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This Supplementary Appendix contains a number of additional results for “Bounds on Distribu-

tional Treatment Effect Parameters using Panel Data with an Application on Job Displacement.”

Appendix SA contains additional discussion of alternative rank invariance assumptions that lead to

point identification of the distributional parameters contained in the main text as well as some ad-

ditional empirical evidence on the Copula Stability Assumption. Appendix SB contains some Monte

Carlo simulations to assess the finite sample properties of the estimators discussed in the paper. Ap-

pendix SC contains the proofs for the identification results in Lemma 1 and Propositions 2 and 3 in

the main text. Appendix SD contains the proofs for the main asymptotic results in Section 4 of the

main text. Appendix SE contains some additional low-level assumptions and results in the particular

case where one uses distribution regression, quantile regression, and Change in Changes to estimate

parameters of interest. Appendix SF develops a nonparametric pre-test of the Copula Stability

Assumption. Appendix SG contains additional results for the application on job displacement.

SA More Details on Rank Invariance Assumptions and Ev-

idence on the Copula Stability Assumption

This section contains (i) a more detailed discussion of two rank invariance assumptions that can be

used to point identify parameters of interest, and (ii) additional empirical evidence on the Copula

Stability Assumption in the particular case of the copula of yearly earnings in the United States since

the middle of the 20th century.

SA.1 Alternative Approaches that Lead to Point Identification

This section provides additional details on two leading rank invariance assumptions that result in

point identification of any parameters that depend on the joint distribution of treated and untreated
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potential outcomes. The first assumption is cross-sectional rank invariance. This assumption can be

written as

Alternative Assumption 1 (Cross Sectional Rank Invariance).

FY1t|D=1(Y1t) = FY0t|D=1(Y0t)

The Cross Sectional Rank Invariance Assumption implies that

Y0t = F−1
Y0t|D=1(FY1t|D=1(Y1t))

which means that for any individual in the treated group with observed outcome Y1t, their coun-

terfactual untreated potential outcome Y0t is also known which implies that the joint distribution is

point identified. Although this assumption might be more plausible than assuming independence or

perfect negative dependence, it seems very unlikely to hold in practice because it severely restricts

the ability of treatment to have different effects across different individuals. In the context of job

displacement, rank invariance seems unlikely to hold because it would prohibit, for example, indi-

viduals who would have been at the top of the earnings distribution if they had not been displaced

from being unemployed or taking a part time job following job displacement.

With panel data, an alternative assumption that also leads to point identification is rank invari-

ance in untreated potential outcomes over time:

Alternative Assumption 2 (Rank Invariance Over Time).

FY0t|D=1(Y0t) = FY0t−1|D=1(Y0t−1)

The Rank Invariance Over Time Assumption does not directly replace the unknown copula in

Equation 2.1 (in the main text); however, it does lead to point identification of the joint distribution.

To see this, note that under this assumption,

Y0t = F−1
Y0t|D=1(FY0t−1|D=1(Y0t−1))

which implies that the joint distribution FY1t,Y0t|D=1 is identified.

Rank invariance over time is a strong assumption. It says that, in the absence of participating in

the treatment, individuals would keep the same rank in the distribution of outcomes over time. This

seems unlikely to hold in most applications in economics. When the researcher has access to more

than two periods of panel data, one can apply a sort of pre-test to this assumption. That is, one can

check whether rank invariance in untreated potential outcomes holds between periods t− 1 and t− 2

and this can provide evidence as to whether or not rank invariance is likely to hold between periods

t and t− 1. In the application in the current paper, I find that this assumption does not hold. That

being said, although rank invariance over time does not hold, there is strong positive dependence
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between earnings over time. The approach taken in the current paper exploits this strong positive

dependence in order to deliver tighter bounds without requiring the limiting case of rank invariance

over time to hold exactly.

SA.2 Empirical Evidence on the Copula Stability Assumption

This section provides some empirical evidence that the Copula Stability Assumption may be valid

when the outcome of interest is yearly income – a leading case in labor economics. In this case, the

Copula Stability Assumption says that income mobility, which has been interpreted as the copula of

income over time in studies of mobility (Chetty, Hendren, Kline, and Saez (2014)) or very similarly

as the correlation between the ranks of income over time (Kopczuk, Saez, and Song (2010)),1 is the

same over time.2

A simple way to check if the copula is constant over time is to check if some dependence measure

such as Spearman’s Rho or Kendall’s Tau is constant over time.3 Using administrative data from

1937-2003, Kopczuk, Saez, and Song (2010) find that the rank correlation (Spearman’s Rho) of

yearly income is nearly constant in the U.S. Immediately following World War II, there was a slight

decline in income mobility. Since then, there has been remarkable stability in income mobility (see

Figure SA.1).

Moreover, Figure SA.1 also confirms the intuition that there is strong positive dependence of

yearly income over time though the dependence is less than rank invariance. This is precisely the

case where the method developed in the current paper is likely to (i) provide more credible results

than employing a rank invariance over time assumption while (ii) yielding much tighter bounds

on the joint distribution of potential outcomes than would be available using other methods that

rely on purely statistical results to bound distributional treatment effects that depend on the joint

distribution of potential outcomes.

SB Monte Carlo Simulations

For the first set of results, I consider the finite sample performance of estimators of the upper bound

of the QoTT. To keep things simple, I consider the case where the distribution of (Y0t, Y0t−1)|D = 1

1The dependence measure Spearman’s Rho is exactly the correlation of ranks. Dependence measures such as
Spearman’s Rho or Kendall’s Tau are very closely related to copulas; for example, these dependence measures depend
only on the copula of two random variables not the marginal distributions. Dependence measures also have the
property of being ordered. For example, larger Spearman’s Rho indicates more positive dependence; two copulas, on
the other hand, cannot generally be ordered. See Nelsen (2007) and Joe (2015) for more discussion on the relationship
between dependence measures and copulas.

2It is also very similar to other work in the income mobility literature that considers transitions from one quintile
of earnings in one period to another quintile of earnings in another period (Duncan et al. (1984), Hungerford (1993),
Gottschalk (1997), and Carroll, Joulfaian, and Rider (2007)).

3It is possible for a copula to change over time and have the same value of the dependence measure, but if the
dependence measure changes over time, then the copula necessarily changes over time. See also the related discussion
on pre-testing the Copula Stability Assumption in Section 4 of the main text.

3



Figure SA.1: Rank Correlation (Spearman’s Rho) of Year over Year Annual Income Dependence for
All Workers and Male Workers from 1937-2003
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Notes: The data comes from Kopczuk, Saez, and Song (2010) and replicates part of Figure 4 in that paper.

is known rather than needing to be estimated in a first step. In particular, I consider the case where

(Y1t, Y0t−1)|D = 1 ∼ N(0, V1) and (Y0t, Y0t−1)|D = 1 ∼ N(0, V0) with

Vj =

(
1 ρj

ρj 1

)

for j = 0, 1.

With a (bivariate) Gaussian distribution, the results in Chen and Fan (2006) and Bouyé and

Salmon (2009) imply that

P (Yjt ≤ y|Y0t−1 = y′) = Φ

(y − ρjy′)√
1− ρ2

j

 (SB.1)

where Φ is the cdf of a standard normal random variable. Then, the bounds on the QoTT in

Theorem 3 (in the main text) can be simulated quite accurately.

For each of the below simulations, I consider the case where ρ1 = 0, and I vary ρ0 ∈ {0, 0.5, 0.9},
and I report the bias, median absolute deviation, and root mean squared error for the upper bound

on the 10th percentile, median, and 90th percentile of the treatment effect. I vary the number of

observations between 100, 500, and 1000 and randomly assign half of them to being in the treated
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Table SB.1: Monte Carlo Simulations

N=100 N=500 N=1000

10% 50% 90% 10% 50% 90% 10% 50% 90%

ρ0 = 0

Actual 0.249 1.373 3.301

Bias −0.259 −0.194 −0.334 −0.096 −0.103 −0.189 −0.062 −0.081 −0.165

MAD 0.225 0.193 0.321 0.096 0.096 0.193 0.064 0.096 0.161

RMSE 0.300 0.258 0.407 0.118 0.131 0.218 0.081 0.101 0.185

ρ0 = 0.5

Actual 0.056 1.309 3.172

Bias −0.284 −0.215 −0.350 −0.115 −0.099 −0.183 −0.056 −0.081 −0.164

MAD 0.289 0.225 0.321 0.129 0.096 0.193 0.064 0.096 0.161

RMSE 0.335 0.275 0.422 0.143 0.126 0.212 0.100 0.097 0.179

ρ0 = 0.9

Actual −0.779 0.859 2.691

Bias −0.168 −0.185 −0.331 −0.063 −0.084 −0.186 −0.068 −0.065 −0.168

MAD 0.193 0.193 0.321 0.064 0.096 0.193 0.064 0.064 0.161

RMSE 0.264 0.241 0.380 0.108 0.109 0.206 0.092 0.081 0.180

Notes: This table presents results from Monte Carlo experiments using the DGP given in Equation (SB.1). Each
section in the table provides estimates across different values of ρ0 which is the correlation between Y0t and
Y0t−1. The rows labeled “Actual” give the actual upper bound on the QoTT for across different quantiles. These
change with different values of ρ0. “MAD” stands for median absolute deviation, and “RMSE” stands for root
mean squared error. The columns provide simulated estimates of the bias, MAD, and RMSE at the 10th
percentile, median, and 90th percentile of the treatment effect and using 1000 Monte Carlo simulations.

group.

The results of these Monte Carlo simulations are available in Table SB.1. The main takeaways

are as follows. First, across all values of ρ0, the performance of the estimators of the upper bound

of the QoTT improves with larger sample sizes. Second, the estimators tend to be downward biased

overall with the bias decreasing with the sample size. Similar results (which are not shown) hold for

the lower bound on the QoTT – estimates of the lower bound on the QoTT tend to be upward biased.

This is not surprising because the upper bound on the QoTT comes from inverting the lower bound

on the DoTT – the lower bound on the DoTT is likely to tend to be downward biased because of

sampling variation and taking the infimum in Lemma 3 (in the main text); see the related discussion

in Manski and Pepper (2000) and Chernozhukov, Lee, and Rosen (2013). Third, the performance

of the estimator of the QoTT is somewhat better overall for the median than for the 10th- or 90th-

percentiles. Finally, there are not systematic differences in the performance of the estimator across
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Table SB.2: Bounds on QoTT

ρ1 0.00 0.50 0.90 0.99

ρ0

τ
0.5 0.9 0.5 0.9 0.5 0.9 0.5 0.9

0.00 2.683 3.544 2.583 3.203 1.702 1.922 0.701 0.741

0.50 2.583 3.223 2.322 3.063 1.582 1.882 0.681 0.741

0.90 1.722 1.902 1.582 1.882 1.161 1.542 0.561 0.681

0.99 0.701 0.741 0.681 0.761 0.561 0.681 0.380 0.501

Notes: The table provides bounds on QoTT (τ) for τ ∈ {0.5, 0.9} using the DGP given in
this section. Each cell in the table provides QoTTU (τ)−QoTTL(τ) for different values
of the correlation parameters – this is the width of the identified set for different values
of the parameters. Each row contains different values of ρ0 – the correlation between Y0t
and Y0t−1. Columns contain different values of ρ1 – the correlation between Y1t and
Y0t−1 as well as different results across different values of τ . (Results for τ = 0.1 are
not reported because, due to the symmetry of the DGP, the results are the same as for
τ = 0.9).

different values of ρ0 even though larger values of ρ0 lead to substantially tighter bounds.

For the second set of results, I consider how tight the bounds are under different data gener-

ating processes. Here, I use the same DGP as given above. Under this DGP, Y1t|Y0t−1, D = 1 ∼
N(ρ1Y0t−1, (1−ρ2

1)); similarly, Y0t|Y0t−1, D = 1 ∼ N(ρ0Y0t−1, (1−ρ2
0)). Building on the results in Fan

and Park (2010) and Fan and Wu (2010), it holds that bounds on the conditional DoTT are given

by

FL
Y1t−Y0t|Y0t−1,D=1(δ|y′) = Φ

(
σ1s− σ0t

ρ2
0 − ρ2

1

)
+ Φ

(
σ1t− σ0s

ρ2
0 − ρ2

1

)
− 1

FU
Y1t−Y0t|Y0t−1,D=1(δ|y′) = Φ

(
σ1s+ σ0t

ρ2
0 − ρ2

1

)
− Φ

(
σ1t+ σ0s

ρ2
0 − ρ2

1

)
+ 1

where Φ is the cdf of a random variable that follows a standard normal distribution and where

σ2
1 := (1 − ρ2

1), σ2
0 := (1 − ρ2

0), s = δ − (ρ1 − ρ0)y′, and t =

√
s2 + (σ2

1 − σ2
0) log

(
σ2

1

σ2
0

)
; this holds in

the case when ρ1 6= ρ0. When ρ1 = ρ0, the bounds are given by

FL
Y1t−Y0t|Y0t−1,D=1(δ|y′) = 1{δ ≥ (ρ1 − ρ0)y′}

(
2Φ

(
δ − (ρ1 − ρ0)y′

2σ

)
− 1

)

FU
Y1t−Y0t|Y0t−1,D=1(δ|y′) = 1{δ ≥ (ρ1 − ρ0)y′}+ 1{δ ≥ (ρ1 − ρ0)y′}2Φ

(
δ − (ρ1 − ρ0)y′

2σ

)
and the bounds on the DoTT itself (and corresponding bounds on the QoTT) are given by averaging

the conditional bounds over the distribution of Y0t−1|D = 1.
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Bounds on QoTT (0.5) and QoTT (0.9) are presented in Table SB.2. There are a few main patterns

to notice. First, at least in this case, the bounds have roughly equal length for different values of

τ . The bounds get tighter when there is stronger dependence between either Y0t and Y0t−1 or Y1t

and Y0t−1. Perhaps most interestingly, having very strong dependence between one pair of random

variables tightens the bounds relatively more than having a moderate amount of dependence between

both pairs of random variables. To see this, notice that the bounds are substantially tighter in the

case when, for example, ρ0 = 0.9 and ρ1 = 0 than in the case where ρ0 = 0.5 and ρ1 = 0.5.

SC Proofs of Additional Identification Results

This section contains proofs for Lemma 1 and Propositions 2 and 3 that were not included in the

main text.

SC.1 Proof of Lemma 1

The first part holds under the Copula Stability Assumption as follows

FY0t,Y0t−1|D=1(y0, y
′) = CY0t,Y0t−1|D=1(FY0t|D=1(y0), FY0t−1|D=1(y′))

= CY0t−1,Y0t−2|D=1

(
FY0t|D=1(y0), FY0t−1|D=1(y′)

)
= FY0t−1,Y0t−2|D=1

(
F−1
Y0t−1|D=1 ◦ FY0t|D=1(y0), F−1

Y0t−2|D=1 ◦ FY0t−1|D=1(y′)
)

where the first equality holds from Sklar’s Theorem, the second from the Copula Stability Assumption

and the third holds from the definition of a copula.
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For the second part, start with

FY0t|Y0t−1,D=1(y0|y′)

=

∫
Y
1{ỹ0 ≤ y0}fY0t|Y0t−1,D=1(ỹ0

∣∣ y′) dỹ0

=

∫
Y
1{ỹ0 ≤ y0}

fY0t,Y0t−1,D=1(ỹ0, y
′)

fY0t−1|D=1(y′)
dỹ0

=

∫
Y
1{ỹ0 ≤ y0}cY0t,Y0t−1|D=1(FY0t|D=1(ỹ0),FY0t−1|D=1(y′))fY0t|D=1(ỹ0) dỹ0

=

∫
Y
1{ỹ0 ≤ y0}cY0t−1,Y0t−2|D=1(FY0t|D=1(ỹ0),FY0t−1|D=1(y′))fY0t|D=1(ỹ0) dỹ0

=

∫
Y
1{ỹ0 ≤ y0}fY0t−1,Y0t−2|D=1(F−1

Y0t−1|D=1(FY0t|D=1(ỹ0)),F−1
Y0t−2|D=1(FY0t−1|D=1(y′)))

×
fY0t|D=1(ỹ0)

fY0t−1|D=1(F−1
Y0t−1|D=1(FY0t|D=1(ỹ0)))× fY0t−2|D=1(F−1

Y0t−2|D=1(FY0t−1|D=1(y′)))
dỹ0

=

∫
Y
1{ỹ0 ≤ y0}fY0t−1|Y0t−2,D=1(F−1

Y0t−1|D=1(FY0t|D=1(ỹ0))|F−1
Y0t−2|D=1(FY0t−1|D=1(y′)))

×
fY0t|D=1(ỹ0)

fY0t−1|D=1(F−1
Y0t−1|D=1(FY0t|D=1(ỹ0)))

dỹ0

where the first two equalities hold immediately, the third equality writes the joint density in terms of

the copula and the marginal densities, the fourth equality uses the Copula Stability Assumption, the

fifth equality converts the copula back into a joint density, and the sixth converts the joint density

into a conditional density. Next, make the substitution u = F−1
Y0t−1|D=1(FY0t|D=1(ỹ0)) which implies

ỹ0 = F−1
Y0t|D=1(FY0t−1|D=1(u))

and

dỹ0 =
fY0t−1|D=1(u)

fY0t|D=1(F−1
Y0t|D=1(FY0t−1|D=1(u)))

du

Plugging these back in implies

FY0t|Y0t−1,D=1(y0|y′) =

∫
Y
1{u ≤ F−1

Y0t−1|D=1(FY0t|D=1(y0))}fY0t−1|Y0t−2,D=1(u|F−1
Y0t−2|D=1(FY0t−1|D=1(y′))) du

= FY0t−1|Y0t−2,D=1(F−1
Y0t−1|D=1(FY0t|D=1(y0))|F−1

Y0t−2|D=1(FY0t−1|D=1(y′)))

which completes the proof.
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SC.2 Proof of Proposition 2

First, note that

FY0t|D=1(y) = P (θt + η + Vt ≤ y|D = 1)

=

∫
1{u ≤ y − θt}fη+Vt|D=1(u) du

=

∫ ∫
1{u ≤ y − θt}fη+Vt,η+Vt−1|D=1(u,w) du dw

=

∫ ∫
1{u ≤ y − θt}cη+Vt,η+Vt−1|D=1(Fη+Vt|D=1(u), Fη+Vt−1|D=1(w))

× fη+Vt|D=1(u)fη+Vt−1|D=1(w) du dw

=

∫ ∫
1{u ≤ y − θt}cη+Vt−1,η+Vt−2|D=1(Fη+Vt|D=1(u), Fη+Vt−1|D=1(w))

× fη+Vt|D=1(u)fη+Vt−1|D=1(w) du dw

=

∫ ∫
1{F−1

η+Vt|D=1(Fη+Vt−1|D=1(ũ)) ≤ y − θt}fη+Vt−1,η+Vt−2|D=1(ũ, w̃) dũ dw̃

= P (η + Vt−1 ≤ F−1
η+Vt−1|D=1(Fη+Vt|D=1(y − θt))|D = 1)

= P (Y0t−1 ≤ F−1
η+Vt−1|D=1(Fη+Vt|D=1(y − θt)) + θt−1|D = 1)

= FY0t−1|D=1

(
F−1
η+Vt−1|D=1(Fη+Vt|D=1(y − θt)) + θt−1

)
where the third equality holds just by integrating out the second argument of the joint density, the

fourth equality writes the joint density in terms of the copula and the marginal densities, the fifth

equality holds by the condition in the proposition, the sixth equality holds using similar arguments

as the proof of Lemma 1, and the remaining equalities hold immediately. Similar arguments imply

that

FY0t−1|D=1(y′) = FY0t−2|D=1

(
F−1
η+Vt−2|D=1(Fη+Vt−1|D=1(y′ − θt−1)) + θt−2

)
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Then, for any (u, v) ∈ [0, 1]2,

CY0t,Y0t−1|D=1(u, v) = P (FY0t|D=1(Y0t) ≤ u, FY0t−1|D=1(Y0t−1) ≤ v|D = 1)

= P
(
FY0t−1|D=1(F−1

η+Vt−1|D=1 ◦ Fη+Vt|D=1(Y0t − θt) + θt−1) ≤ u,

FY0t−2|D=1(F−1
η+Vt−2|D=1 ◦ Fη+Vt−1|D=1(Y0t−1 − θt−1) + θt−2) ≤ v

∣∣∣D = 1
)

= P
(
FY0t−1|D=1(F−1

η+Vt−1|D=1 ◦ Fη+Vt|D=1(η + Vt) + θt−1) ≤ u,

FY0t−2|D=1(F−1
η+Vt−2|D=1 ◦ Fη+Vt−1|D=1(η + Vt−1) + θt−2) ≤ v

∣∣∣D = 1
)

= P
(
FY0t−1|D=1(η + Vt−1 + θt−1) ≤ u, FY0t−2|D=1(η + Vt−2 + θt−2) ≤ v

∣∣∣D = 1
)

= P
(
FY0t−1|D=1(Y0t−1) ≤ u, FY0t−2|D=1(Y0t−2) ≤ v

∣∣∣D = 1
)

= CY0t−1,Y0t−2|D=1(u, v)

where the second equality follows from the two results earlier in this section, the third equality follows

by substituting for Y0t and Y0t−1, the fourth holds under the additional condition in the proposition,

the fifth holds from the model in the proposition, and the last by the definition of the copula.

SC.3 Proof of Proposition 3

Using the same arguments as in Athey and Imbens (2006), one can show that

FY0t|D=1(y) = FY0t−1|D=1 ◦ ht−1 ◦ h−1
t (y)

and

FY0t−1|D=1(y′) = FY0t−2|D=1 ◦ ht−2 ◦ h−1
t−1(y′)

These two imply,

CY0t,Y0t−1|D=1(u, v) = P (FY0t|D=1(Y0t) ≤ u, FY0t−1|D=1(Y0t−1) ≤ v|D = 1)

= P (FY0t−1|D=1 ◦ ht−1 ◦ h−1
t (Y0t) ≤ u, FY0t−2|D=1 ◦ ht−2 ◦ h−1

t−1(Y0t−1) ≤ v|D = 1)

= P (FY0t−1|D=1 ◦ ht−1(η + Vt) ≤ u, FY0t−2|D=1 ◦ ht−2(η + Vt−1) ≤ v|D = 1)

= P (FY0t−1|D=1 ◦ ht−1(η + Vt−1) ≤ u, FY0t−2|D=1 ◦ ht−2(η + Vt−2) ≤ v|D = 1)

= P (FY0t−1|D=1(Y0t−1) ≤ u, FY0t−2|D=1(Y0t−2) ≤ v|D = 1)

= CY0t−1,Y0t−2|D=1(u, v)

where the fourth equality holds because of the additional condition in the proposition which implies

that (Vt, Vt−1, η)|D = 1 follows the same distribution as (Vt−1, Vt−2, η)|D = 1.
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SD Asymptotic Results

SD.1 Verifying Assumption 4

First, I provide some additional discussion regarding Assumption 4. In the application in the paper, I

estimate each of the distributions FYs|X,D=d using quantile regression and then inverting the estimated

quantiles to obtain the distribution. That is, I impose that for all u ∈ (0, 1),

QYs|X,D=d(u|x) = x>βs,d(u)

The results in this section hold under Assumptions SE.1, SE.2 and SE.5 which are standard regularity

conditions for quantile regression estimators and which are given in Appendix SE. Define the following

terms,

Js,d(u) = E[fYs|X,D=d(X
>βs,d(u)|X)XX>|D = d] (SD.1)

In particular, under Assumption SE.5, and for (s, d) ∈ {t, t− 1, t− 2} × {0, 1},

Ĝd,s(y, x) = − 1√
n

n∑
i=1

ψ
(y,x)
d,s (Yis, Xi, Di) + op(1)

which holds uniformly in y and x and where

ψ
(y,x)
d,s (Ys, X,D) =

1{D = d}
pd

fYs|X,D=d(y|x)x>Js,d(FYs|X,D=d(y|x))−1

×
(
1{Ys ≤ X>βs,d(FYs|X,D=d(y|x))} − FYs|X,D=d(y|x)

)
X

and that ψ
(y,x)
d,s is a Donsker class. This implies that

(Ĝ1,t, Ĝ1,t−1, Ĝ1,t−2, Ĝ0,t, Ĝ0,t−1) (W1,t,W1,t−1,W1,t−2,W0,t,W0,t−1) (SD.2)

where (W1,t,W1,t−1,W1,t−2,W0,t,W0,t−1) is a tight, mean zero Gaussian process with covariance func-

tion

V (y, x, ỹ, x̃) = E[ψ(y,x)(Y,X,D)ψ(ỹ,x̃)(Y,X,D)>]

11



for y = (y1, y2, y3, y4, y5)>, x = (x1, x2, x3, x4, x5)>, ỹ = (ỹ1, ỹ2, ỹ3, ỹ4, ỹ5)>, x̃ = (x̃1, x̃2, x̃3, x̃4, x̃5)>,

and where

ψ(y,x)(Y,X,D) =


ψ

(y1,x1)
1,t (Yt, X,D)

ψ
(y2,x2)
1,t−1 (Yt−1, X,D)

ψ
(y3,x3)
1,t−2 (Yt−2, X,D)

ψ
(y4,x4)
0,t (Yt, X,D)

ψ
(y5,x5)
0,t−1 (Yt−1, X,D)


Finally in this section, I establish that Assumption 4 holds when each of FYs|X,D=d is estimated

using quantile regression and when the counterfactual distribution of untreated potential outcomes

for the treated group, FY0t|X,D=1, is identified using the Change in Changes approach of Athey and

Imbens (2006) and Melly and Santangelo (2015) and estimated using quantile regression.

Proposition SD.1. Under Assumptions 1 to 3, SE.1, SE.2, SE.4 and SE.5, Assumption 4 holds

with

W0 = W1,t−1 ◦ F−1
Y0t−1|X,D=0 ◦ FY0t|X,D=0

+ fY0t−1|X,D=1(F−1
Y0t−1|X,D=0 ◦ FY0t|X,D=0)

W0,t −W0,t−1 ◦ F−1
Y0t−1|X,D=0 ◦ FY0t|X,D=0

fY0t−1|X,D=0(F−1
Y0t−1|X,D=0 ◦ FY0t|X,D=0)

Proof. The result follows immediately from Equation (SD.2) and Proposition SE.1 in Appendix SE.

SD.2 Distribution Regression with “Generated” Outcomes and Regres-

sors

This section establishes useful intermediate results for distribution regression estimators (Cher-

nozhukov, Fernandez-Val, and Melly (2013)) for conditional distributions when the outcomes and

covariates are “transformed” and the transformation needs to be estimated in a preliminary step.

Recall that

FY0t|Yt−1,X,D=1(y|y′, x) = P (Yt−1 ≤ Γ10(y,X)|Γ20(Yt−2, X) = y′, X = x,D = 1) := Λ(w>β0(y))

where w = (y′, x>)>, Λ is some link function (see discussion in Supplementary Appendix SE.2), and

where the first equality holds by the identification result in Lemma 1 and the second by imposing a

distribution regression model. Here,

Γ10(y, x) := F−1
Y0t−1|X,D=1(FY0t|X,D=1(y|x)|x) and Γ20(ỹ, x) := F−1

Y0t−1|X,D=1(FY0t−2|X,D=1(ỹ|x)|x)

(SD.3)
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and

Γ̂1(y, x) := F̂−1
Y0t−1|X,D=1(F̂Y0t|X,D=1(y|x)|x) and Γ̂2(ỹ, x) := F̂−1

Y0t−1|X,D=1(F̂Y0t−2|X,D=1(ỹ|x)|x)

(SD.4)

As a first step, notice that, under the assumptions utilized in Proposition 4,

√
n(Γ̂1 − Γ10) Z01 :=

W0 −W1,t−1 ◦ F−1
Y0t−1|X,D=1(FY0t|X,D=1(y|x))

fY0t−1|X,D=1(F−1
Y0t−1|X,D=1(FY0t|X,D=1(y|x)))

(SD.5)

and

√
n(Γ̂2 − Γ20) Z02 :=

W1,t−2 −W1,t−1 ◦ F−1
Y0t−1|X,D=1(FY0t−2|X,D=1(y|x))

fY0t−1|X,D=1(F−1
Y0t−1|X,D=1(FY0t−2|X,D=1(y|x)))

(SD.6)

where the results in Equations (SD.5) and (SD.6) hold by Assumption 4 and from the results in

Lemma SD.4.

Following Chernozhukov, Fernandez-Val, and Melly (2013), I can build on results from the litera-

ture on Z-estimators to establish the limiting process for the estimator of FY0t|Yt−1,X,D=1. First, define

WΓ2 := (Γ2(Yt−2, X), X>)> which is the k + 1 vector of regressors that are used in the distribution

regression and which is indexed by the map Γ2. Next, define

ΨΓ1,Γ2(β) := E
[(

Λ(W>
Γ2
β)− 1{Yt−1 ≤ Γ1(y,X)}

)
H(W>

Γ2
β)WΓ2|D = 1

]
(SD.7)

which are indexed by Γ1 and Γ2, and where H is given in Equation (SE.3). Also, define

Ψ̂Γ1,Γ2(β) :=
1

n

n∑
i=1

Di

p

(
Λ(W>

i,Γ2
β)− 1{Yit−1 ≤ Γ1(y,Xi)}

)
H(W>

i,Γ2
β)Wi,Γ2 (SD.8)

Further, notice that ΨΓ10,Γ20(β0) = 0 which is the population version of the first order condition for

estimating β0, and the distribution regression regression estimator, β̂0, satisfies Ψ̂Γ̂1,Γ̂2
(β̂0) = 0. The

arguments of Chernozhukov, Fernandez-Val, and Melly (2013) imply that

sup
y∈Ȳ0t

|
√
n(ΨΓ10,Γ20(β̂0)−ΨΓ10,Γ20(β0))−

√
nΨ̇Γ10,Γ20,β0(β̂0 − β0)| = op(1)

which further implies that

√
n(β̂0 − β0) = Ψ̇−1

Γ10,Γ20,β0

√
n(ΨΓ10,Γ20(β̂0)−ΨΓ10,Γ20(β0)) + op(1)

= −Ψ̇−1
Γ10,Γ20,β0

√
n(Ψ̂Γ̂1,Γ̂2

(β̂0)−ΨΓ10,Γ20(β̂0)) + op(1)

and which holds uniformly in y. I show in Lemma SD.1 below that
√
n(Ψ̂Γ̂1,Γ̂2

(β̂0)−ΨΓ10,Γ20(β̂0)) Z0

13



which implies that

√
n(β̂0 − β0) −Ψ̇−1

Γ10,Γ20,β0
Z0

and where Ψ̇Γ10,Γ20,β0(y) = M0(y) which is defined in Equation (SE.2) in Appendix SE. This result is

similar to the one from Chernozhukov, Fernandez-Val, and Melly (2013) with the notable exception

that the limiting process Z0 accounts for the first step estimations in the current case. Finally, the

conditional distribution FY0t|Y0t−1,X,D=1(y|y′, x) = Λ(w>β0(y)) (here, again, I set w = (y′, x>)>) which

can be viewed as a map from l∞(Ȳ0t) to l∞(Ȳ0tY1t−1X1). This map is Hadamard differentiable and

thus,

√
n(F̂Y0t|Y0t−1,X,D=1 − F̂Y0t|Y0t−1,X,D=1) G2 := λ(w>β0(y))w>M0(y)−1Z0 (SD.9)

which is the desired result.

The final part of this section provides additional lemmas which are used for deriving the main

results in this section.

Lemma SD.1. Under Assumptions 1 to 4 and SE.1 to SE.3,

√
n(Ψ̂Γ̂1,Γ̂2

(β̂0)−ΨΓ10,Γ20(β̂0)) Z0 := Z00 + Ψ′1,Γ10
Z01 + Ψ′2,Γ20

Z02

where expressions for Ψ′1,Γ10
and Ψ′2,Γ20

are given in Lemmas SD.2 and SD.3 below.

Proof. To show the result, start by adding and subtracting some terms:

√
n(Ψ̂Γ̂1,Γ̂2

(β̂0)−ΨΓ10,Γ20(β̂0))

=
√
n
(

Ψ̂Γ10,Γ20(β0)−ΨΓ10,Γ20(β0)
)

(SD.10)

+
√
n
(

ΨΓ̂1,Γ20
(β0)−ΨΓ10,Γ20(β0)

)
(SD.11)

+
√
n
(

ΨΓ10,Γ̂2
(β0)−ΨΓ10,Γ20(β0)

)
(SD.12)

+
√
n
(

Ψ̂Γ̂1,Γ̂2
(β̂0)− Ψ̂Γ̂1,Γ̂2

(β0)−
(

ΨΓ10,Γ20(β̂0)−ΨΓ10,Γ20(β0)
))

(SD.13)

+
√
n
(

Ψ̂Γ̂1,Γ̂2
(β̂0)− Ψ̂Γ10,Γ̂2

(β0)−
(

ΨΓ̂1,Γ20
(β0)−ΨΓ10,Γ20(β0)

))
(SD.14)

+
√
n
(

Ψ̂Γ10,Γ̂2
(β0)− Ψ̂Γ10,Γ20(β0)−

(
ΨΓ10,Γ̂2

(β0)−ΨΓ10,Γ20(β0)
))

(SD.15)

The term in Equation (SD.10) can be handled exactly the same way as in Chernozhukov, Fernandez-

Val, and Melly (2013) (see also the related discussion in Appendix SE.2). It comes from distribution

regression of transformed values of Yt−1 on transformed values of Yt−2 if the transformations did not

need to be estimated. In particular, the term in Equation (SD.10) weakly converges to Z00 which is
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a tight, mean zero Gaussian process with covariance function

VZ00(ỹ1, ỹ2) = E[ψ1
Γ10(ỹ1,X);β0

(Y0t−1,WΓ20 , D)ψ1
Γ10(ỹ2,X);β0

(Y0t−1,WΓ20 , D)>] (SD.16)

where ψ1 is defined in Equation (SE.4) in Appendix SE.

The terms in Equations (SD.13) to (SD.15) converge uniformly to 0 using stochastic equicontinuity

arguments. The terms in Equations (SD.11) and (SD.12) capture the estimation effect of the first

step estimators. Thus, by Lemmas SD.2 and SD.3, it follows that

√
n
(

Ψ̂Γ̂1,Γ̂2
(β̂0)−ΨΓ10,Γ20(β̂0)

)
=
√
n
(

Ψ̂Γ10,Γ20(β0)−ΨΓ10,Γ20(β0)
)

+ Ψ′1,Γ10

√
n(Γ̂1 − Γ10) + Ψ′2,Γ20

√
n(Γ̂2 − Γ20) + op(1)

 Z00 + Ψ′1,Γ10
Z01 + Ψ′2,Γ20

Z02 = Z0

where the first equality holds uniformly in y and holds by Lemmas SD.2 and SD.3 and where Z01

and Z02 are given in Equations (SD.5) and (SD.6).

Lemma SD.2. Let D = l∞(Y1t−1X1) and consider the map Ψ1 : D0 ⊂ D 7→ l∞(Ȳ0t) given by

Ψ1(Γ1) := ΨΓ1,Γ20(β0)

where D0 denotes the space of conditional distribution functions with uniformly bounded and continu-

ous densities. Then, the map Ψ1 is Hadamard differentiable at Γ10 tangentially to D0 with derivative

at Γ10 in γ1 ∈ D0 given by

Ψ′1,Γ10
(γ1) = E

[
fYt−1|WΓ20

,D=1(Γ10(y,X)|WΓ20)H(W>
Γ20
β0)WΓ20γ1|D = 1

]
Proof. To simplify the notation in the proof, I omit the dependence of Γ10 on X throughout. Also, I

use the shorthand notation F1(·|·) := FYt−1|WΓ20
,D=1(·|·) and let f1 denote the corresponding density

function. Consider any sequence tk > 0 and Γ1k ∈ D0 for k = 1, 2, 3, . . . with tk ↓ 0 and

γ1k =
Γ1k − Γ10

tk
→ γ1 ∈ D0 as k →∞

As a first step, notice that

E[F1(Γ1k(y)|WΓ20)− F1(Γ10(y)|WΓ20)|D = 1] = tkγ1k(y) E

[∫ 1

0

f1(Γ10(y) + rtkγ1k(y)|WΓ20) dr|D = 1

]
(SD.17)

where the expectation is with respect to WΓ20 and which holds by writing the conditional distribution
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as an integral and then a change of variables argument. Then,

Ψ1(Γ1k)−Ψ1(Γ10)

tk
−Ψ′1,Γ10

=
E
[
(1{Yt−1 ≤ Γ1k(y)} − 1{Yt−1 ≤ Γ10(y)})H(W>

Γ20
β0)WΓ20 |D = 1

]
tk

−Ψ′1,Γ10

=
E
[
(F1(Γ1k(y)|WΓ20)− F1(Γ10(y)|WΓ20))H(W>

Γ20
β0)WΓ20|D = 1

]
tk

−Ψ′1,Γ10

= E

[(∫ 1

0

f1(Γ10(y) + rtkγ1k(y)|WΓ20) dr − f1(Γ10(y)|WΓ20)

)
H(W>

Γ20
β0)WΓ20γ1k(y)|D = 1

]
+ E

[
f1(Γ10(y)|WΓ20)H(W>

Γ20
β0)WΓ20(γ1k(y)− γ10(y))|D = 1

]
(SD.18)

where the third equality holds by the same argument as in Equation (SD.17) and by adding and

subtracting terms. The first term converges uniformly to 0 because f1 is uniformly continuous,

‖γ1k − γ10‖∞ → 0, and because γ1k is uniformly bounded. The second term converges uniformly to

0 because f1 is uniformly bounded and ‖γ1k − γ10‖∞ → 0.

Lemma SD.3. Let D = l∞(Y1t−1X1) and consider the map Ψ2 : D0 ⊂ D 7→ l∞(Ȳ0t) given by

Ψ2(Γ2) := ΨΓ10,Γ2(β0)

where D0 denotes the space of conditional distribution functions with uniformly bounded and continu-

ous densities. Then, the map Ψ2 is Hadamard differentiable at Γ20 tangentially to D0 with derivative

at Γ20 in γ2 ∈ D0 given by

Ψ′2,Γ20
(γ2) = E[λ(W>

Γ20
β0)H(W>

Γ20
β0)WΓ20β

(1)
0 γ2|D = 1] (SD.19)

+ E[(Λ(W>
Γ20
β0)− 1{Yt−1 ≤ Γ10(y,X)})h(W>

Γ20
β0)WΓ20β

(1)
0 γ2|D = 1]

+ E[(Λ(W>
Γ20
β0))− 1{Yt−1 ≤ Γ10(y,X)})H(W>

Γ20
β0)e1γ2|D = 1]

where β
(1)
0 is the first element in the vector β0 and e1 is a (k+ 1)×1 vector with 1 as its first element

and 0 for all the other elements.

Proof. From Equation (SD.20), write Ψ′2,Γ20
(γ2) := A1 +A2 +A3. Consider any sequence tk > 0 and

Γ2k ∈ D0 for k = 1, 2, 3, . . . with tk ↓ 0 and

γ2k =
Γ2k − Γ20

tk
→ γ2 ∈ D0 as k →∞
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Now, notice that by adding and subtracting some terms, one can write

Ψ2(Γ2k)−Ψ2(Γ20)

tk
−Ψ′2,Γ20

(γ2)

= E[(Λ(W>
Γ2k
β0)− Λ(W>

Γ20
β0))H(W>

Γ20
β0)WΓ20|D = 1]/tk − A1 (SD.20)

+ E[(Λ(W>
Γ20
β0)− 1{Γ10(Yt−1) ≤ y}) (SD.21)

×
(
H(W>

Γ2k
β0)−H(W>

Γ20
β0)
)
WΓ20|D = 1]/tk − A2

+ E[(Λ(Γ20(Y >t−2β0))− 1{Γ10(Yt−1) ≤ y}) (SD.22)

×H(W>
Γ20
β0) (WΓ2k

−WΓ20) |D = 1]/tk − A3

which holds uniformly and up to some smaller order terms. For Equation (SD.20), and by a Taylor

expansion argument and for some Γ̄2(y, x) between Γ2k(y, x) and Γ20(y, x), it is equal to

= E[λ(W>
Γ̄2
β0)H(W>

Γ20
β0)WΓ20β

(1)
0 γ2k|D = 1]− A1

= E
[(
λ(W>

Γ̄2
β0)− λ(W>

Γ20
β0)
)
H(W>

Γ20
β0)WΓ20β

(1)
0 γ2k|D = 1

]
+ E[λ(W>

Γ20
β0)H(W>

Γ20
β0)WΓ20(γ2k − γ2)|D = 1]

Thus, the term in Equation (SD.20) converges uniformly to 0 because Γ̄2 converges uniformly to Γ20,

γ2k is uniformly bounded, and γ2k converges uniformly to γ2.

For Equation (SD.21), and using similar arguments as for Equation (SD.20), it is equal to

= E
[
(Λ(W>

Γ20
β0)− 1{Γ10(Yt−1) ≤ y})h(W>

Γ̄2
β0)WΓ20β

(1)
0 γ2k|D = 1

]
− A2

= E
[
(Λ(W>

Γ20
β0)− 1{Γ10(Yt−1) ≤ y})

(
h(W>

Γ̄2
β0)− h(W>

Γ20
β0)
)
WΓ20β

(1)
0 γ2k|D = 1

]
+ E

[
(Λ(W>

Γ20
β0)− 1{Γ10(Yt−1) ≤ y})h(W>

Γ20
β0)WΓ20β

(1)
0 (γ2k − γ2)|D = 1

]
where h is the derivative of H. The first term above converges to 0 because Γ2k converges uniformly to

0, h is uniformly continuous, and the other terms are uniformly bounded. The second term converges

to 0 for the same reasons as well as that γ2k converges uniformly to γ2. Finally, for Equation (SD.22),

WΓ2k
= WΓ20 each element in W except for the first one. For the first element, notice that it is equal

to

= E

[
(Λ(Γ20(Y >t−2β0))− 1{Γ10(Yt−1) ≤ y})H(W>

Γ20
β0)

(
Γ2k(Yt−2, X)− Γ20(Yt−2, X)

tk

)]
− A3

= E
[
(Λ(Γ20(Y >t−2β0))− 1{Γ10(Yt−1) ≤ y})H(W>

Γ20
β0) (γ2k − γ2)

]
which converges uniformly to 0 since γ2k converges uniformly to γ2 and each of the other terms are

uniformly bounded.

Lemma SD.4. Let D := l∞(Y1t−1X1) × l∞(Y1t−2X1), define the map ψ : Dψ ⊂ D 7→ l∞(Y1t−2X1),
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given by

ψ(F ) = G−1 ◦H

for F := (G,H) ∈ Dψ and with Dψ := E2 with E the set of all conditional distribution functions with

a strictly positive and bounded conditional density. Then, the map ψ is Hadamard differentiable at

F0 tangentially to Dψ with derivative given by

ψ′F0
(γ) =

γ2 − γ1 ◦G−1
0 ◦H0

g0 ◦G−1
0 ◦H0

where γ := (γ1, γ2) ∈ Dψ.

Proof. This result follows from Lemma A.1 in Callaway, Li, and Oka (2018).

SD.3 Additional Preliminary Results

This section presents some additional helpful preliminary results for establishing the limiting distri-

bution of the estimators of the DoTT and QoTT . The key ingredients are establishing the Hadamard

directional differentiability of the maps from conditional distribution functions to the DoTT and the

QoTT . I establish piece-by-piece the main intermediate steps to proving this result in this section.

In the next section, I provide proofs of the main asymptotic results.

Lemma SD.5. Consider the map φU3 : DφU3
⊂ l∞(Yδ∆Y1t−1X1) 7→ l∞(Yδ∆Y1t−1X1) given by

φU3 (θ)(y, δ, y′, x) = min{θ(y, δ, y′, x), 0}

for θ ∈ DφU3
. Then, the map φU3 is Hadamard directionally differentiable at θ0 ∈ DφU3

tangentially to

DφU3
in ϕ ∈ DφU3

with derivative given by

φU
′

3,θ0
(ϕ) =


ϕ(y, δ, y′, x) if θ0(y, δ, y′, x) < 0

min{ϕ(y, δ, y′, x), 0} if θ0(y, δ, y′, x) = 0

0 if θ0(y, δ, y′, x) > 0

Proof. The proof follows using the same argument as in Fang and Santos (2019, Example 2.1).

Lemma SD.6. Consider the map φL3 : DφL3
⊂ l∞(Yδ∆Y1t−1X1) 7→ l∞(Yδ∆Y1t−1X1) given by

φL3 (θ)(y, δ, y′, x) = max{θ(y, δ, y′, x), 0}

for θ ∈ DφL3
. Then, the map φL3 is Hadamard directionally differentiable at θ0 ∈ DφL3

tangentially to
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DφL3
in ϕ ∈ DφL3

with derivative given by

φL
′

3,θ0
(ϕ) =


0 if θ0(y, δ, y′, x) < 0

max{ϕ(y, δ, y′, x), 0} if θ0(y, δ, y′, x) = 0

ϕ(y, δ, y′, x) if θ0(y, δ, y′, x) > 0

Proof. The result follows immediately from Fang and Santos (2019, Example 2.1).

Before stating the main asymptotic results, I introduce a bit more notation. For any θ ∈
l∞(Yδ∆Y1t−1X1), define4

ΦL
Yδ(θ, δ, y

′, x) := argmax
y∈Yδ

θ(y, δ, y′, x) and ΦU
Yδ(θ, δ, y

′, x) := argmin
y∈Yδ

θ(y, δ, y′, x)

Then, the following results hold

Lemma SD.7. Consider the map φL2 : DφL2
⊂ l∞(Yδ∆Y1t−1X1) 7→ l∞(∆Y1t−1X1) given by

φL2 (θ)(δ, y′, x) = sup
y∈Yδ

θ(y, δ, y′, x)

for θ ∈ DφL2
:= C(Yδ∆Y1t−1X1). Then, the map φL2 is Hadamard directionally differentiable at

θ0 ∈ DφL2
tangentially to DφL2

with derivative in ϕ ∈ DφL2
given by

φL
′

2,θ0
(δ, y′, x) = sup

y∈ΦLYδ
(θ0,δ,y′,x)

ϕ(y, δ, y′, x)

Proof. The proof follows immediately from Masten and Poirier (2019, Lemma 8)

Lemma SD.8. Consider the map φU2 : DφU2
⊂ l∞(Yδ∆Y1t−1X1) 7→ l∞(∆Y1t−1X1) given by

φU2 (θ)(δ, y′, x) = inf
y∈Yδ

θ(y, δ, y′, x)

for θ ∈ DφU2
:= C(Yδ∆Y1t−1X1). Then, the map φU2 is Hadamard directionally differentiable at

θ0 ∈ DφU2
tangentially to DφU2

with derivative in ϕ ∈ DφU2
given by

φU
′

2,θ0
(δ, y′, x) = inf

y∈ΦUYδ
(θ0,δ,y′,x)

ϕ(y, δ, y′, x)

Proof. The result follows using essentially the same arguments as in Lemma SD.7 which builds on

Masten and Poirier (2019, Lemma 8).

4Following Fan and Park (2010), I use the notation Yδ to denote the compact set of values of y such that the lower
and upper bounds on the DoTT are not trivially equal to each other and to either 0 or 1; this set depends on the
value of δ. See the discussion in Fan and Park (2010, Section 3).
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Finally, the next result restates Lemma D.1 of Chernozhukov, Fernandez-Val, and Melly (2013)

with the notation adjusted to be the same as in the current paper.

Lemma SD.9. Consider the map φ1 : Dφ1 ⊂ l∞(∆Y1t−1X1)× l∞(Y1t−1X1) 7→ l∞(∆) given by∫
Yt−1X

Λ1(·|yt−1, x) dΛ2(yt−1, x)

for Λ = (Λ1,Λ2) ∈ Dφ1 where Dφ1 is the product of the space of measurable functions Λ1 : ∆Y1t−1X1 7→
[0, 1] and of the bounded maps Λ2 : F 7→ R given by f 7→

∫
f dΛ2 where Λ2 is a probability measure

on Y1t−1X1. Then, the map φ1 is Hadamard differentiable at Λ0 = (Λ10,Λ20) tangentially to D0 where

D0 denotes the product of the space of uniformly continuous functions mapping Y1t−1X1 to [0, 1] times

the space of uniformly continuous functions in F in λ = (λ1, λ2) ∈ Dφ1 with derivative given by

φ′1,Λ0
(λ) =

∫
Yt−1

∫
X
λ1(·|yt−1, x) dΛ20(yt−1, x) +

∫
Yt−1

∫
X

Λ10(·|yt−1, x) dλ2(yt−1, x)

Proof. The result follows immediately using the arguments of Chernozhukov, Fernandez-Val, and

Melly (2013, Lemma D.1)

SD.4 Proofs of Main Asymptotic Results

Proof of Proposition 4

Recall that Theorem 2 establishes identification ofDoTTL andDoTTU . Let F10 := FY1t|Y0t−1,X,D=1,

F20 := FY0t|Y0t−1,X,D=1, and F30 := FY0t−1,X|D=1; also, let F̂1 := F̂Y1t|Y0t−1,X,D=1, F̂2 := F̂Y0t|Y0t−1,X,D=1,

and F̂3 := F̂Y0t−1,X|D=1. Using the notation of this section and the definitions of φ1, φL2 , φU2 , φL3 , and

φU3 in the previous section, notice that

DoTTL(δ) = φL(F10, F20, F30)

:= φ1

(
φL2 ◦ φL3 (F10, F20), F30

) and DoTTU(δ) = φU(F10, F20, F30)

:= φ1

(
φU2 ◦ φU3 (F10, F20), F30

)
and that estimators of the lower and upper bounds of the distribution of the treatment effect are

given by

D̂oTT
L
(δ) = φL(F̂1, F̂2, F̂3) and D̂oTT

U
(δ) = φU(F̂1, F̂2, F̂3)

Then, from the results in Lemmas SD.5 to SD.9 and by the chain rule for Hadamard directionally

differentiable functions (Shapiro (1990) and Masten and Poirier (2019)), it holds that the maps φL

and φU are Hadamard directionally differentiable with derivative at F0 given in F̃ := (F̃1, F̃2, F̃3)
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given by

φL
′

F0
(F̃ ) = φ′1,(φL2 ◦φL3 (F10,F20),F30)

(
φL
′

2,φL3 (F10,F20) ◦ φ
L′

3,(F10,F20)(F̃1, F̃2), F̃3

)
and

φU
′

F0
(F̃ ) = φ′1,(φU2 ◦φU3 (F10,F20),F30)

(
φU
′

2,φU3 (F10,F20) ◦ φ
U ′

3,(F10,F20)(F̃1, F̃2), F̃3

)
Then, the delta method for Hadamard directionally differentiable functions (Fang and Santos (2019))

in combination with Theorem 4 and Lemmas SD.5 to SD.9 implies the result.

In addition, the limiting processes in Proposition 4 are given by VL := VL
0 +VL

1 and VU := VU
0 +VU

1

which are, in turn, given by

VL
0 =

∫
Yt−1

∫
X
FL
Y1t−Y0t|Y0t−1,X,D=1(δ|y′, x) dG3

VU
0 =

∫
Yt−1

∫
X
FU
Y1t−Y0t|Y0t−1,X,D=1(δ|y′, x) dG3

VL
1 =

∫
Y1,t−1

∫
X1

sup
y∈ΦLYt

(θ0,δ,y′,x)


0 if θ0(y, δ, y′, x) < 0

max{G1 −G2, 0} if θ0(y, δ, y′, x) = 0

G1 −G2 if θ0(y, δ, y′, x) > 0

dFY0t−1,X|D=1(y′, x)

and

VU
1 =

∫
Y1,t−1

∫
X1

inf
y∈ΦUYt

(θ0,δ,y′,x)


G1 −G2 if θ0(y, δ, y′, x) < 0

min{G1 −G2, 0} if θ0(y, δ, y′, x) = 0

0 if θ0(y, δ, y′, x) > 0

dFY0t−1,X|D=1(y′, x)

where

θ0(y, δ, y′, x) := FY1t|Y0t−1,X,D=1(y|y′, x)− FY0t|Y0t−1,X,D=1(y − δ|y′, x)

In Proposition 4, VL
0 and VU

0 give the components of the asymptotic variance if FY1t|Y0t−1,X,D=1

and FY0t|Y0t−1,X,D=1 were known and did not need to be estimated in the preliminary step. VL
1 and VU

1

are additional asymptotic variance terms that come from having to estimate each of these conditional

distributions.

Proof of Theorem 5

21



The proof of Theorem 5 follows immediately from the result in Proposition 4, by the Hadamard

differentiability of the quantile map (see van der Vaart and Wellner (1996, Lemma 3.9.23(ii))), and by

recalling that the QoTTL comes from inverting DoTTU and QoTTU comes from inverting DoTTL.

SE Supplementary Asymptotic Results

In the first part of this section, I provide some additional low-level assumptions on the preliminary

estimators used in the main part of the text. In cases where a researcher used alternative first step

estimators, these regularity conditions would need to be adjusted. The second set of results are

on using Change in Changes (Athey and Imbens (2006) and Melly and Santangelo (2015)) in the

first step to identify and estimate FY0t|X,D=1. As discussed earlier, other approaches could be used

to identify this counterfactual distribution, but the second part of this section supplies additional

details for the method that I actually use in the main paper.

SE.1 Additional Assumptions for First Step Estimators

The first two assumptions are technical conditions used in deriving the main asymptotic results in

the paper.

Assumption SE.1 (Compact Support).

For all (s, d) ∈ {t, t − 1, t − 2} × {0, 1}, Yds and Xd, which denote the supports of Ys and

Xconditional on D = d, are compact subsets of R.

Assumption SE.2 (Continuously Distributed Outcomes).

(i) For all (s, d) ∈ {t, t − 1, t − 2} × {0, 1}, Ys is continuously distributed conditional on X and

D = d with conditional density fYd|X,D=d(y|x) that is uniformly bounded away from 0 and ∞ and

uniformly continuous in (y, x) ∈ YdsXd.
(ii) Conditional on Y0t−1, X, and D = 1, Y1t and Y0t are continuously distributed with conditional

densities fY1t|Y0t−1,X,D=1(y|y′, x) and fY0t|Y0t−1,X,D=1(y|y′, x) that are uniformly bounded away from 0

and ∞ and uniformly continuous in (y, y′, x) on their supports.

The next assumption provides additional regularity conditions for the proposed distribution re-

gression estimators of FY1t|Y0t−1,X,D=1 and FY0t|Y0t−1,X,D=1 which are also standard in the literature on

distribution regression. First, for Wt−1 = (Y0t−1, X
>)> and WΓ20 = (Γ20(Y0t−2, X), X>)>, define

M1(y) := E

[
λ(W>

t−1β1(y))2

Λ(W>
t−1β1(y))(1− Λ(W>

t−1β1(y)))
Wt−1W

>
t−1

∣∣∣D = 1

]
(SE.1)

and

M0(y) := E

[
λ(W>

Γ20
β0(y))2

Λ(W>
Γ20
β0(y))(1− Λ(WΓ20>β0(y)))

WΓ20W
>
Γ20

∣∣∣D = 1

]
(SE.2)
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Assumption SE.3 (Distribution Regression).

(i) E [‖Wt−1‖2|D = 1] <∞ and E [‖WΓ20‖2|D = 1] <∞.

(ii) The minimum eigenvalues of M1(y) and M0(y), which are defined in Equations (SE.1)

and (SE.2), are uniformly bounded away from zero.

Next, define pd := P (D = d) and pd(x) := P (D = d|X = x). The following assumptions are

needed for the particular first step estimators that I use in the application.

Assumption SE.4 (Overlap).

p1 > 0 and, for all x ∈ X1, p1(x) < 1.

This assumption is standard in the treatment effects literature. The first part says that there

are some treated individuals; the second part says that for any possible values of the covariates for

the treated group, there is a positive probability that they there do not participate in the treatment.

This guarantees that, for individuals in the treated group, one can find “matches” with the same

characteristics. Because all the parameters that are considered in the paper are conditional on being

in the treated group, I do not require that that the propensity score, P (D = 1|X), be bounded away

from 0.5

The next assumption is an additional condition for the first step quantile regression estimators

and is standard in the literature on quantile regression.

Assumption SE.5 (First Step Quantile Regression).

(i) For d ∈ {0, 1}, E [‖X‖2+ε|D = d] <∞ for some ε > 0.

(ii) For {s, d} ∈ {0, 1} × {t, t− 1, t− 2}, the minimum eigenvalues of Js,d(u), which is defined in

Equation (SD.1), are uniformly bounded away from zero.

SE.2 Additional Details for Distribution Regression

Next, in this section, I discuss the results of Chernozhukov, Fernandez-Val, and Melly (2013) which

apply directly to estimating FY1t|Y0t−1,X,D=1 because this is just a distribution regression of an observed

outcome on some observed covariates. Here, I suppose that FY1t|Y0t−1,X,D=1(y|y′, x) = Λ(w>β1(y)) for

some known link function Λ with derivative λ and where w = (y′, x>)>. Define

H(z) =
λ(z)

Λ(z)(1− Λ(z))
(SE.3)

and let h denote the derivative of H. Let Ψ1(β) and Ψ̂1(β) be defined as in Equations (SD.7)

and (SD.8) but for estimating FY1t|Y0t−1,X,D=1. That is, they are the population and sample first

order conditions for estimating β1.

5This can potentially be important in applications like job displacement where job displacement may be much less
common for individuals with particular characteristics.
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Using the same arguments as in Chernozhukov, Fernandez-Val, and Melly (2013), one can show

that

√
n(Ψ̂1(β1)−Ψ1(β1)) Z1

where

Ψ1(β) = E
[
ψ1
y;β(Yt,Wt−1, D)

]
and Ψ̂1(β) =

1

n

n∑
i=1

ψ1
y;β(Yit,Wit−1, Di)

with

ψdy;β(Y,W,D) =
1{D = d}

pd

(
Λ(W>β(y))− 1{Y ≤ y}

)
H(W>β(y))W (SE.4)

where Z1 is a tight, mean zero Gaussian process with covariance function

VZ1(ỹ1, ỹ2) := E
[
ψ1
ỹ1;β1

(Yt,Wt−1, D)ψ1
ỹ2;β1

(Yt,Wt−1, D)>
]

Continuing to follow the same arguments as in Chernozhukov, Fernandez-Val, and Melly (2013), it

further holds that

√
n(β̂1 − β1) −M1(·)−1Z1

and

√
n(F̂Y1t|Y0t−1,X,D=1 − FY1t|Y0t−1,X,D=1) G1 := λ(w>β1(y))w>M1(y)−1Z1 (SE.5)

Finally, I estimate FY0t−1,X|D=1 using the empirical cdf, i.e.,

F̂Y0t−1,X|D=1(y′, x) =
1

n

n∑
i=1

ψecdf(y′,x)(Yit−1, Xi, Di)

where

ψecdf(y′,x)(Y,X,D) :=
D

p1

1{Y ≤ y′, X ≤ x}

Noting that FY0t−1,X|D=1(y′, x) = E[ψecdf(y′,x)(Y,X,D)], it follows immediately that

√
n(F̂Y0t−1,X|D=1 − FY0t−1,X|D=1) G3 (SE.6)

24



where G3 is a tight, mean zero Gaussian process with covariance function given by

V3(ỹ′1, x̃1, ỹ
′
2, x̃2)

= E
[
(ψecdf(ỹ′1,x̃1

(Yt−1, X,D)− FY0t−1,X|D=1(ỹ′1, x̃1)
)(
ψecdf(ỹ′2,x̃2)(Yt−1, X,D)− FY0t−1,X|D=1(ỹ′2, x̃2)

)>]
SE.3 Additional Details for Change in Changes

Under Assumption 2 (in the main text), the distribution of untreated potential outcomes for indi-

viduals in the treated group is identified. In the application, I used Change in Changes (Athey and

Imbens (2006) and Melly and Santangelo (2015)) to identify this distribution. In particular, in this

setup,

FY0t|X,D=1(y|x) = φ(FY0t−1|X,D=1, FY0t−1|X,D=0, FY0t|X,D=0)(y, x)

:= FY0t−1|X,D=1(F−1
Y0t−1|X,D=0(FY0t|X,D=0(y|x)|x)|x) (SE.7)

where all the terms on the right hand side of Equation (SE.7) are identified. It is natural then to

estimate the distribution of untreated potential outcomes for the treated group by

F̂Y0t|X,D=1(y|x) = φ(F̂Y0t−1|X,D=1, F̂Y0t−1|X,D=0, F̂Y0t|X,D=0)(y, x)

= F̂Y0t−1|X,D=1(F̂−1
Y0t−1|X,D=0(F̂Y0t|X,D=0(y|x)|x)|x)

The limiting process for each of the estimated distributions is given in Equation (SD.2), so all that

remains to be show is that the function φ is Hadamard differentiable. Next, I provide the limiting

process for
√
n(F̂Y0t|X,D=1−FY0t|X,D=1). This is closely related to Melly and Santangelo (2015) though

my method of proof is somewhat different and my main result expands one of their intermediate

results.

Proposition SE.1. Let D = l∞(Y1t−1X1)× l∞(Y0t−1X1)× l∞(Y0tX1) and consider the map φ : Dφ ⊂
D 7→ l∞(Ȳ0tX1) given by

φ(F ) := F1 ◦ F−1
2 ◦ F3

for F := (F1, F2, F3) ∈ Dφ where Dφ := E3 where E denotes the set of all conditional distribution

functions with conditional density function that is uniformly bounded from above and bounded away

from zero. Then, the map φ is Hadamard differentiable at F0 = (F10, F20, F30) ∈ D with derivative

given by

φ′F0
(λ) = λ1 ◦ F−1

20 ◦ F30 + f10(F−1
20 ◦ F30)

λ3 − λ2 ◦ F−1
20 ◦ F30

f20(F−1
20 ◦ F30)

tangentially to Dφ in λ = (λ1, λ2, λ3) ∈ Dφ.
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Proof. Let Dφ2 = E× E−1 × E where E−1 is the space of inverse functions in E. Consider the maps

φ1 : Dφ 7→ Dφ2 and φ2 : Dφ2 7→ l∞(Ȳ0tX1) given by

φ1(F ) = (F1, F
−1
2 , F3) and φ2(Γ) = (Γ1 ◦ Γ2 ◦ Γ3)

for F = (F1, F2, F3) ∈ Dφ and Γ = (Γ1,Γ2,Γ3) ∈ Dφ2 . Notice that φ(F ) = φ2(φ1(F )). Next, the map

φ1 is Hadamard differentiable at F0 with derivative given by

φ′1,F0
(λ) =

(
λ1,−

λ2

f20

◦ F−1
20 , λ3

)
(see, for example, van der Vaart and Wellner (1996, Lemma 3.9.23(ii))). Next, the map φ2 is

Hadamard differentiable at Γ0 in γ ∈ Dφ2 with derivative given by

φ′2,Γ0
(γ) = γ1 ◦ Γ20 ◦ Γ30 + Γ′1,Γ20◦Γ30

γ2 ◦ Γ30 + Γ′1,Γ20◦Γ30
Γ′2,Γ30

γ3

which follows using a similar argument as in van der Vaart and Wellner (1996, Lemma 3.9.27).

Further, by the chain rule for Hadamard differentiable functions and for λ ∈ Dφ,

φ′F0
(λ) = φ′2,φ1(F0) ◦ φ′1,F0

(λ)

= φ′
2,(F10,F

−1
20 ,F30)

(
λ1,−

λ2

f20

◦ F−1
20 , λ3

)
which implies the result by plugging into the expression for φ′2,Γ0

(γ) and because the derivative of

F10 is f10 and the derivative of F−1
20 is 1/(f20 ◦ F−1

20 ).

SF A Nonparametric Pre-Test of the Copula Stability As-

sumption

This section develops a nonparametric pre-test for the Copula Stability Assumption that is useful in

cases where a researcher has access to additional pre-treatment time periods. In the main text, I also

suggested a parametric test of the Copula Stability Assumption based on computing a dependence

measure such as Spearman’s Rho or Kendall’s Tau in all pre-treatment times periods and testing

whether the dependence measure is constant over time. One advantage of the parametric test relative

to the nonparametric pre-test is that it is simple to implement. On the other hand, this sort of

parametric test only tests an implication of the Copula Stability Assumption in pre-treatment periods.

In other words, there are violations of the Copula Stability Assumption that would not be detected by

the parametric test. The nonparametric test developed in this section can detect fixed nonparametric

alternatives; i.e., violations of the Copula Stability Assumption that might not be detected by the
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parametric test mentioned above (for example, there exist copulas that have the same value of a

dependence parameter but are different from each other). In applications, relative to the parametric

test, the main disadvantages of this approach are that it is more computationally challenging to

implement and that it does not deliver a figure like Figure 3 in the main text; this sort of figure can

be useful for thinking about the Copula Stability Assumption in applied work.

Before proceeding, it is helpful to introduce a bit of extra notation for this section. Instead of

supposing that we observe data from three time periods, we now consider the case where there are t

total time periods and index these by s = 1, . . . , t. Let n1 denote the number of treated observations.

Also, following the same setup as in the main part of the paper, consider the case where individuals

in the treated group first become treated in time period t. Therefore, this section considers the

following null hypothesis to test

H0 : CY0s1 ,Y0s1−1|D=1 = CY0s2 ,Y0s2−1|D=1 for all 2 ≤ s1 < s2 < t vs. H1 : not H0

This null hypothesis is that the Copula Stability Assumption holds across all pre-treatment time

periods. Rémillard and Scaillet (2009) develop a test for the equality of two copulas. The rest of the

arguments in this section extend those arguments to the case of testing the equality of two or more

copulas. To begin, estimators of copulas depend on first step estimators of distribution functions;

i.e., it is natural to nonparametrically estimate a copula by

ĈY0s1 ,Y0s1−1|D=1(u, v) =
1

n1

n1∑
i=1

1{F̂Y0s1 |D=1(Y0is1) ≤ u, F̂Y0s1−1|D=1(Y0is1−1) ≤ v}

which depends on first step estimators of FY0s1 |D=1 and FY0s1−1|D=1. The limiting process for this

type of nonparametric copula estimator is established in Gaenssler and Stute (1987), Fermanian,

Radulovic, and Wegkamp (2004), and van der Vaart and Wellner (2007) (among some others) under

some regularity conditions (see, for example, Theorem 3 in Fermanian, Radulovic, and Wegkamp

(2004) or Corollary 5.3 in van der Vaart and Wellner (2007)). Using essentially the same arguments,

one can show that

√
n1(Ĉ2 − C2, Ĉ3 − C3, . . . , Ĉt−1 − Ct−1) (C2,C3, . . . ,Ct−1) (SF.1)

in l∞([0, 1])t−2 and where, for s = 2, 3, . . . , t−1, Cs is a mean 0 Gaussian process (an exact expression

and more detailed discussion is given in Fermanian, Radulovic, and Wegkamp (2004)). Define

Ĵs1,s2(u, v) = ĈY0s1 ,Y0s1−1|D=1
(u, v)− ĈY0s2 ,Y0s2−1|D=1(u, v) (SF.2)

Under H0,

√
n1Ĵs1,s2  Cs1 − Cs2
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and this holds jointly for 2 ≤ s1 < s2 < t. Then, I consider the following Cramer von Mises type of

test statistic

ĈvM =
t−1∑
s1=2

t−1∑
s2=2

1{s1 < s2}
∫

[0,1]2

(√
n1Ĵs1,s2(u, v)

)2
du dv

and where under H0

ĈvM
d−→

t−1∑
s1=2

t−1∑
s2=2

1{s1 < s2}
∫

[0,1]2

(
Cs1(u, v)− Cs2(u, v)

)2
du dv

which holds by the continuous mapping theorem. On the other hand, under H1, ĈvM diverges.

Under H0, ĈvM follows a nonstandard limiting distribution, but, following standard arguments, its

limiting distribution can be simulated. In particular, Fermanian, Radulovic, and Wegkamp (2004)

establish that the standard empirical bootstrap can be used to approximate the limiting process of

the copula; in particular, let Ĉ∗s = Ĉ∗Y0s,Y0s−1|D=1 which is an estimated copula using a bootstrapped

sample (i.e., one drawn from the original data with replacement). From the arguments in Fermanian,

Radulovic, and Wegkamp (2004), it follows that

√
n1(Ĉ∗2 − Ĉ2, Ĉ

∗
3 − Ĉ3, . . . , Ĉ

∗
t−1 − Ĉt−1) ∗ (C2,C3 . . . ,Ct−1)

which is the same limiting process as in Equation (SF.1) and which further implies that

√
n1

(
Ĵ∗s1,s2 − Ĵs1,s2

)
 ∗ Cs1 − Cs2

which is the same process as in Equation (SF.2) and which holds jointly for 2 ≤ s1 < s2 < t. Finally,

define the bootstrapped version of ĈvM by

ĈvM
∗

=
t−1∑
s1=2

t−1∑
s2=2

1{s1 < s2}
∫

[0,1]2

(√
n1(Ĵ∗s1,s2(u, v)− Ĵs1,s2(u, v))

)2
du dv (SF.3)

It immediately follows that

ĈvM
∗ d−→∗

t−1∑
s1=2

t−1∑
s2=2

1{s1 < s2}
∫

[0,1]2

(
Cs1(u, v)− Cs2(u, v)

)2
du dv

which is the same limiting distribution as for ĈvM under H0. The suggests simulating the limiting

distribution of ĈvM under H0 using the bootstrap; i.e., calculating the term in Equation (SF.3) B

times where B is some large number. One can then test H0 by comparing ĈvM to the (1 − α)-

quantile of {ĈvM
∗
b}Bb=1 where b = 1, . . . , B denotes a particular bootstrap iteration and α denotes a

significance level.
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SG More Details for the Application on Job Displacement

SG.1 Related Work on Job Displacement

Broadly speaking, there are two key findings from the job displacement literature: (i) the effect of job

displacement on earnings is large, and (ii) the effect of job displacement is persistent. The current

paper considers the effect of job displacement on earnings 2-4 years following displacement which is a

somewhat shorter period than most existing work. The empirical literature on job displacement finds

that workers suffer large earnings losses upon job displacement. To give some examples, Jacobson,

LaLonde, and Sullivan (1993) study the effect of job displacement during a deep recession – the reces-

sion in the early 1980s. That paper finds that workers lose 40% of their earnings upon displacement

and still have 25% lower earnings six years following displacement. Also, it finds little difference in

the path of earnings for older, prime-age, and younger workers. Couch and Placzek (2010) study job

displacement in the smaller recession in the early 2000s. They find an initial 32% decrease in earnings

following displacement, but earnings are only 13% lower six years after displacement. Using Social

Security data that covers the entire U.S., von Wachter, Song, and Manchester (2009) also study the

effect of displacement during the early 1980s and find a 30% reduction in earnings upon displacement

and earnings still 20% lower up to twenty years following displacement. Kletzer and Fairlie (2003),

using NLSY data, find that displaced workers have 11% lower earnings three years after displacement

than they would have had if they had not been displaced. That paper uses the same dataset as in

the current paper and finds considerably smaller effects of job displacement; however, it considers the

period 1984-1993 where the workers are much younger (they would have ranged from 20-36 over those

years) and the economy did not experience a deep recession which likely work together to explain

the large differences. Stevens (1997), using PSID data, finds that workers initially lose 25% of their

earnings following job displacement and have 9% lower earnings ten years later. Using the Displaced

Worker Survey, Farber (1997) finds that displaced workers lose 12% of weekly earnings on average

following displacement.

The effect of job displacement may be particularly severe for workers displaced during the Great

Recession because of the particularly weak labor market conditions in the period immediately fol-

lowing the recession (Davis and Von Wachter (2011)). From the official beginning of the recession in

December 2007 to October 2009, four months after the official end of the recession, the unemploy-

ment rate doubled from 5.0% to 10.0% (U.S. Bureau of Labor Statistics (2015b)). And during the

same period, the economy shed almost 8.4 million jobs (U.S. Bureau of Labor Statistics (2015a)).

For late prime-age workers, ages 45 to 54, the unemployment rate doubled from 3.6% to 7.1% (U.S.

Bureau of Labor Statistics (2015c)).

There is recent work on the effect of job displacement during the Great Recession using the

Displaced Workers Survey (Farber (2017)). For all workers, the incidence of job loss was at its high-

est during the Great Recession compared to all other periods covered by the DWS (1981-present).

Roughly, one in six workers report having lost a job. Compared to previous time periods, the rate of
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Figure SG.1: Marginal Distributions of Displaced and Non-displaced Potential Outcomes for the
Displaced Group

0.00

0.25

0.50

0.75

1.00

7 8 9 10 11 12 13
Log of Yearly Earnings

C
D

F

Distribution

Observed

Counterfactual

(a) Marginal Distributions of Potential Outcomes

●
●

●

●●

●

●

●●

●
●●

●●●●
●

●●
●

●
●

●●
●●●

●●
●●●

●●●●
●●●●●

●
●●●●

●●●
●●●

●●
●●●●●●●

●●●●●●
●●

●●●●
●●●●●●●●●●●●

●

●
●

●
●

●

−2

−1

0

0.1 0.3 0.5 0.7 0.9
tau

Q
T

E

(b) Quantile Treatment Effect on the Treated

Notes: Panel (a) provides estimates of the distribution of displaced potential earnings for the treated group and the
counterfactual distribution of non-displaced potential earnings for the treated group. The latter is estimated using
the Change in Changes model as described in the text. Panel (b) provides estimates of the QTT of job displacement.
The scale of the y-axis is in log points. Most of the reported results in the text convert log points into percentage
changes (see Footnote 19 in the main text). The dotted lines provide pointwise 95% confidence intervals using the
empirical bootstrap.

Sources: 1979 National Longitudinal Survey of Youth

reemployment was very low with more workers being reemployed in part time jobs. Interestingly, Far-

ber (2017) finds much heterogeneity in the effects of job displacement. First, he finds that there are

significant differences in the effect of job displacement between workers who find full-time, part-time,

or remained unemployed following job displacement. Second, comparing pre- and post-displacement

earnings for displaced workers, he finds a substantial fraction (around 25-40% using different ap-

proaches) of workers who are employed following job displacement have higher earnings than they

did before they were displaced.

SG.2 Additional Results on Job Displacement

This section contains several additional results for the application on job displacement. First, Fig-

ure SG.1a contains plots of the observed distribution of earnings for displaced workers as well as the

counterfactual distribution of earnings that displaced workers would have experienced if they had

not been displaced from their jobs. Figure SG.1b plots the QTT for displaced workers. Both of these

figures are discussed in more detail in the main text.

Next, Figure SG.2 plots the QoTT under several assumptions that would lead to point identifi-

cation. First, it plots the QoTT under rank invariance between Y1t and Y0t. I have argued that this

is an especially strong assumption in this case. For example, it essentially restricts any workers who

would have been at the top of the earnings distribution if they had not been displaced from moving

into much lower paying positions following displacement. This identifying assumption implies the

least amount of heterogeneity in the effect of being displaced. At the 5th percentile, individuals lose
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Figure SG.2: Plots of the QoTT under Rank Invariance Assumptions
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Notes: This figure provides plots of the QoTT under the assumption of cross-sectional rank invariance (left panel)
and rank invariance over time (right panel). The red lines are the bounds on the QoTT under the Copula Stability
Assumption and are the same as in Figure 1b. The scale of the y-axis is in log points. Most of the reported results in
the text convert log points into percentage changes (see Footnote 19 in the main text).

Sources: 1979 National Longitudinal Survey of Youth

69% from being displaced. At the 95th percentile, they lose 12%. At the median, they lose 25%, and

this effect is largely constant across most of the interior quantiles. Of course, the no-assumptions

bounds cannot rule out rank invariance between Y1t and Y0t, but, here, this kind of rank invariance

is incompatible with the Copula Stability Assumption because the bounds imply more heterogeneity

than occurs under rank invariance (see Figure SG.2).

The second part of Figure SG.2 plots the results under the assumption of rank invariance be-

tween Y0t and Y0t−1. This assumption results in considerably more heterogeneity in the effect of job

displacement than the assumption of rank invariance between Y1t and Y0t. For example, at the 5th

percentile, the estimated effect of job displacement is a loss of 89% of earnings. At the median, the

estimated effect is 29% lower earnings per year. And at the 95th percentile, earnings are estimated

to be 80% higher than they would have been without job displacement. Further, 30% of displaced

workers are estimated to have higher earnings than they would have had if they not been displaced,

and 22% of displaced workers are estimated to have lost at least half of their earnings due to job

displacement relative to what they would have earned if they had not been displaced. The estimates

of the QoTT under the assumption of rank invariance over time fall completely within the bounds on

the QoTT under the Copula Stability Assumption. That being said, as discussed in the main text,

one can pre-test the rank invariance over time assumption. To do this, I estimate Spearman’s Rho

for Y0t−1 and Y0t−2. In order for rank invariance over time to hold in the past, it must be the case

that Spearman’s Rho is exactly equal to 1. Instead, I estimate that Spearman’s Rho is equal to 0.79

for the group of displaced workers. Therefore, the assumption of rank invariance over time is rejected

in the pre-treatment period. This also suggests that it is not likely to hold in the present periods
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Figure SG.3: Bounds on the Quantile of the Treatment Effect under the Copula Stability Assumption
with Covariates
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Notes: These are bounds that come from using the method developed in the current paper under
the Copula Stability Assumption and through tightening bounds using covariates. The scale of the
y-axis is in log points. Most of the reported results in the text convert log points into percentage
changes (see Footnote 19 in the main text). The dotted lines provide 95% confidence intervals for
the estimated lower and upper bounds using the numerical bootstrap as discussed in the text.
Sources: 1979 National Longitudinal Survey of Youth

either. Relative to the results under cross-sectional rank invariance, the reason that the bounds in

the current paper are closer to the estimates of the QoTT under rank invariance over time is that

relatively stronger dependence is observed between Y0t−1 and Y0t−2 (Spearman’s Rho = 0.79) than

between Y1t and Y0t−1 (Spearman’s Rho = 0.54) for the group of displaced workers.

Next, I provide some additional results for the bounds on the QoTT when (i) the bounds are

tightened using the Copula Stability Assumption and covariates and (ii) the bounds are tightened

using covariates but not the Copula Stability Assumption. Figure 6 in the main text provides point

estimates of each of these, but Figures SG.3 and SG.4 additionally provide 95% confidence intervals

for the bounds in each of these cases.

Finally, Figure SG.5 provides estimated QTTs under alternative first step estimators of FY0t|D=1.

These are largely similar to each other indicating that the bounds on the main parameters of interest

in the paper are not sensitive to the choice of identification argument used for this counterfactual

distribution.

32



Figure SG.4: Bounds on the Quantile of the Treatment Effect using Covariates
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Notes: These are bounds that come from using available covariates to tighten the bounds but do
not employ the Copula Stability Assumption. The scale of the y-axis is in log points. Most of the
reported results in the text convert log points into percentage changes (see Footnote 19 in the main
text). The dotted lines provide 95% confidence intervals for the estimated lower and upper bounds
using the numerical bootstrap as discussed in the text.
Sources: 1979 National Longitudinal Survey of Youth
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Figure SG.5: Plots of QTTs using Alternative First Step Assumptions
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Notes: The figure plots QTTs using alternative assumptions to identify the counterfactual distribution of
non-displaced potential earnings for the group of displaced workers. The panel “CIC, No Covs” provides
estimates of the QTT using the Change in Changes model with no covariates; these are the same results as
presented in Figure SG.1b. The panel “CIC, Covs” includes covariates in the Change in Changes models
using the approach of Melly and Santangelo (2015) that uses first step quantile regression estimators. The
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Sources: 1979 National Longitudinal Survey of Youth
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[2] Bouyé, Eric and Mark Salmon. “Dynamic copula quantile regressions and tail area dynamic

dependence in Forex markets”. The European Journal of Finance 15.7-8 (2009), pp. 721–750.

[3] Callaway, Brantly and Tong Li. “Quantile treatment effects in difference in differences models

with panel data”. Quantitative Economics 10.4 (2019), pp. 1579–1618.

[4] Callaway, Brantly, Tong Li, and Tatsushi Oka. “Quantile treatment effects in difference in

differences models under dependence restrictions and with only two time periods”. Journal of

Econometrics 206.2 (2018), pp. 395–413.

[5] Carroll, Robert, David Joulfaian, and Mark Rider. “Income mobility: The recent American

experience”. Working Paper, Andrew Young School of Policy Studies Research Paper Series.

2007.

[6] Chen, Xiaohong and Yanqin Fan. “Estimation of copula-based semiparametric time series mod-

els”. Journal of Econometrics 130.2 (2006), pp. 307–335.

[7] Chernozhukov, Victor, Ivan Fernandez-Val, and Blaise Melly. “Inference on counterfactual dis-

tributions”. Econometrica 81.6 (2013), pp. 2205–2268.

[8] Chernozhukov, Victor, Sokbae Lee, and Adam M Rosen. “Intersection bounds: Estimation and

inference”. Econometrica 81.2 (2013), pp. 667–737.

[9] Chetty, Raj, Nathaniel Hendren, Patrick Kline, and Emmanuel Saez. “Where is the land of

opportunity? The geography of intergenerational mobility in the United States”. The Quarterly

Journal of Economics 129.4 (2014), pp. 1553–1623.

[10] Couch, Kenneth A and Dana W Placzek. “Earnings losses of displaced workers revisited”. The

American Economic Review (2010), pp. 572–589.

[11] Davis, Steven J and Till Von Wachter. “Recessions and the costs of job loss”. Brookings Papers

on Economic Activity 43.2 (Fall) (2011), pp. 1–72.

[12] Duncan, Greg J, Richard Coe, Mary Corcoran, Martha S Hill, Saul Hoffman, and James N

Morgan. Years of poverty–years of plenty: The changing economic fortunes of American workers

and families. 1984.

[13] Fan, Yanqin and Sang Soo Park. “Sharp bounds on the distribution of treatment effects and

their statistical inference”. Econometric Theory 26.03 (2010), pp. 931–951.

[14] Fan, Yanqin and Jisong Wu. “Partial identification of the distribution of treatment effects in

switching regime models and its confidence sets”. The Review of Economic Studies 77.3 (2010),

pp. 1002–1041.

35



[15] Fang, Zheng and Andres Santos. “Inference on directionally differentiable functions”. The Re-

view of Economic Studies 86.1 (2019), pp. 377–412.

[16] Farber, Henry S. “The changing face of job loss in the United States, 1981-1995”. Brookings

Papers on Economic Activity. Microeconomics (1997), pp. 55–142.

[17] Farber, Henry S. “Employment, hours, and earnings consequences of job loss: US evidence from

the displaced workers survey”. Journal of Labor Economics 35.S1 (2017), S235–S272.

[18] Fermanian, Jean-David, Dragan Radulovic, and Marten Wegkamp. “Weak convergence of em-

pirical copula processes”. Bernoulli 10.5 (2004), pp. 847–860.

[19] Firpo, Sergio. “Efficient semiparametric estimation of quantile treatment effects”. Econometrica

75.1 (2007), pp. 259–276.

[20] Gaenssler, Peter and Winfried Stute. “Copula processes”. Seminar on Empirical Processes.

Springer. 1987, pp. 49–57.

[21] Gottschalk, Peter. “Inequality, income growth, and mobility: The basic facts”. The Journal of

Economic Perspectives (1997), pp. 21–40.

[22] Hungerford, Thomas L. “US income mobility in the seventies and eighties”. Review of Income

and Wealth 39.4 (1993), pp. 403–417.

[23] Jacobson, Louis S, Robert J LaLonde, and Daniel G Sullivan. “Earnings losses of displaced

workers”. The American Economic Review (1993), pp. 685–709.

[24] Joe, Harry. Dependence Modeling with Copulas. CRC Press, Boca Raton, FL, 2015.

[25] Kletzer, Lori G and Robert W Fairlie. “The long-term costs of job displacement for young adult

workers”. ILR Review 56.4 (2003), pp. 682–698.

[26] Kopczuk, Wojciech, Emmanuel Saez, and Jae Song. “Earnings inequality and mobility in the

United States: Evidence from social security data since 1937”. The Quarterly Journal of Eco-

nomics 125.1 (2010), pp. 91–128.

[27] Manski, Charles and John Pepper. “Monotone instrumental variables: with an application to

the returns to schooling”. Econometrica 68.4 (2000), pp. 997–1010.

[28] Masten, Matthew A and Alexandre Poirier. “Inference on breakdown frontiers”. Working Paper.

2019.

[29] Melly, Blaise and Giulia Santangelo. “The changes-in-changes model with covariates”. Working

Paper. 2015.

[30] Nelsen, Roger. An Introduction to Copulas. 2nd ed. Springer, 2007.

[31] Rémillard, Bruno and Olivier Scaillet. “Testing for equality between two copulas”. Journal of

Multivariate Analysis 100.3 (2009), pp. 377–386.

36



[32] Shapiro, Alexander. “On concepts of directional differentiability”. Journal of Optimization The-

ory and Applications 66.3 (1990), pp. 477–487.

[33] Stevens, Ann Huff. “Persistent effects of job displacement: The importance of multiple job

losses”. Journal of Labor Economics (1997), pp. 165–188.

[34] U.S. Bureau of Labor Statistics. All Employees: Total Nonfarm Payrolls [PAYEMS]. 2015.

[35] U.S. Bureau of Labor Statistics. Civilian Unemployment Rate [UNRATE]. 2015.

[36] U.S. Bureau of Labor Statistics. Unemployment Rate: 45 to 54 Years [LNU04000093]. Retrieved

from FRED, Federal Reserve Bank of St. Louis on August 9, 2017. 2015.

[37] van der Vaart, Aad W and Jon A Wellner. Weak Convergence and Empirical Processes. Springer

Science & Business Media, 1996.

[38] van der Vaart, Aad W and Jon A Wellner. “Empirical processes indexed by estimated func-

tions”. Lecture Notes-Monograph Series (2007), pp. 234–252.

[39] von Wachter, Till, Jae Song, and Joyce Manchester. “Long-term earnings losses due to mass

layoffs during the 1982 recession: An analysis using US administrative data from 1974 to 2004”.

unpublished; New York: Columbia University (2009).

37


	More Details on Rank Invariance Assumptions and Evidence on the Copula Stability Assumption
	Alternative Approaches that Lead to Point Identification
	Empirical Evidence on the Copula Stability Assumption

	Monte Carlo Simulations
	Proofs of Additional Identification Results
	Proof of Lemma 1
	Proof of Proposition 2
	Proof of Proposition 3

	Asymptotic Results
	Verifying ass:fclt
	Distribution Regression with ``Generated'' Outcomes and Regressors
	Additional Preliminary Results
	Proofs of Main Asymptotic Results

	Supplementary Asymptotic Results
	Additional Assumptions for First Step Estimators
	Additional Details for Distribution Regression
	Additional Details for Change in Changes

	A Nonparametric Pre-Test of the Copula Stability Assumption
	More Details for the Application on Job Displacement
	Related Work on Job Displacement
	Additional Results on Job Displacement


