Param”). As before, our approach outperforms ignoring measurement er-

ror in the case of a large amount of measurement error and underperforms ignoring measurement

error in the cases with a very small amount of measurement error or non-existent measurement

error. However, in the middle case (recall, this is the case with a small but non-negligible amount

of measurement error), our approach tends to perform substantially better than ignoring mea-

surement error across simulations. In particular, when measurement error is ignored, estimates

of the conditional copula parameter tend to be downward biased for the dependence between Y ∗

and T ∗ due to measurement error.

The next set of results is for estimates of unconditional transition matrices (these results are

in the columns labeled “Transition Mat.”) and the poverty rate conditional on a particular value

of T ∗. For the transition matrix, we report an aggregated version of the root mean squared error

based on computing the average squared error across cells in the transition matrix for a particular

simulation and then taking the square root of the average of these across simulations. For the

transition matrix, we also report estimates of the root mean squared error of just taking the raw

data and computing a transition matrix directly. For the poverty rate, we set the “poverty line”

to be β0Y ∗(0.1) + β1Y ∗(0.1)0.5 (where 0.5 is the median of X since it is distributed U [0, 1]), and

we compute an estimate of the poverty rate conditional on T ∗ = β0T ∗(0.5) + β1T ∗(0.5)0.5. For

the poverty rate, the column labeled “QR No ME” ignores measurement error and does not use

our estimation procedure; rather, the estimates in that column come from running a quantile

regression of Y on T and X, inverting the quantile regression estimates to obtain an estimate of

FY |T,X , averaging out the covariates from this distribution, and then computing an estimate of

the probability of being below the poverty line. As for the copula parameter, our approach tends

to perform better than ignoring measurement error for estimating transition matrices and poverty

rates, except in cases where the measurement error is extremely small. This can be understood

in light of the results on estimating the QR coefficients and copula parameters themselves. In

the middle case with a small but non-negligible amount of measurement error, both approaches

tend to perform about equally for estimating the QR parameters, but our approach tends to

perform better for estimating the copula parameter. Since the transition matrix and poverty

rate parameters depend on both of these, our approach tends to perform somewhat better in this

case.

The simulations above had measurement error drawn from a normal distribution, which is

super-smooth. As we discussed in the main text, due to Assumption 5, the speed of convergence

of our estimators is not affected by the smoothness of the measurement error. However, the finite

sample performance of our estimators could still depend on the smoothness of the measurement

error. We explore this in the simulations reported in Table 5, where we continue to use the

same DGP as above except draw the measurement error from a Laplace distribution, which is

ordinary-smooth. Note that the rate of convergence of nonparametric estimators is typically

faster for ordinary-smooth measurement error than for super-smooth measurement error. We fix

the standard deviation of the measurement error to be 0.5, so the results are most comparable to

the results from Table 4 with the same standard deviation of the measurement error. The main

takeaways from these results are that, relative to the case with Gaussian measurement error, our
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Table 5: Monte Carlo Simulations with Laplace Measurement Error

QR Coef. Cop. Param Transition Mat. Pov. Rate

ME s.d. ME No ME ME No ME ME No ME Obs. ME No ME QR No ME

n = 250, Clayton Copula (δ = 1.5)
0.5 0.266 0.329 0.626 1.118 0.047 0.106 0.117 0.020 0.078 0.079

n = 1000, Clayton Copula (δ = 1.5)
0.5 0.177 0.238 0.431 1.099 0.037 0.103 0.109 0.019 0.077 0.077

n = 250, Gaussian Copula (ρ = 0.5)
0.5 0.269 0.327 0.180 0.301 0.043 0.074 0.089 0.045 0.057 0.041

n = 1000, Gaussian Copula (ρ = 0.5)
0.5 0.175 0.235 0.141 0.284 0.030 0.071 0.078 0.044 0.057 0.037

Notes: The table reports root mean squared error for (i) estimates of quantile regression parameters (columns labeled “QR

Coef”), (ii) estimates of the conditional copula parameter (columns labeled “Cop. Param”), (iii) estimates of the transition

matrix (columns labeled “Transition Mat.”), and (iv) estimates of the poverty rate (columns labeled “Pov.Rate”). The results

in this table differ from those in Table 4 by having measurement error drawn from a Laplace distribution rather than a Gaussian

distribution. The column labeled “ME s.d.” refers to the standard deviation of the measurement error for Y and T (which are

set to be equal to each other). Columns labeled “ME” use the approach suggested in the paper; columns labeled “No ME”

ignore measurement error but otherwise follow the same estimation strategy consisting of first step quantile regressions followed

by estimating the conditional copula; the column labeled “Obs.” directly uses the observed data to calculate the unconditional

transition matrix, and the column labeled “QR No ME” ignores measurement error and inverts quantile regression estimates

into estimates of the poverty rate. The rows differ by (i) the amount of measurement error, (ii) the number of observations, and

(iii) the particular conditional copula used. The results are based on 1000 Monte Carlo simulations.

estimator (i) tends to perform better with Laplace measurement error for a fixed sample size, and

(ii) tends to improve more when moving from a smaller sample size to a larger sample size with

Laplace measurement error. This suggests at least somewhat better finite sample performance of

our estimators with ordinary-smooth measurement error relative to super-smooth measurement

error.
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