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This Supplementary Appendix contains proofs for several of the results from the main text as well as

some supplementary results. Appendix SA contains some additional theoretical results as well as proofs for

some of the results provided in the main text. Appendix SB provides conditions under which our main target

parameters have a causal interpretation. Appendix SC explains how to extend our results in the presence

of life-cycle measurement error. Finally, Appendix SD provides additional results for our application on

intergenerational mobility.

SA Additional Theoretical Results and Proofs

The first part of this section contains the proof of Lemma 1 from the main text and then states and

proves Lemma S1 which is used in the proof of Theorem 4. The second part of this section proves parts

(b)-(f) of Theorem 4.

SA.1 Useful Lemmas

The following lemmas are supporting results used in the proofs of the results in the main text.
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Proof of Lemma 1. By the triangle inequality:∣∣∣Qn,τ

(
β(τ), σ

)
−Qτ

(
β(τ), σ

)∣∣∣
≤ 1

n

n∑
i=1

∣∣∣ ∫
U
ρτ
(
Yi − u−X ′

iβ(τ)
) (
f̂
(S)
UY ∗ |Y,X(u | Yi, Xi;σ)− fUY ∗ |Y,X(u | Yi, Xi;σ)

)
du
∣∣∣

+
∣∣∣ 1
n

n∑
i=1

{∫
U
ρτ
(
Yi − u−X ′

iβ(τ)
)
fUY ∗ |Y,X(u | Yi, Xi;σ) du

− E
[ ∫

U
ρτ
(
Yi − u−X ′

iβ
)
fUY ∗ |Y,X(u | Yi, Xi;σ) du

]}∣∣∣.
Define Eτ := Yi −X ′

iβ(τ). Note that ρτ (w) ≤ |w| and ρτ (w) is 1-Lipschitz.
First, by the Cauchy-Schwarz inequality,∣∣∣ ∫

U
ρτ
(
Yi − u−X ′

iβ(τ)
) (
f̂
(S)
UY ∗ |Y,X(u | Yi, Xi;σ)− fUY ∗ |Y,X(u | Yi, Xi;σ)

)
du
∣∣∣

=
∣∣∣ ∫

U
(ρτ (Eτ − u)− ρτ (Eτ ) + ρτ (Eτ ))

(
f̂
(S)
UY ∗ |Y,X(u | Yi, Xi;σ)− fUY ∗ |Y,X(u | Yi, Xi;σ)

)
du
∣∣∣

≤
∣∣∣ ∫

U

(
ρτ (Eτ − u)− ρτ (Eτ )

)
·
(
f̂
(S)
UY ∗ |Y,X(u | Yi, Xi;σ)− fUY ∗ |Y,X(u | Yi, Xi;σ)

)
du
∣∣∣

+ ρτ (Eτ )
∣∣∣ ∫

U

(
f̂
(S)
UY ∗ |Y,X(u | Yi, Xi;σ)− fUY ∗ |Y,X(u | Yi, Xi;σ)

)
du
∣∣∣

=
∣∣∣ ∫

U

(
ρτ (Eτ − u)− ρτ (Eτ )

)
·
(
f̂
(S)
UY ∗ |Y,X(u | Yi, Xi;σ)− fUY ∗ |Y,X(u | Yi, Xi;σ)

)
du
∣∣∣

since

∫
U

(
f̂
(S)
UY ∗ |Y,X(u | Yi, Xi;σ) − fUY ∗ |Y,X(u | Yi, Xi;σ)

)
du = 0. Let ϕτ (u) := ρτ (Eτ − u) − ρτ (Eτ ), and

observe that since ρτ is 1–Lipschitz, |ϕτ (u)| ≤ |u|; this upper bound holds uniformly in τ ∈ (0, 1). Further,

under Assumption 10(c), E[ϕ2τ (U(σ))|Y,X] ≤
∫
U u

2fUY ∗ |Y,X(u | Y,X;σ) ≤ C a.s. uniformly in σ ∈ Γσ.

Under Assumption 9,∫
U

(
ρτ (Eτ − u)− ρτ (Eτ )

)
·
(
f̂
(S)
UY ∗ |Y,X(u | Yi, Xi;σ)− fUY ∗ |Y,X(u | Yi, Xi;σ)

)
du

=
1

S

S∑
s=1

(
ϕτ (Uis(σ))−E[ϕτ (Ui(σ)) | Yi, Xi]

)
= Op(S

−1/2) = op(n
−1/2)

by Prakasa Rao (2009, Theorem 10, eqn. 64), Chebyshev’s inequality, that a β-mixing sequence is strongly

mixing, and the condition n/S = o(1).

Second, since ρτ is 1-Lipschitz, it follows from the triangle inequality, the Lyapunov inequality, the

Schwarz inequality, Assumption 8, and Assumption 10 that

E

[ ∫
U
ρτ
(
Y − u−X ′β(τ)

)
fUY ∗ |Y,X(u | Y,X;σ) du

]
= E

[
E
[
ρτ
(
Eτ − U(σ)

)
| Y,X

]]
≤ sup

τ∈T
E[|Y −X ′β(τ)|] +E

[
E[(|U(σ)|)|Y,X]

]
≤ E[|Y |] +E[∥X∥] · sup

τ∈T
∥β(τ)∥+E

[(
E[U(σ)2|Y,X]

)1/2]
<∞.
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Conclude under Assumption 4 and the strong law of large numbers that

1

n

n∑
i=1

{∫
U
ρτ
(
Yi − u−X ′

iβ(τ)
)
fUY ∗ |Y,X(u | Yi, Xi;σ) du

− E
[ ∫

U
ρτ
(
Yi − u−X ′

iβ
)
fUY ∗ |Y,X(u | Yi, Xi;σ) du

]}
a.s.−−→ 0.

Combining both parts above concludes the proof of the assertion as claimed.

Lemma S1. Under Assumptions 1 to 5 and 7 to 10,
√
n
(
F̂−1
Y ∗(r)−F−1

Y ∗ (r)
)
has the following representation:

√
n
(
F̂−1
Y ∗(r)− F−1

Y ∗ (r)
)

= − 1

fY ∗(F−1
Y ∗(r))

E
[
ML

FY

(
F−1
Y ∗(r), X

)]′√
n

[
β̂L
Y ∗ − βL

Y ∗

σ̂Y ∗ − σY ∗

]

− 1

fY ∗(F−1
Y ∗(r))

1√
n

n∑
i=1

(
FY ∗|X(F−1

Y ∗(r) | Xi)−E[FY ∗|X(F−1
Y ∗(r) | Xi)]

)
+ op(1).

Proof. Let y = F−1
Y ∗(r), then F̂Y ∗(ŷ) = r = FY ∗(y), then by the MVT, F̂Y ∗(ŷ) − FY ∗(y) = 0 = F̂Y ∗(y) −

FY ∗(y) + f̂Y ∗(ȳ)(ŷ − y). Thus by the Law of Iterated Expectations (LIE),

√
n
(
F̂−1
Y ∗(r)− F−1

Y ∗(r)
)
=

√
n(ŷ − y)

= − 1

f̂Y ∗(ȳ)

√
n
(
F̂Y ∗(y)− FY ∗(y)

)
= − 1

f̂Y ∗(ȳ)

1

n

n∑
i=1

{√
n
(
F̂Y ∗|X(y | Xi)− FY ∗|X(y | Xi)

)
+
√
n
(
FY ∗|X(y | Xi)−E[FY ∗|X(y | Xi)]

)}
= − 1

fY ∗(F−1
Y ∗(r))

1

n

n∑
i=1

{√
n
(
F̂Y ∗|X(F−1

Y ∗(r) | Xi)− FY ∗|X(F−1
Y ∗(r) | Xi)

)}
− 1

fY ∗(F−1
Y ∗(r))

1√
n

n∑
i=1

(
FY ∗|X(F−1

Y ∗(r) | Xi)−E[FY ∗|X(F−1
Y ∗(r) | Xi)]

)
+ op(1).

In addition to Assumption 7 and Corollary 1,

√
n
(
F̂Y ∗|X(F−1

Y ∗(r) | Xi)− FY ∗|X(F−1
Y ∗(r) | Xi)

)
= ML

FY

(
F−1
Y ∗(r), Xi

)′√
n

[
β̂L
Y ∗ − βL

Y ∗

σ̂Y ∗ − σY ∗

]
+ op(1)

whence

1

n

n∑
i=1

{√
n
(
F̂Y ∗|X(F−1

Y ∗(r) | Xi)− FY ∗|X(F−1
Y ∗(r) | Xi)

)}
= E

[
ML

FY

(
F−1
Y ∗(r), X

)]′√
n

[
β̂L
Y ∗ − βL

Y ∗

σ̂Y ∗ − σY ∗

]
+ op(1)

thanks to the Weak Law of Large Numbers (WLLN), the CMT and Theorem 2. From the foregoing,

√
n
(
F̂−1
Y ∗(r)− F−1

Y ∗ (r)
)
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= − 1

fY ∗(F−1
Y ∗(r))

E
[
ML

FY

(
F−1
Y ∗(r), X

)]′√
n

[
β̂L
Y ∗ − βL

Y ∗

σ̂Y ∗ − σY ∗

]

− 1

fY ∗(F−1
Y ∗(r))

1√
n

n∑
i=1

(
FY ∗|X(F−1

Y ∗(r) | Xi)−E[FY ∗|X(F−1
Y ∗(r) | Xi)]

)
+ op(1).

SA.2 Proof of Theorem 4

The proofs of parts (b) through (f) of Theorem 4 are organized in the following lemmas.

SA.2.1 Proof of Theorem 4(b)

The following lemma provides a proof of part (b) of Theorem 4 from the main text.

Lemma S2. Suppose Assumptions 1 to 10 hold, then

√
n
(
F̂Y ∗|T ∗X(y|t, x)− FY ∗|T ∗X(y|t, x)

) d−→ N
(
0, σ(FY ∗|T ∗X(y|t, x))

)
.

Proof. Recall FY ∗|T ∗X(y|t, x) = C2|X
(
FY ∗|X(y | x),FT ∗|X(t | x)

)
=: C2

(
FY ∗|X(y | x),FT ∗|X(t | x); δ

)
with

C2|X(r, s) =
∂CY ∗T∗|X(r,s)

∂s . The estimator is given by F̂Y ∗|T ∗X(y|t, x) = C2

(
F̂Y ∗|X(y | x), F̂T ∗|X(t | x); δ̂

)
whence

√
n
(
F̂Y ∗|T ∗X(y|t, x)− FY ∗|T ∗X(y|t, x)

)
=

√
n
(
C2

(
F̂Y ∗|X(y | x), F̂T ∗|X(t | x); δ̂

)
− C2

(
FY ∗|X(y | x),FT ∗|X(t | x); δ

))
=:

1√
n

n∑
i=1

ψ
(b)
i + op(1)

where σ(FY ∗|T ∗X(y|t, x)) = E
[
(ψ(b))2

]
following arguments analogous to that of Lemma 2.

SA.2.2 Proof of Theorem 4(c)

The following lemma provides a proof of part (c) of Theorem 4 from the main text.

Lemma S3. Suppose Assumptions 1 to 10 hold, then
√
n
(
Q̂Y ∗|T ∗X(τ | t, x) − QY ∗|T ∗X(τ | t, x)

) d−→
N
(
0, σ(QY ∗|T ∗X(τ | t, x))

)
.

Proof. Recall QY ∗|T ∗X(τ |t, x) = QY ∗|X

(
C−1
2;1|X

(
τ ; FT ∗|X(t | x) | x

))
= x′βY ∗

(
C−1
2;1|X

(
τ, FT ∗|X(t | x); δ

))
under Assumption 2 where C−1

2;1|X(·; ·) is the inverse of C2|X with respect to its first argument. The estimator

is given by Q̂Y ∗|T ∗X(τ |t, x) = x′β̂Y ∗

(
C−1
2;1|X

(
τ, F̂T ∗|X(t | x); δ̂

))
. Consider the following decomposition

√
n
(
Q̂Y ∗|T ∗X(τ |t, x)−QY ∗|T ∗X(τ |t, x)

)
=

√
nx′
(
β̂Y ∗

(
C−1
2;1|X

(
τ ; F̂T ∗|X(t | x); δ̂

))
− βY ∗

(
C−1
2;1|X

(
τ ; FT ∗|X(t | x); δ

)))
=

√
nx′
(
β̂Y ∗(τ̂Q)− β̂Y ∗(τQ)

)
+
√
nx′
(
β̂Y ∗(τQ)− βY ∗(τQ)

)
= x′β̂∂Y ∗(τ̄Q)

√
n(τ̂Q − τQ) +

√
nx′
(
β̂Y ∗(τQ)− βY ∗(τQ)

)
(S1)
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where τQ := C−1
2;1|X

(
τ ; τt

)
, τt := FT ∗|X(t | x), and notice that C2|X(τQ, τt; δ) = τ = C2|X(τ̂Q, τ̂t; δ̂). Thanks

to the MVT,

0 = C2|X(τ̂Q, τ̂t; δ̂)− C2|X(τQ, τt; δ)

=
(
C2|X(τ̂Q, τ̂t; δ̂)− C2|X(τQ, τ̂t; δ̂)

)
+
(
C2|X(τQ, τ̂t; δ̂)− C2|X(τQ, τt; δ̂)

)
+
(
C2|X(τQ, τt; δ̂)− C2|X(τQ, τt; δ)

)
= ∂1C2|X(τ̄Q, τ̂t; δ̂)(τ̂Q − τQ) + ∂2C2|X(τQ, τ̄t; δ̂)(τ̂t − τt) + ∂δC2|X(τQ, τt; δ̄)(δ̂ − δ)

= cY ∗T ∗|X(τ̄Q, τ̂t; δ̂)(τ̂Q − τQ) + ∂2C2|X(τQ, τ̄t; δ̂)(τ̂t − τt) + ∂δC2|X(τQ, τt; δ̄)(δ̂ − δ)

by the definition of the conditional copula density, i.e., cY ∗T ∗|X(r, s; ·) = ∂1(∂2CY ∗T ∗|X(r, s; ·)) = ∂1(C2|X(r, s; ·)).
From the foregoing and that the conditional copula is strictly positive (Assumption 6), apply the CMT

and Theorem 2 to obtain

√
n(τ̂Q − τQ) = −

(
cY ∗T ∗|X(τ̄Q, τ̂t; δ̂)

)−1
(
∂2C2|X(τQ, τ̄t; δ̂)

√
n(τ̂t − τt) + ∂δC2|X(τQ, τt; δ̄)

′√n(δ̂ − δ)
)

= −
(
cY ∗T ∗|X(τQ, τt; δ)

)−1
∂2C2|X(τQ, τt; δ)

√
n(F̂T ∗|X(t | x)− FT ∗|X(t | x))

−
(
cY ∗T ∗|X(τQ, τt; δ)

)−1
∂δC2|X(τQ, τt; δ)

′√n(δ̂ − δ) + op(1).

Substituting terms into (S1) using the representation in (A10), it follows from Theorem 2 and the CMT

that

√
n
(
Q̂Y ∗|T ∗X(τ |t, x)−QY ∗|T ∗X(τ |t, x)

)
=

1

fY ∗|X
(
C−1
2;1|X

(
τ ; FT ∗|X(t|x)

)
| x
)√n(τ̂Q − τQ)

+
L∑

ℓ=1

ωℓ,β(τQ)x
′√n

(
β̂Y ∗(τℓ)− βY ∗(τℓ)

)
+ op(1)

=−
(
cY ∗T ∗|X(τQ, τt; δ)

)−1

fY ∗|X
(
C−1
2;1|X

(
τ ; FT ∗|X(t|x)

)
| x
)∂2C2|X(τQ, τt; δ)︸ ︷︷ ︸

ML
Q,F (τ,t,x)

√
n(F̂T ∗|X(t | x)− FT ∗|X(t | x))

−
(
cY ∗T ∗|X(τQ, τt; δ)

)−1

fY ∗|X
(
C−1
2;1|X

(
τ ; FT ∗|X(t|x)

)
| x
)∂δC2|X(τQ, τt; δ)

′

︸ ︷︷ ︸
ML

Q,δ(τ,t,x)
′

√
n(δ̂ − δ)

+
[
ω1,β(τQ)x

′, . . . , ωL,β(τQ)x
′, 0
]

︸ ︷︷ ︸
ML

Q,β(τ,t,x)
′

√
n

[
β̂L
Y ∗ − βL

Y ∗

σ̂Y ∗ − σY ∗

]
+ op(1)

=ML
Q,F (τ, t, x)

√
n(F̂T ∗|X(t | x)− FT ∗|X(t | x)) +ML

Q,δ(τ, t, x)
′√n(δ̂ − δ)

+ML
Q,β(τ, t, x)

′√n

[
β̂L
Y ∗ − βL

Y ∗

σ̂Y ∗ − σY ∗

]
+ op(1)

=:
1√
n

n∑
i=1

ψ
(c)
i + op(1)

d−→ N
(
0, σ(QY ∗|T ∗X(τ |t, x))

)
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where σ(QY ∗|T ∗X(τ |t, x)) = E
[
(ψ(c))2

]
. Since a linear combination of asymptotically linear quantities is

asymptotically linear, the conclusion follows from Corollary 1 (applied to T analogously), Proposition 2,

Theorem 3, and Slutsky’s Theorem.

SA.2.3 Proof of Theorem 4(d)

The following lemma provides a proof of part (d) of Theorem 4 from the main text.

Lemma S4. Suppose Assumptions 1 to 10 hold, then

√
n
(
θ̂TM (r1, r2, s1, s2)− θTM (r1, r2, s1, s2)

) d−→ N
(
0, σ(θTM (r1, r2, s1, s2))

)
.

Proof. The unconditional joint CDF can be obtained from the conditional copula:

FY ∗T ∗
(
y, t
)
=

∫
X
FY ∗T ∗|X

(
y, t | x

)
dFX(x)

=

∫
X
CY ∗T ∗|X

(
FY ∗|X(y | x),FT ∗|X(t | x); δ

)
dFX(x).

Define, for r = FY ∗(y) and s = FT ∗(t), the induced unconditional copula

CY ∗T ∗(r, s) = FY ∗T ∗
(
F−1
Y ∗(r), F

−1
T ∗ (s)

)
=

∫
X
CY ∗T ∗|X

(
FY ∗|X(F−1

Y ∗(r) | x),FT ∗|X(F−1
T ∗ (s) | x); δ

)
dFX(x)

= E

[
CY ∗T ∗|X

(
FY ∗|X(F−1

Y ∗(r) | X),FT ∗|X(F−1
T ∗ (s) | X); δ

)]
.

Recall θTM (r1, r2, s1, s2) =
CY ∗T ∗(r2, s2)− CY ∗T ∗(r1, s2)− CY ∗T ∗(r2, s1) + CY ∗T ∗(r1, s1)

s2 − s1
, and the estima-

tor is given by

θ̂TM (r1, r2, s1, s2) =
ĈY ∗T ∗(r2, s2; δ̂)− ĈY ∗T ∗(r1, s2; δ̂)− ĈY ∗T ∗(r2, s1; δ̂) + ĈY ∗T ∗(r1, s1; δ̂)

s2 − s1

where

ĈY ∗T ∗(r, s) :=
1

n

n∑
i=1

CY ∗T ∗|X
(
F̂Y ∗|X(F̂−1

Y ∗(r) | Xi), F̂T ∗|X(F̂−1
T ∗ (s) | Xi); δ̂

)
.

Let y := F−1
Y ∗(r), ŷ := F̂−1

Y ∗(r), t := F−1
T ∗ (s), t̂ := F̂−1

T ∗ (s), ui := FY ∗|X(y | Xi), ûi := F̂Y ∗|X(ŷ | Xi),

vi := FT ∗|X(t | Xi), and v̂i := F̂T ∗|X(t̂ | Xi). Also, C(u, v; δ) := CY ∗T ∗|X(u, v; δ) and its partials are

C1 = ∂C/∂u, C2 = ∂C/∂v, Cδ = ∂C/∂δ. Then, by Assumption 6 and the MVT, C(ûi, v̂i; δ̂)−C(ui, vi; δ) =
C1(ũi, v̂i; δ̂)︸ ︷︷ ︸
ωFY (Xi;r,s)

(ûi − ui) + C2(ui, ṽi; δ̂)︸ ︷︷ ︸
ωFT (Xi;r,s)

(v̂i − vi) + Cδ(ui, vi; δ̃i)︸ ︷︷ ︸
ωδ(Xi;r,s)

′(δ̂ − δ).

Thanks to the MVT and the decomposition in Lemma 2, the following representation holds:

√
n
(
ĈY ∗T ∗(r, s; δ̂)− CY ∗T ∗(r, s; δ)

)
=

1√
n

n∑
i=1

{
CY ∗T ∗|X

(
F̂Y ∗|X(F̂−1

Y ∗(r) | Xi), F̂T ∗|X(F̂−1
T ∗ (s) | Xi); δ̂

)
−E

[
CY ∗T ∗|X

(
FY ∗|X(F−1

Y ∗(r) | X),FT ∗|X(F−1
T ∗ (s) | X); δ

)]}
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=
1

n

n∑
i=1

ωFY (Xi; r, s)
√
n
(
F̂Y ∗|X − FY ∗|X

)
(F−1

Y ∗(r) | Xi)

+
1

n

n∑
i=1

ωFT (Xi; r, s)
√
n
(
F̂T ∗|X − FT ∗|X

)
(F−1

T ∗ (s) | Xi)

+
( 1
n

n∑
i=1

ωQY (Xi; r, s)
)√

n
(
F̂−1
Y ∗(r)− F−1

Y ∗(r)
)

+
( 1
n

n∑
i=1

ωQT (Xi; r, s)
)√

n
(
F̂−1
T ∗ (s)− F−1

T ∗ (s)
)

+
( 1
n

n∑
i=1

ωδ(Xi; r, s)
)′√

n(δ̂ − δ)

+
1√
n

n∑
i=1

{
C(FY ∗|X(F−1

Y ∗(r) | Xi),FT ∗|X(F−1
T ∗ (s) | Xi); δ)

− E
[
C(FY ∗|X(F−1

Y ∗(r) | Xi),FT ∗|X(F−1
T ∗ (s) | Xi); δ)

]}
.

where

ωQY (Xi; r, s) := ωFY (Xi; r, s) f̂Y ∗|X(ȳi | Xi), and ωQT (Xi; r, s) := ωFT (Xi; r, s) f̂T ∗|X(t̄i | Xi).

First, by Assumption 7 and Corollary 1(a),

√
n
(
F̂Y ∗|X − FY ∗|X

)
(F−1

Y ∗(r) | Xi) = ML
FY (F

−1
Y ∗(r), Xi)

′√n

[
β̂L
Y ∗ − βL

Y ∗

σ̂Y ∗ − σY ∗

]
+ op(1).

Second, by Lemma S1 and Assumption 7,

√
n
(
F̂−1
Y ∗(r)− F−1

Y ∗ (r)
)

= − 1

fY ∗(F−1
Y ∗(r))

E
[
ML

FY

(
F−1
Y ∗(r), X

)]′√
n

[
β̂L
Y ∗ − βL

Y ∗

σ̂Y ∗ − σY ∗

]

− 1

fY ∗(F−1
Y ∗(r))

1√
n

n∑
i=1

(
FY ∗|X(F−1

Y ∗(r) | Xi)−E[FY ∗|X(F−1
Y ∗(r) | Xi)]

)
+ op(1).

Third, by Proposition 2,

√
n(δ̂ − δ) = −H−1

δ

1√
n

n∑
i=1

Si(δ)−H−1
δ ML

∆Y

√
n

[
β̂L
Y ∗ − βL

Y ∗

σ̂Y ∗ − σY ∗

]
−H−1

δ ML
∆T

√
n

[
β̂L
T ∗ − βL

T ∗

σ̂T ∗ − σT ∗

]
+ op(1)

Lastly, the summands{
C(FY ∗|X(F−1

Y ∗(r) | Xi),FT ∗|X(F−1
T ∗ (s) | Xi); δ)− E

[
C(FY ∗|X(F−1

Y ∗(r) | Xi),FT ∗|X(F−1
T ∗ (s) | Xi); δ)

]}n

i=1

are i.i.d, mean-zero, with bounded second moments uniformly in (r, s, δ′)′ ∈ (0, 1)2 ×Γδ by the definition of

a copula function.

In sum,
√
n
(
ĈY ∗T ∗(r, s; δ̂)−CY ∗T ∗(r, s; δ)

)
can be expressed as a weighted sum of asymptotically normal

7



quantities up to a op(1) term:

√
n
(
ĈY ∗T ∗(r, s; δ̂)− CY ∗T ∗(r, s; δ)

)
= ML

CY (r, s)
′√n

[
β̂L
Y ∗ − βL

Y ∗

σ̂Y ∗ − σY ∗

]
+ ML

CT (r, s)
′√n

[
β̂L
T ∗ − βL

T ∗

σ̂T ∗ − σT ∗

]

+ML
CF−1

Y ∗
(r, s)

1√
n

n∑
i=1

(
FY ∗|X(F−1

Y ∗(r) | Xi)−E[FY ∗|X(F−1
Y ∗(r) | Xi)]

)
+ML

CF−1
T∗

(r, s)
1√
n

n∑
i=1

(
FT ∗|X(F−1

T ∗ (s) | Xi)−E[FT ∗|X(F−1
T ∗ (s) | Xi)]

)
+

1√
n

n∑
i=1

{
C(FY ∗|X(F−1

Y ∗(r) | Xi),FT ∗|X(F−1
T ∗ (s) | Xi); δ)

−E
[
C(FY ∗|X(F−1

Y ∗(r) | Xi),FT ∗|X(F−1
T ∗ (s) | Xi); δ)

]}
+ML

Cδ(r, s)
′ 1√
n

n∑
i=1

Si(δ) + op(1)

=:
1√
n

n∑
i=1

ψ
(d)
i (r, s) + op(1)

(S2)

where the representation in the last line follows because the linear combination of asymptotically linear

quantities is asymptotically linear. The conclusion then follows in addition Theorem 3, Proposition 2, and

Slutsky’s Theorem noting that

√
n
(
θ̂TM (r1, r2, s1, s2)− θTM (r1, r2, s1, s2)

)
= (s2 − s1)

−1√n
(
ĈY ∗T ∗(r2, s2; δ̂)− CY ∗T ∗(r2, s2; δ)

)
−(s2 − s1)

−1√n
(
ĈY ∗T ∗(r1, s2; δ̂)− CY ∗T ∗(r1, s2; δ)

)
− (s2 − s1)

−1√n
(
ĈY ∗T ∗(r2, s1; δ̂)− CY ∗T ∗(r2, s1; δ)

)
+(s2 − s1)

−1√n
(
ĈY ∗T ∗(r1, s1; δ̂)− CY ∗T ∗(r1, s1; δ)

)
=: (s2 − s1)

−1
( 1√

n

n∑
i=1

ψ
(d)
i (r2, s2)−

1√
n

n∑
i=1

ψ
(d)
i (r1, s2)−

1√
n

n∑
i=1

ψ
(d)
i (r2, s1) +

1√
n

n∑
i=1

ψ
(d)
i (r1, s1)

)
+ op(1)

=:
1√
n

n∑
i=1

ψ
(d)
i + op(1)

where σ(θTM (r1, r2, s1, s2)) = E
[
(ψ(d))2

]
.

SA.2.4 Proof of Theorem 4(e)

The following lemma provides a proof of part (e) of Theorem 4 from the main text.

Lemma S5. Under Assumptions 1 to 10,
√
n(ρ̂S − ρS)

d−→ N
(
0, σ(ρS)

)
.

Proof. Recall ρS = 12

∫ 1

0

∫ 1

0
CY ∗T ∗(r, s) dr ds− 3 where

CY ∗T ∗(r, s) = E

[
CY ∗T ∗|X

(
FY ∗|X(F−1

Y ∗(r) | X), FT ∗|X(F−1
T ∗ (s) | X); δ

)]
.
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From (S2) in the proof of Lemma S4,

√
n(ρ̂S − ρS)/12 =

√
n

∫ 1

0

∫ 1

0

(
ĈY ∗T ∗(r, s)− CY ∗T ∗(r, s)

)
dr ds

=
(∫ 1

0

∫ 1

0
ML

CY (r, s) dr ds
)′√

n

[
β̂L
Y ∗ − βL

Y ∗

σ̂Y ∗ − σY ∗

]
+
(∫ 1

0

∫ 1

0
ML

CT (r, s) dr ds
)′√

n

[
β̂L
T ∗ − βL

T ∗

σ̂T ∗ − σT ∗

]

+
1√
n

n∑
i=1

{(∫ 1

0

∫ 1

0
ML

CF−1
Y ∗

(r, s)FY ∗|X(F−1
Y ∗(r) | Xi) dr ds

)
−E

[ ∫ 1

0

∫ 1

0
ML

CF−1
Y ∗

(r, s)FY ∗|X(F−1
Y ∗(r) | Xi) dr ds

]}
+

1√
n

n∑
i=1

{(∫ 1

0

∫ 1

0
ML

CF−1
T∗

(r, s)FT ∗|X(F−1
T ∗ (s) | Xi) dr ds

)
−E

[ ∫ 1

0

∫ 1

0
ML

CF−1
T∗

(r, s)FT ∗|X(F−1
T ∗ (s) | Xi) dr ds

]}
+

1√
n

n∑
i=1

{∫ 1

0

∫ 1

0
C(FY ∗|X(F−1

Y ∗(r) | Xi),FT ∗|X(F−1
T ∗ (s) | Xi); δ) dr ds

−E

[ ∫ 1

0

∫ 1

0
C(FY ∗|X(F−1

Y ∗(r) | Xi),FT ∗|X(F−1
T ∗ (s) | Xi); δ) dr ds

]}
+
(∫ 1

0

∫ 1

0
ML

Cδ(r, s) dr ds
)′ 1√

n

n∑
i=1

Si(δ) + op(1)

=
1√
n

n∑
i=1

{∫ 1

0

∫ 1

0
ψ
(d)
i (r, s) dr ds

}
+ op(1)

=:
1√
n

n∑
i=1

ψ
(e)
i + op(1)

d−→ N (0, σ(ρS))

where σ(ρS) = E
[
(ψ

(e)
i )2

]
. The conclusion follows from Lemma S4.

SA.2.5 Proof of Theorem 4(f)

The following lemma provides a proof of part (f) of Theorem 4 from the main text.

Lemma S6. Suppose Assumptions 1 to 10 hold, then
√
n
(
θ̂U (∆, s1, s2)−θU (∆, s1, s2)

) d−→ N
(
0, σ(θU (∆, s1, s2))

)
.

Proof. Recall θU (∆, s1, s2) :=
P
(
FY ∗(Y ∗) > FT ∗(T ∗) + ∆, s1 ≤ FT ∗(T ∗) ≤ s2

)
s2 − s1

. A first step is to obtain the

joint unconditional pdf fY ∗T ∗
(
·, ·
)
from the conditional copula density:

fY ∗T ∗
(
y, t
)
=

∫
X
fY ∗T ∗|X

(
y, t | x

)
dFX(x)

=

∫
X
cY ∗T ∗|X

(
FY ∗|X(y | x),FT ∗|X(t | x); δ

)
fY ∗|X(y | x)fT ∗|X(t | x)dFX(x).

Applying a change of variables r = FY ∗(y) and s = FT ∗(t), then y = F−1
Y ∗(r), t = F−1

T ∗ (s), dy = dr/fY ∗(y) =

dr/fY ∗(F−1
Y ∗(r)), and dt = ds/fT ∗(t) = ds/fT ∗(F−1

T ∗ (s)). Thus
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P
(
FY ∗(Y ∗) > FT ∗(T ∗) + ∆, s1 ≤ FT ∗(T ∗) ≤ s2

)
=

∫∫
1{FY ∗(y) > FT ∗(t) + ∆}1{s1 ≤ FT ∗(t) ≤ s2}fY ∗T ∗(y, t) dy dt

=

∫ 1

0

∫ 1

0
1{r > s+∆}1{s1 ≤ s ≤ s2}

fY ∗T ∗
(
F−1
Y ∗(r), F

−1
T ∗ (s)

)
fY ∗
(
F−1
Y ∗(r)

)
fT ∗
(
F−1
T ∗ (s)

) dr ds.
The plug-in estimator via numerical integration is given by

θ̂U (∆, s1, s2) :=

∫ 1

0

∫ 1

0

1{r > s+∆}1{s1 ≤ s ≤ s2}
(s2 − s1)

f̂Y ∗T ∗
(
F̂−1
Y ∗(r), F̂

−1
T ∗ (s)

)
f̂Y ∗
(
F̂−1
Y ∗(r)

)
f̂T ∗
(
F̂−1
T ∗ (s)

) dr ds.
Consider the decomposition:

f̂Y ∗T ∗
(
F̂−1
Y ∗(r), F̂

−1
T ∗ (s)

)
f̂Y ∗
(
F̂−1
Y ∗(r)

)
f̂T ∗
(
F̂−1
T ∗ (s)

) − fY ∗T ∗
(
F−1
Y ∗(r), F

−1
T ∗ (s)

)
fY ∗
(
F−1
Y ∗(r)

)
fT ∗
(
F−1
T ∗ (s)

) =
f̂Y ∗T ∗(y, t)− fY ∗T ∗(y, t)

fY ∗(y)fT ∗(t)

+
∂yf̂Y ∗T ∗(ȳ1, t̄1) (ŷ − y) + ∂tf̂Y ∗T ∗(ȳ2, t̄2) (t̂− t)

fY ∗(y)fT ∗(t)

+
f̂Y ∗T ∗(ŷ, t̂)

fY ∗(y)fT ∗(t) f̂Y ∗(ŷ)f̂T ∗(t̂)

×
{[
fY ∗(y)− f̂Y ∗(y)

]
fT ∗(t) + fY ∗(y)

[
fT ∗(t)− f̂T ∗(t)

]
− f̂T ∗(t̂) f̂ ′Y ∗(ȳ) (ŷ − y)− f̂Y ∗(y) f̂ ′T ∗(t̄) (t̂− t)

}
= ωf (y, t)

(
f̂Y ∗T ∗(y, t)− fY ∗T ∗(y, t)

)
+ ω̂fy(ŷ, t̂, y)

(
f̂Y ∗(y)− fY ∗(y)

)
+ ω̂ft(ŷ, t̂, t)

(
f̂T ∗(t)− fT ∗(t)

)
+ ω̂y(ŷ, t̂, y, t) (ŷ − y) + ω̂t(ŷ, t̂, y, t) (t̂− t)

with weights given by ωf (y, t) = 1
fY ∗ (y)fT∗ (t) , ω̂fy(ŷ, t̂, y) = − f̂Y ∗T ∗(ŷ, t̂)

fY ∗(y) f̂Y ∗(ŷ) f̂T ∗(t̂)
, ω̂ft(ŷ, t̂, t) =

− f̂Y ∗T ∗(ŷ, t̂)

fT ∗(t) f̂Y ∗(ŷ) f̂T ∗(t̂)
, ω̂y(ŷ, t̂, y, t) =

∂yf̂Y ∗T ∗(ȳ1, t̄1)

fY ∗(y)fT ∗(t)
− f̂Y ∗T ∗(ŷ, t̂) f̂T ∗(t̂)

fY ∗(y)fT ∗(t) f̂Y ∗(ŷ) f̂T ∗(t̂)
f̂ ′Y ∗(ȳ), and ω̂t(ŷ, t̂, y, t) =

∂tf̂Y ∗T ∗(ȳ2, t̄2)

fY ∗(y)fT ∗(t)
− f̂Y ∗T ∗(ŷ, t̂) f̂Y ∗(y)

fY ∗(y)fT ∗(t) f̂Y ∗(ŷ) f̂T ∗(t̂)
f̂ ′T ∗(t̄).

Thus,

√
n
(
θ̂U (∆, s1, s2)− θU (∆, s1, s2)

)
=

∫ 1

0

∫ 1

0

1{r > s+∆}1{s1 ≤ s ≤ s2}
(s2 − s1)

(
f̂Y ∗T ∗

(
F̂−1
Y ∗(r), F̂

−1
T ∗ (s)

)
f̂Y ∗
(
F̂−1
Y ∗(r)

)
f̂T ∗
(
F̂−1
T ∗ (s)

) − fY ∗T ∗
(
F−1
Y ∗(r), F

−1
T ∗ (s)

)
fY ∗
(
F−1
Y ∗(r)

)
fT ∗
(
F−1
T ∗ (s)

)) dr ds
=

∫ 1

0

∫ 1

0

1{r > s+∆}1{s1 ≤ s ≤ s2}
(s2 − s1)

ωf (y, t)
√
n
(
f̂Y ∗T ∗(F−1

Y ∗(r), F
−1
T ∗ (s))− fY ∗T ∗(F−1

Y ∗(r), F
−1
T ∗ (s))

)
dr ds

+

∫ 1

0

(∫ 1

0

1{r > s+∆}1{s1 ≤ s ≤ s2}
(s2 − s1)

ω̂fy(ŷ, t̂, y) ds

)√
n
(
f̂Y ∗(F−1

Y ∗(r))− fY ∗(F−1
Y ∗(r))

)
dr

+

∫ 1

0

(∫ 1

0

1{r > s+∆}1{s1 ≤ s ≤ s2}
(s2 − s1)

ω̂ft(ŷ, t̂, t) dr

)√
n
(
f̂T ∗(F−1

T ∗ (s))− fT ∗(F−1
T ∗ (s))

)
ds

+

∫ 1

0

(∫ 1

0

1{r > s+∆}1{s1 ≤ s ≤ s2}
(s2 − s1)

ω̂y(ŷ, t̂, y, t) ds

)√
n
(
F̂−1
Y ∗(r)− F−1

Y ∗(r)
)
dr
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+

∫ 1

0

(∫ 1

0

1{r > s+∆}1{s1 ≤ s ≤ s2}
(s2 − s1)

ω̂t(ŷ, t̂, y, t) dr

)√
n
(
F̂−1
T ∗ (s)− F−1

T ∗ (s)
)
ds.

The summands are studied in turn.

First, by the MVT,

√
n
(
f̂Y ∗T ∗(y, t)− fY ∗T ∗(y, t)

)
=
1

n

n∑
i=1

[
cY ∗T ∗|X

(
F̂Y ∗|X(y | Xi), F̂T ∗|X(t | Xi); δ̂

)
f̂Y ∗|X(y | Xi)f̂T ∗|X(t | Xi)

]
−E

[
cY ∗T ∗|X

(
FY ∗|X(y | X),FT ∗|X(t | X); δ

)
fY ∗|X(y | X)fT ∗|X(t | X)

]
=
1

n

n∑
i=1

{
cY ∗T ∗|X

(
F̂Y ∗|X(y | Xi), F̂T ∗|X(t | Xi); δ̂

)
f̂Y ∗|X(y | Xi)f̂T ∗|X(t | Xi)

− cY ∗T ∗|X
(
FY ∗|X(y | Xi),FT ∗|X(t | Xi); δ

)
fY ∗|X(y | Xi)fT ∗|X(t | Xi)

}
+

1

n

n∑
i=1

{
cY ∗T ∗|X

(
FY ∗|X(y | Xi),FT ∗|X(t | Xi); δ

)
fY ∗|X(y | Xi)fT ∗|X(t | Xi)

−E

[
cY ∗T ∗|X

(
FY ∗|X(y | Xi),FT ∗|X(t | Xi); δ

)
fY ∗|X(y | Xi)fT ∗|X(t | Xi)

]}

=
1

n

n∑
i=1

ωFY (Xi; y, t)
√
n
(
F̂Y ∗|X(y | Xi)− FY ∗|X(y | Xi)

)
+

1

n

n∑
i=1

ωFT (Xi; y, t)
√
n
(
F̂T ∗|X(t | Xi)− FT ∗|X(t | Xi)

)
+

1

n

n∑
i=1

ωfY (Xi; y, t)
√
n
(
f̂Y ∗|X(y | Xi)− fY ∗|X(y | Xi)

)
+

1

n

n∑
i=1

ωfT (Xi; y, t)
√
n
(
f̂T ∗|X(t | Xi)− fT ∗|X(t | Xi)

)
+

1

n

n∑
i=1

ωδ(Xi; y, t)
′√n

(
δ̂ − δ

)
+

1√
n

n∑
i=1

{
cY ∗T ∗|X

(
FY ∗|X(y | Xi),FT ∗|X(t | Xi); δ

)
fY ∗|X(y | Xi)fT ∗|X(t | Xi)

−E

[
cY ∗T ∗|X

(
FY ∗|X(y | Xi),FT ∗|X(t | Xi); δ

)
fY ∗|X(y | Xi)fT ∗|X(t | Xi)

]}
where the weights are given by

ωFY (Xi; y, t) = c1(ūi, v̂i; δ̂) f̂Y ∗|X(y | Xi)f̂T ∗|X(t | Xi), ωFT (Xi; y, t) = c2(ui, v̄i; δ̂) f̂Y ∗|X(y | Xi)f̂T ∗|X(t | Xi),

ωfY (Xi; y, t) = c(ui, vi; δ̂) f̂T ∗|X(t | Xi), ωfT (Xi; y, t) = c(ui, vi; δ̂) fY ∗|X(y | Xi),

ωδ(Xi; y, t) = cδ(ui, vi; δ̄i) fY ∗|X(y | Xi)fT ∗|X(t | Xi), ui := FY ∗|X(y | Xi), ûi := F̂Y ∗|X(y | Xi),

vi := FT ∗|X(t | Xi), and v̂i := F̂T ∗|X(t | Xi).
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The summands of

1√
n

n∑
i=1

{
cY ∗T ∗|X

(
FY ∗|X(y | Xi),FT ∗|X(t | Xi); δ

)
fY ∗|X(y | Xi)fT ∗|X(t | Xi)

−E

[
cY ∗T ∗|X

(
FY ∗|X(y | Xi),FT ∗|X(t | Xi); δ

)
fY ∗|X(y | Xi)fT ∗|X(t | Xi)

]}
are i.i.d. under Assumption 4, mean-zero, with bounded second moments under Assumptions 6 and 10 —

the CLT applies.

Second, under the conditions of Lemma 3(a),

√
n
(
f̂Y ∗(F−1

Y ∗(r))− fY ∗(F−1
Y ∗(r))

)
=

1√
n

n∑
i=1

(
f̂Y ∗|X(F−1

Y ∗(r) | Xi)−E
[
fY ∗|X(F−1

Y ∗(r) | Xi)
])

=
1

n

n∑
i=1

√
n
(
f̂Y ∗|X(F−1

Y ∗(r) | Xi)− fY ∗|X(F−1
Y ∗(r) | Xi)

)
+

1√
n

n∑
i=1

(
fY ∗|X(F−1

Y ∗(r) | Xi)−E
[
fY ∗|X(F−1

Y ∗(r) | Xi)
])

=

L∑
ℓ=1

{ 1

n

n∑
i=1

R̂ℓ,fY ∗|X (F
−1
Y ∗(r), Xi)

}′√
n
(
β̂Y ∗(τℓ)− βY ∗(τℓ)

)
+

1√
n

n∑
i=1

(
fY ∗|X(F−1

Y ∗(r) | Xi)−E
[
fY ∗|X(F−1

Y ∗(r) | Xi)
])

= E
[
ML

fY

(
F−1
Y ∗(r), X

)]′√
n

[
β̂L
Y ∗ − βL

Y ∗

σ̂Y ∗ − σY ∗

]

+
1√
n

n∑
i=1

(
fY ∗|X(F−1

Y ∗(r) | Xi)−E
[
fY ∗|X(F−1

Y ∗(r) | Xi)
])

+ op(1)

where

ML
fY

(
y, x
)
:= plim

n→∞

[
R̂1,fY ∗|X (y, x)

′, . . . , R̂L,fY ∗|X (y, x)
′, 0
]′
.

Under Assumption 4 and Assumption 10(d), the summands
{
fY ∗|X(F−1

Y ∗(r) | Xi) − E
[
fY ∗|X(F−1

Y ∗(r) |
Xi)
]}n

i=1
are i.i.d., mean-zero with bounded second moments.

Putting together the foregoing, it follows from Corollary 1, lemmas S1 and 3, and proposition 2 that
√
n
(
θ̂U (∆, s1, s2)−θU (∆, s1, s2)

)
has the representation of a weighted sum of asymptotically normally linear

and asymptotically normally distributed quantities:

√
n
(
θ̂U (∆, s1, s2)− θU (∆, s1, s2)

)
=
(∫ 1

0

∫ 1

0
ML

θY (r, s) dr ds
)′√

n

[
β̂L
Y ∗ − βL

Y ∗

σ̂Y ∗ − σY ∗

]
+
(∫ 1

0

∫ 1

0
ML

θT (r, s) dr ds
)′√

n

[
β̂L
T ∗ − βL

T ∗

σ̂T ∗ − σT ∗

]

+
1√
n

n∑
i=1

{∫ 1

0

∫ 1

0
ML

θf (r, s)cY ∗T ∗|X
(
FY ∗|X(F−1

Y ∗(r) | Xi),FT ∗|X(F−1
T ∗ (s) | Xi); δ

)

12



× fY ∗|X(F−1
Y ∗(r) | Xi)fT ∗|X(F−1

T ∗ (s) | Xi) dr ds

−E

[ ∫ 1

0

∫ 1

0
ML

θf (r, s)cY ∗T ∗|X
(
FY ∗|X(F−1

Y ∗(r) | Xi),FT ∗|X(F−1
T ∗ (s) | Xi); δ

)
× fY ∗|X(F−1

Y ∗(r) | Xi)fT ∗|X(F−1
T ∗ (s) | Xi) dr ds

]}
+

1√
n

n∑
i=1

{∫ 1

0

∫ 1

0
ML

θfY ∗|X
(r, s)fY ∗|X(F−1

Y ∗(r) | Xi) dr ds

−E

[ ∫ 1

0

∫ 1

0
ML

θfY ∗|X
(r, s)fY ∗|X(F−1

Y ∗(r) | Xi) dr ds
]}

+
1√
n

n∑
i=1

{∫ 1

0

∫ 1

0
ML

θfT∗|X
(r, s)fT ∗|X(F−1

T ∗ (s) | Xi) dr ds

−E

[ ∫ 1

0

∫ 1

0
ML

θfT∗|X
(r, s)fT ∗|X(F−1

T ∗ (s) | Xi) dr ds
]}

+
1√
n

n∑
i=1

{∫ 1

0

∫ 1

0
ML

θF−1
Y ∗

(r, s)FY ∗|X(F−1
Y ∗(r) | Xi) dr ds−E

[ ∫ 1

0

∫ 1

0
ML

θF−1
Y ∗

(r, s)FY ∗|X(F−1
Y ∗(r) | Xi) dr ds

]}
+

1√
n

n∑
i=1

{∫ 1

0

∫ 1

0
ML

θF−1
T∗

(r, s)FT ∗|X(F−1
T ∗ (s) | Xi) dr ds−E

[ ∫ 1

0

∫ 1

0
ML

θF−1
T∗

(r, s)FT ∗|X(F−1
T ∗ (s) | Xi) dr ds

]}
+
(∫ 1

0

∫ 1

0
ML

θδ(r, s) dr ds
)′ 1√

n

n∑
i=1

Si(δ) + op(1)

=:
1√
n

n∑
i=1

ψ
(f)
i + op(1)

d−→ N
(
0, σ(θU (∆, s1, s2))

)
where σ(θU (∆, s1, s2)) = E

[
(ψ(f))2

]
.

SB Causal Effects

Our framework is also related to the literature on continuous treatment effects (see, for example, Hirano

and Imbens (2004), Flores (2007), Flores, Flores-Lagunes, Gonzalez, and Neumann (2012), and Galvao

and Wang (2015)).1 Like that literature, we consider the case with one particular continuous “treatment”

variable whose effect on the outcome is of primary interest, but with other covariates that need to be

controlled for. Let Y ∗(t) denote an individual’s “potential” outcome if they experience treatment t; note

that this is well-defined regardless of what treatment level a particular individual actually experiences, but

(in the absence of measurement error) only Y ∗ = Y ∗(T ∗) is observed. Next, we show that several of our

parameters of interest in Section 2 correspond to the parameters of interest in the continuous treatment

effect literature under the commonly invoked assumption of unconfoundedness.

Assumption U (Unconfoundedness). For all t ∈ support(T ∗),

Y ∗(t) ⊥⊥ T ∗|X

Assumption U says that, after conditioning on covariates X, the amount/intensity of the treatment is as

1See Haavelmo (1944) (in particular, the discussion about “potential influence” in Section 7) for a much earlier discussion of
causality with continuous treatments that is conceptually similar to the references above.
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good as randomly assigned. This is a strong assumption; it seems unlikely that it would hold in the context

of intergenerational mobility — to be clear, we do not maintain this assumption in our application but note

it here to show that our approach could deliver causally interpretable parameters if Assumption U holds in

a given application. That being said, Assumption U is the leading assumption in the continuous treatment

effects literature (as well as being a leading assumption in the binary treatment effects literature), and a

similar assumption has been made in each of the continuous treatment effect papers cited above. Under

Assumption U, it is straightforward to show that

P
(
Y ∗(t) ≤ y|X = x

)
= FY ∗|T ∗X(y|t, x)

which implies that the distribution of potential outcomes is the same as the distribution in Equation (1) in

the main text. Thus, Assumption U serves to give terms like those in Equation (1) a causal interpretation

as in the next example.

Example S1 (Dose-Response Functions and Distributional Treatment Effects).

The treatment effects mentioned above depend on particular values of the covariates, x. Often, re-

searchers would like to report a summary measure that integrates out the covariates. For a continuous

treatment, researchers often report these dose-response functions.2 In particular, under Assumption U, the

distributional dose-response function is given by

P
(
Y ∗(t) ≤ y

)
= E

[
FY ∗|T ∗X(y|t,X)

]
(S3)

Interestingly, this is exactly the same transformation of the conditional distribution as for the counter-

factual distribution in Equation (3) in the main text. Moreover, under Assumption U, an unconditional

distributional treatment effect of moving from treatment level t to treatment level t′ is given by

DTE(t, t′) = P
(
Y ∗(t) ≤ y

)
− P

(
Y ∗(t′) ≤ y

)
One can analogously define unconditional quantile treatment effects by the change in particular quantiles

when moving from one treatment level to another. Under Assumption U, each of these treatment effect

parameters has a causal interpretation.

SC Life-Cycle Measurement Error

In this appendix, we show how to adapt the life-cycle measurement error framework of Jenkins (1987),

Haider and Solon (2006), and Nybom and Stuhler (2016) (among others) to our setting by building on work

in Hu and Sasaki (2015) and An, Wang, and Xiao (2020).

We define YaY ,i to be child’s income if they were observed at age aY ; likewise, we define TaT ,i to be

parents’ income if they were observed at age aT . Life-cycle measurement error models imply that we can

2Dose-response functions are closely related to unconditional quantile treatment effects that are commonly reported in the
case of a binary treatment. For example, in the case of intergenerational income mobility, having an income at a high conditional
quantile (e.g., conditional on parents’ education) indicates that a child has a relatively high income conditional on their parents’
income and their parents’ education. If child’s income tends to be increasing in parents’ education, then it could be the case
that a child of highly educated parents might be in a low conditional quantile but a middle or upper unconditional quantile.
Unconditional quantiles correspond to being in the lower or upper part of the overall income distribution (Frolich and Melly
(2013) and Powell (2016) contain good discussions of the difference between conditional and unconditional quantiles).
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write

YaY ,i = λYaY Y
∗
i + UY

aY ,i

TaY ,i = λTaT T
∗
i + UY

aT ,i

where, for conciseness, the notation for the measurement error terms is slightly modified relative to what it

was in the main text. Importantly, this allows for systematically different observed incomes depending on

the age at which an individual is observed. For example, it is often argued that λYaY and λYaT are less than

one for those observed during their early adult years.

Let AY denote the age at which child’s income is actually observed, and let AT denote the age at which

parents’ income is actually observed. Thus, the observed Yi = YAY ,i and Ti = TAT ,i. Moreover, we can write

YAY ,i = λYAY
Y ∗
i + UY

AY ,i

YAT ,i = λTAT
T ∗
i + UT

AT ,i

We use A to denote the set of all possible ages (for simplicity, we’ll assume that this is the same for

parents and children), and we denote the vector of all measurement errors (i.e., across all possible ages) by

UY
a⃗Y

, for children, and by UT
a⃗T

for parents. We make the following assumptions:

Assumption S1. (Y ∗, T ∗, UY
a⃗Y
, UT

a⃗T
, X) ⊥⊥ (AY , AT )

Assumption S2. For all (aY , aT ) ∈ A2, (UY
aY
, UT

aT
) ⊥⊥ (Y ∗, T ∗, X)

Assumption S3. For all (aY , aT ) ∈ A2, UY
aY

⊥⊥ UT
aT

and (UY
aY
/λYaY ) ∼ FŨY

Assumption S4. There exist a known a∗Y ∈ A and a known a∗T ∈ A such that λYa∗Y
= λTa∗T

= 1.

Assumption S5. For all (aY , aT ) ∈ A2, E[UY
aY

] = E[UT
aT
] = 0

Assumption S1 says that child’s permanent income, parents’ permanent income, covariates, and the

vector of measurement errors across ages are independent of the age at which income is observed. It coincides

with the idea that, in terms of permanent incomes, measurement error, and covariates, differences between

cohorts at different ages are due to their being observed at different points in the life-cycle. Assumption S2

says that child’s permanent income, parents’ permanent income, and covariates are independent of the

measurement errors at any age. This is the analog of Assumption 1(ii) in the main text. Assumption S2

allows for the distributions of UY
aY

and UT
aT

to vary across aY and aT , so that, for example, the variance of

the measurement error for parents’ income could change at different ages. It also allows for serial correlation

in the measurement error so that shocks to income can have persistent effects. Assumption S3 says that the

measurement error for child’s income is independent of the measurement error for parents’ income. This is

analogous to Assumption 1(iii) in the main text. The second part says that, after dividing the measurement

error for child’s income at age aY by λYaY , that term follows the same distribution over time. In other words,

after accounting for the life-cycle measurement error from λYaY , the distribution of measurement error is the

same across ages for children. Alternatively, this assumption could be imposed on the measurement error

for parents’ income. Assumption S4 says that there exist known ages where the mean of YaY is equal to the

mean of Y ∗ and the mean of YaT is equal to the mean of T ∗ — and, therefore, in these periods the classical

measurement error conditions hold. This condition is a required normalization in the life-cycle measurement
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error literature (see, for example, Assumption 1 in An, Wang, and Xiao (2020)), and it is typically thought

to be satisfied for individuals in their early to mid-thirties (Haider and Solon (2006) and Nybom and Stuhler

(2016)); and, in some cases, it appears to be satisfied for older ages as well. Assumption S5 says that, for

all ages, the mean of the measurement errors is equal to 0. Combined with Assumption S1, it implies that

E[UY
aY

|AY ] = E[UT
aT
|AT ] = 0 for all (aY , aT ) ∈ A2.

Proposition S1. Under Assumptions S1 to S5, for all aY ∈ A and aT ∈ A,

λYaY =
E[Y |AY = aY ]

E[Y |AY = a∗Y ]
and λTaT =

E[T |AT = aT ]

E[T |AT = a∗T ]

Proof. We prove the result for λYaY and note that the result for λTaT holds using analogous arguments. For

any aY ∈ A,

E[Y |AY = aY ] = λYaYE[Y
∗|AY = aY ]

= λYaYE[Y
∗] (S4)

where the first equality holds by Assumptions S1 and S5, and the second equality holds by Assumption S1.

Equation (S4) combined with Assumption S4, implies that

E[Y |AY = a∗Y ] = E[Y ∗] (S5)

Dividing Equation (S4) by Equation (S5) implies the result.

Given the result in Proposition S1 that λYaY and λTaT are identified, we next define

Ỹi :=
YAY ,i

λYAY

= Y ∗
i + ŨY

AY ,i

T̃i :=
TAT ,i

λTAT

= T ∗
i + ŨT

AT ,i

where ŨY
AY ,i :=

UY
AY ,i

λY
AY

and ŨT
AT ,i :=

UT
AT ,i

λT
AT

. For children, Ỹi comes from dividing observed child’s income by

λYaY corresponding to the age at which child’s income is actually observed; likewise, for parents, T̃i comes

from dividing observed parents’ incomes by λTaT corresponding to the age at which parents’ income is actually

observed.

In the next result, we show that, under the conditions in this section, ŨY
AY

and ŨT
AT

(the transformed

versions of the measurement errors) meet the same requirements imposed on the measurement errors as in

the main text in Assumption 1. This implies that, in the context of life-cycle measurement error, Ỹi and T̃i

can be used in place of Yi and Ti to estimate the nonlinear measures of intergenerational mobility considered

in the main text.

Proposition S2. Under Assumptions S1 to S5,

(ŨY
AY
, ŨT

AT
) ⊥⊥ (Y ∗, T ∗, X) and ŨY

AY
⊥⊥ ŨT

AT
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Proof. For any two functions g and h such that the expectation exists, notice that

E
[
g(ŨY

AY
, ŨT

AT
)h(Y ∗, T ∗, X)

]
=
∑
aY ∈A

∑
aT∈A

E

[
g

(
UY
aY

λYay
,
UT
aT

λTaT

)
h(Y ∗, T ∗, X)

∣∣∣AY = aY , AT = aT

]
P(AY = ay, AT = at)

=
∑
aY ∈A

∑
aT∈A

E

[
g

(
UY
aY

λYay
,
UT
aT

λTaT

)
h(Y ∗, T ∗, X)

]
P(AY = ay, AT = at)

= E
[
h(Y ∗, T ∗, X)

] ∑
aY ∈A

∑
aT∈A

E

[
g

(
UY
aY

λYay
,
UT
aT

λTaT

)]
P(AY = ay, AT = at)

= E
[
h(Y ∗, T ∗, X)

] ∑
aY ∈A

∑
aT∈A

E

[
g

(
UY
aY

λYay
,
UT
aT

λTaT

)∣∣∣AY = aY , AT = aT

]
P(AY = ay, AT = at)

= E
[
h(Y ∗, T ∗, X)

]
E

[
g
(
ŨY
AY
, ŨT

AT

)]
where the first equality holds by the law of iterated expectations, the second equality holds by Assumption S1,

the third equality holds by Assumption S2 and because E
[
h(Y ∗, T ∗, X)

]
does not depend on aY or aT , the

fourth equality holds by Assumption S1, and the last equality holds by the law of iterated expectations.

This proves the first part of the result.

For the second part of the result, for any two functions g and h such that the expectation exists, notice

that

E

[
g
(
ŨY
AY

)
h
(
ŨT
AT

)]
=
∑
aY ∈A

∑
aT∈A

E

[
g

(
UY
aY

λYay

)
h

(
UT
aT

λTaT

)∣∣∣AY = aY , AT = aT

]
P(AY = ay, AT = aT )

=
∑
aY ∈A

∑
aT∈A

E

[
g

(
UY
aY

λYay

)
h

(
UT
aT

λTaT

)]
P(AY = ay, AT = aT )

=
∑
aY ∈A

∑
aT∈A

E

[
g

(
UY
aY

λYay

)]
E

[
h

(
UT
aT

λTaT

)]
P(AY = ay, AT = aT )

=
∑
aY ∈A

∑
aT∈A

E

[
g
(
ŨY
AY

)]
E

[
h

(
UT
aT

λTaT

)]
P(AY = ay, AT = aT )

= E

[
g
(
ŨY
AY

)] ∑
aT∈A

E

[
h

(
UT
aT

λTaT

)]
P(AT = aT )

= E

[
g
(
ŨY
AY

)] ∑
aT∈A

E

[
h

(
UT
aT

λTaT

)∣∣∣AT = aT

]
P(AT = aT )

= E

[
g
(
ŨY
AY

)]
E

[
h
(
ŨT
AT

)]
where the first equality holds by the law of iterated expectations, the second equality holds by Assumption S1,

the third equality holds by the first part of Assumption S3, the fourth equality holds by the second part of

Assumption S3, the fifth equality holds because E
[
g(ŨY

AY
)
]
can be moved outside of the summations and

from marginalizing the joint distribution of AY and AT , the sixth equality holds by Assumption S1, and the

last equality holds by the law of iterated expectations.

17



SD Additional Empirical Results

This appendix contains additional results for the application. In particular, we provide the same results

as in the main text but (i) for an alternative copula and (ii) for an alternative set of covariates.

Gaussian Copula

This section reports the same results as in the main text, but for a Gaussian conditional copula rather

than a Clayton conditional copula. First, in this case, we estimate the rank-rank correlation of son’s and

father’s permanent incomes to be 0.481 (s.e.=0.130), which is somewhat larger in magnitude (indicating less

intergenerational income mobility) than in the case with a Clayton copula.

Table S1: Transition Matrix using a Gaussian Copula

Father’s Income Quartile

1 2 3 4

4 0.076 0.165 0.275 0.483
(0.043) (0.029) (0.007) (0.068)

3 0.168 0.255 0.298 0.279
(0.030) (0.007) (0.023) (0.007)

2 0.279 0.294 0.261 0.166
(0.007) (0.023) (0.006) (0.030)

1 0.477 0.285 0.166 0.072

S
on

’s
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m
e
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u
ar
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le

(0.069) (0.008) (0.030) (0.041)

Notes: The table provides estimates of a transition matrix allowing for measurement

error as in the main text, but using a Gaussian copula rather than a Clayton copula.

The columns are organized by quartiles of father’s income; e.g., columns labeled “1” use

data from fathers whose income is in the first quartile. Similarly, rows are organized by

quartiles of son’s income. Standard errors are computed using the bootstrap.

Next, Table S1 reports our estimate of the transition matrix using a Gaussian copula. These results

are broadly similar to the ones under a Clayton copula and, if anything, indicate somewhat lower overall

estimates of intergenerational mobility using a Gaussian copula rather than a Clayton copula.

Table S2: Upward Mobility using a Gaussian Copula

Father’s Income Quartile

1 2 3 4

Measurement Error

0.757 0.566 0.424 0.245

(0.034) (0.014) (0.016) (0.035)

Notes: The table provides estimates of upward mobility allowing for
measurement error as in the main text but using a Gaussian copula rather
than a Clayton copula. The columns are organized by quartiles of father’s
income; e.g., columns labeled “1” use data from fathers whose income is in
the first quartile. Standard errors are computed using the bootstrap.

Next, Table S2 provides estimates of upward mobility by quartiles of father’s permanent income. Again,
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these results are broadly similar to those arising from using a Clayton copula. Relative to the estimates in

the main text, using a Gaussian copula, sons whose fathers were in the second quartile of the permanent

income distribution are somewhat less likely to have higher permanent income ranks than their fathers, while

sons whose fathers were in the top quartile of the permanent income distribution are somewhat more likely

to have higher permanent income ranks than their fathers. Otherwise, the estimates are very similar.

Finally, Figure S1 provides estimates of the conditional quantiles of son’s permanent income and the

poverty rate, both as a function of father’s permanent income. Relative to the results in the main text,

using a Gaussian copula, the estimates of conditional quantiles of son’s permanent income as a function of

father’s permanent income are broadly similar — in this case, the slopes of the conditional quantiles are

somewhat larger than in the main text, and the standard errors are also somewhat larger. Using a Gaussian

copula, the estimates of the poverty rate for sons whose fathers were in the lower and middle parts of the

permanent income distribution are somewhat higher (though in both cases, the standard errors are quite

large); for sons whose fathers were in the upper part of the permanent income distribution, the estimates of

the poverty rate are similar to those in the main text. At especially high values of father’s permanent income,

although the estimated poverty rate is similar to that reported in the main text, the reported confidence

intervals are wide. This seems to arise because, after adjusting for measurement error, the 80th and 90th

percentiles of father’s permanent income are close to the top of the distribution of father’s observed income,

which results in numerically unstable results conditional on high values of father’s permanent income in

some bootstrap iterations.

Figure S1: Quantiles and Poverty Rates for Sons using Gaussian Copula
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(a) Quantiles of Son’s Income as a Function of Father’s
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(b) Poverty Rate as a Function of Father’s Income

Notes: The figure provides (i) estimates of quantiles of son’s income as a function of father’s income and (ii) estimates of the

poverty rate of sons as a function of father’s income. In both cases, estimates are provided for the 10th, 20th, . . . , and 90th

percentiles of father’s income. Both estimates are conditional on son’s age and father’s age being equal to their averages in the

sample and account for measurement error using the approach suggested in the paper. The difference relative to the estimates

in the main text is that the copula is Gaussian rather than a Clayton copula. Standard errors are computed using the bootstrap.
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Additional Covariates

Finally, we provide results that additionally include son’s race and father’s years of education as additional

covariates in the first step quantile regressions. In this section, we only report results for the copula-type

parameters, which are directly comparable to the estimates in the main text; the conditional distribution-

type parameters are not comparable because they condition on different sets of covariates, and, therefore,

we do not report them in this section. Besides using a different set of covariates, the estimates in this section

come from the same estimation procedure in the main text; most notably, as in the main text, we use a

Clayton copula in this section.

First, our estimate of the rank-rank correlation in this case is 0.248 (s.e.=0.102). This is somewhat

smaller than the corresponding estimate in the main text and is between that estimate and our estimate

when we ignore measurement error.

Table S3: Transition Matrix including Additional Covariates

Father’s Income Quartile

1 2 3 4

4 0.155 0.218 0.269 0.358
(0.034) (0.013) (0.011) (0.037)

3 0.214 0.247 0.266 0.274
(0.029) (0.006) (0.015) (0.014)

2 0.262 0.267 0.253 0.218
(0.010) (0.016) (0.006) (0.016)

1 0.369 0.268 0.212 0.150

S
on

’s
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co
m
e
Q
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le

(0.069) (0.009) (0.029) (0.035)

Notes: The table provides estimates of a transition matrix allowing for measurement

error as in the main text, but where the first step quantile regressions additionally include

son’s race and father’s education as covariates. The columns are organized by quartiles

of father’s income; e.g., columns labeled “1” use data from fathers whose income is in

the first quartile. Similarly, rows are organized by quartiles of son’s income. Standard

errors are computed using the bootstrap.

Next, Table S3 reports a transition matrix. These results are similar to the ones reported in the main text.

These results possibly indicate slightly more intergenerational mobility than the corresponding estimates in

the main text. The main difference is that we estimate that sons whose father’s permanent income is in

the first quartile are somewhat less likely to stay in the first quartile of the permanent income distribution

(though more likely to stay in the first quartile than in the case where we ignore measurement error). The

other estimates, particularly for sons whose father’s permanent income is in the top quartile, are quite similar

to the results in the main text.

Finally, Table S4 reports upward mobility estimates as a function of father’s permanent income quartile.

These estimates are very similar to the estimates reported in the main text.
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Table S4: Upward Mobility including Additional Covariates

Father’s Income Quartile

1 2 3 4

Measurement Error

0.811 0.597 0.401 0.183

(0.033) (0.007) (0.018) (0.017)

Notes: The table provides estimates of upward mobility allowing for
measurement error as in the main text, but where the first step quantile
regressions additionally include son’s race and father’s education as
covariates. The columns are organized by quartiles of father’s income; e.g.,
columns labeled “1” use data from fathers whose income is in the first
quartile. Standard errors are computed using the bootstrap.
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