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Abstract

The intergenerational elasticity (IGE) is the most common parameter reported in the
intergenerational mobility literature. This paper proposes a “local” intergenerational
mobility parameter (LIGE) that allows the effect of parents’ income to vary across
different values of parents’ income. We also extend this result to an “adjusted” local
intergenerational elasticity (ALIGE) which adjusts for differences in the distribution of
observed characteristics at different values of parents’ income. We develop the asymp-
totic properties of the LIGE and ALIGE, and apply them to study intergenerational
mobility using data from the PSID. We find that the intergenerational elasticity is
much larger for low values of parents’ income (indicating less mobility) relative to high
values of parents’ income; adjusting for differences in characteristics reduces the local
IGE at all values of parents’ income as well as flattening it across different values of
parents’ income.
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1. Introduction

The intergenerational elasticity (IGE) is the most commonly reported measure
of intergenerational income mobility (see, for example, Solon (1992)). It is the
coefficient from the regression of the log of child’s income on the log of parents’
income. Large positive values of the IGE indicate a relative lack of mobility
and small values indicate relatively high mobility. The IGE, however, is a global
measure of intergenerational mobility and some researchers have explored how
the IGE varies across different values of parents’ income (e.g., Landersø and
Heckman (2017)) as a local intergenerational mobility measure.1 One impor-
tant reason to consider local versions of the IGE is that the relationship between
parents’ income and child’s income may be nonlinear. For example, Becker and
Tomes (1986) discusses how borrowing constraints for poor families can lead to a
nonlinear relationship between parents’ income and child’s income.2 Researchers
studying intergenerational mobility have also been interested in the role of other
background characteristics (e.g., race and education) that are correlated with
both parents’ income and child’s income in explaining intergenerational mobil-
ity (e.g., Bowles and Gintis (2002), Blanden, Gregg, and Macmillan (2007), and
Richey and Rosburg (2017)). In part, this line of research is interested in under-
standing to what degree controlling for other covariates affects estimates of the
intergenerational transmission of income.

This paper develops new tools for estimating a local intergenerational elas-
ticity after (possibly) first adjusting for differences in the distribution of char-
acteristics across different values of parents’ income. Just like in the IGE case
mentioned above, whether one wants to adjust for covariates is likely to depend
on whether or not one wants to document local correlations between parents’ in-
come and child’s income or to see to what extent these correlations remain after
adjusting for differences in the distribution of covariates across different values
of parents’ income.

The interpretation of local intergenerational income elasticities is somewhat
subtle. First, they are local effects and should be interpreted as the effect on
average child’s income for marginal changes in parents’ income. They do not
indicate what would happen if parents’ income changed dramatically. Also, local
intergenerational elasticities are the effect on average child’s income (possibly
after adjusting for differences in covariates) and do not answer questions like how
parents’ income affects the probability that child’s income is below the poverty

1Also relatedly, Bratsberg et al. (2007) and Björklund, Roine, and Waldenström (2012) group their data
by percentiles of parents’ income and calculate intergenerational elasticities within groups which is similar to
our procedure; Murtazashvili (2012) uses a random coefficients model to allow the effect of parents’ income
to differ across individuals.

2See also Section 2 of Bratsberg et al. (2007) for a detailed discussion about other possible causes of a
nonlinear relationship between parents’ income and child’s income.
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We propose a semiparametric estimator of the adjusted local intergenerational
elasticity that allows for the effects of parents’ income and covariates on child’s
income to change across different values of parents’ income. We develop the
asymptotic properties of a local linear estimator of the local intergenerational
elasticity and our adjusted local intergenerational elasticity. Our estimators con-
verge more slowly than parametric estimators though they do not suffer from the
curse of dimensionality.

We apply our method to data from the Panel Study of Income Dynamics.
Without adjusting for covariates, the local IGE is relatively large and tends to
decrease with parents’ income. Adjusting for covariates decreases the local IGE
across all values of parents’ income; however, there is still a strong relationship
between child’s income and parents’ income. Adjusting for covariates also sub-
stantially flattens the local IGE across different values of parents’ income.

2. Parameters of Interest

Let Y denote the log of child’s income, T denote the log of parents’ income, and
X denote a k × 1 vector of covariates. Next, we define our two main objects of
interest.

Definition 1. The Local Intergenerational Elasticity (LIGE) is given by

LIGE(t) =
∂E[Y |T = t]

∂t

LIGE(t) measures the local effect of parents’ income on average child’s in-
come at a particular value of parents’ income t. This type of parameter has
been considered in Landersø and Heckman (2017). We are also interested in the
effect of parents’ income on child’s income after adjusting for differences in the
distribution of observed characteristics that are related to child’s income (e.g.,
parents with high income are likely to have relatively high education as well)
across different values of parents’ income. Note that here we are not attempting
to establish the causal effect of parents’ income; rather, we are trying to imagine
what average child’s income would be if the return to observed characteristics
were held fixed but the distribution of characteristics was changed to be the same
as the distribution of characteristics for all individuals in the population.

Next, note that the observed average child’s income conditional on parents’
income is given by

E[Y |T = t] =

∫
X
E[Y |T = t,X = x] dFX|T (x|t)

3Richey and Rosburg (2016) and Callaway and Huang (2018a) consider how parents’ income affects the
entire distribution of outcomes though the approaches in those papers are substantially different from that
of the current paper.



which holds by the law of iterated expectations and where X denotes the support
of X. We consider the counterfactual average outcome conditional on parents’
income where the return to characteristics and parents’ income is held fixed but
the distribution of observed characteristics (conditional on T = t) is changed to
be the distribution of characteristics for the entire population; that is

EC [Y |T = t] =

∫
X
E[Y |T = t,X = x] dFX(x)

Given this counterfactual, we define our main parameter of interest next.

Definition 2. The Adjusted Local Intergenerational Elasticity (ALIGE)
is given by

ALIGE(t) =
∂EC [Y |T = t]

∂t

ALIGE(t) corresponds to LIGE(t) except that it occurs after adjusting for
differences in the distribution of covariates across different values of parents’
income. Our next aim is to develop a flexible model for E[Y |T,X] in order to
ultimately estimate the ALIGE. We make the following assumption

Assumption 1 (Smooth Coefficient Model).

Y = X ′β(T ) + U

Assumption 1 is key for implementing our method. This type of semipara-
metric model is called a smooth coefficient model (see, e.g., Li, Huang, Li, and
Fu (2002) and Cai, Fan, and Li (2000) as well as Callaway and Huang (2018b) for
a similar model in the context of decompositions with a continuous treatment).
It allows for the effect of each covariate to change across different values of par-
ents’ income. The model also includes a constant so the effect of parents’ income
itself can change across different values of parents’ income. It is a semiparamet-
ric model because it imposes that, locally in parents’ income, the effect of each
covariate on child’s income is linear. It seems very natural to impose this sort
of structure in a model for intergenerational mobility because parents’ income
can be treated in a distinct way from the other covariates that we include in the
model.

A leading alternative idea would be to estimate E[Y |T,X] nonparametrically
and plug in these estimates to obtain estimates of the ALIGE. With the moderate
amount of data typically available in applications, this approach is not likely to
be feasible as it suffers from the curse of dimensionality.4 Even in a case like
ours where most of the covariates are discrete, splitting the sample for each
possible combination of the discrete variables and then employing nonparametric
estimation does not appear to be a feasible strategy either due to sample sizes

4The curse of dimensionality would be somewhat mitigated from integrating out X; however, the fully
nonparametric approach is still likely to be difficult to carry out in practice.



being extremely small within some cells. It is straightforward to handle this case
with our approach though.

Another alternative would be to assume that the conditional expectation fol-
lows some particular parametric model, but it seems challenging in practice to
specify the right functional form; in particular, for the derivative of E[Y |T,X]
to depend on X, the functional form must include interactions between T and X
which may be difficult to choose appropriately. Our approach, on the other hand,
is quite flexible. We allow the effect of covariates and parents’ income to depend
on the value of parents’ income. For example, the effect of parents’ education on
child’s income can vary across different values of parents’ income.

Finally, our approach is also related to the idea of dividing parents’ income into
several groups (this is often based on income quartiles) and computing an IGE for
each group;5 this idea is also related to transition matrices.6 One advantage of our
approach relative to these is that it does not require the researcher to specify how
to divide parents’ income into groups. The way to divide income is inherently ad
hoc (Bhattacharya and Mazumder (2011)). In addition, when income inequality
increases, observations in particular groups can come from families with parents’
income that are actually substantially far apart.7 In contrast, with high income
inequality (and for a fixed number of observations), our approach would continue
to use observations with similar parents’ income; in this case, there would tend
to be fewer observations with similar parents’ income though and this would be
reflected in relatively larger standard errors. This would seem to be desirable
behavior for an estimator of local IGEs though because, in this case, the data
would effectively be less informative about the local effect of parents’ income.

The next result characterizes the ALIGE under Assumption 1.

Proposition 1. Under Assumption 1,

ALIGE(t) = E[X]′
∂β(t)

∂t

Proof. First, notice that under Assumption 1,

EC [Y |T = t] =

∫
X
x′β(t) dFX(x)

= E[X]′β(t)

Taking the derivative with respect to t implies the result.

5Work that uses this approach includes Bratsberg et al. (2007) and Björklund, Roine, and Waldenström
(2012).

6There are many papers that use transition matrices in the context of intergenerational mobility. The
most closely related part of this literature to our approach are papers that use transition matrices in the
presence of covariates; this work includes Bhattacharya and Mazumder (2011), Chetty and Hendren (2018),
Chetty, Hendren, Jones, and Porter (2018), and Richey and Rosburg (2018).

7We thank a referee for pointing this out. One particular example of this, due to Bhattacharya and
Mazumder (2011), is that one of the (partial) explanations for less observed upward intergenerational mobility
of black individuals than white individuals using transition matrices is that, within parents’ income groups,
black parents tend to have relatively lower income; thus, for children of black parents to move to a higher
income group, they have to increase their income relatively more than children of white parents.



Our approach exploits the uniqueness of T among the set of conditioning
variables. Importantly, unlike the fully nonparametric approach, our approach
will not suffer from the curse of dimensionality. Our estimator will converge at
a slower rate than parametric estimators, but its rate will not slow down due to
adding more covariates.

3. Estimation

Estimating the LIGE is relatively straightforward. We use local linear kernel
regression and an estimate of the derivative is given by the (local) coefficient
on the linear term (also notice that the results for the LIGE are a special case
of the results for the ALIGE by taking X to only include a constant). For
estimating the ALIGE, notice that a first order Taylor approximation of the
model in Assumption 1 around t implies

Y ≈ X ′β(t) + (T − t)X ′∂β(t)

∂t
+ U

Then, a local linear estimator of (β(t), ∂β(t)/∂t) is given by(
β̂(t)
∂̂β(t)
∂t

)
= (X′K(t)X)

−1
X′K(t)y

where X is an n × 2k matrix (where k is the dimension of X) with the ith row
given by Xi = (X ′i, (Ti − t)X ′i) and K(t) is an n × n diagonal matrix whose ith
diagonal element is given by Kh(Ti − t) = K((Ti − t)/h) where K is a kernel
(satisfying some regularity conditions; in practice, we use a trimmed Gaussian
kernel though other choices are possible) and h is a bandwidth.

Then, one can estimate the ALIGE as follows

̂ALIGE(t) =

(
1

n

n∑
i=1

Xi

)′
∂̂β(t)

∂t

In practice, we estimate LIGE and ALIGE over a grid of L possible values for
t given by t∗ = (t1, t2, . . . , tL).

3.1. Asymptotic Theory

This section develops the limiting distribution of the LIGE and the ALIGE.
For estimating the LIGE, first let Y = g(T ) + ε where g(t) = E[Y |T = t].

Under standard regularity conditions for local linear estimators (see, e.g., Li and



Racine (2007, Theorem 2.7)),8 one can show that

n1/2h3/2( ̂LIGE(t)− LIGE(t)) =
1

κ2fT (t)
n−1/2h−3/2

n∑
i=1

(Ti − t)Kh (Ti − t) εi

d−→ N(0, VL)

with VL = f−1T (t)κ−22 κ22E(ε2|t) and where fT (t) is the marginal density of T ,
κ2 =

∫
v2K(v) dv, and κ22 =

∫
v2K2(v) dv.

Next, for the ALIGE, consider

˜ALIGE(t) = E[X]′
∂̂β(t)

∂t̂ALIGE and ˜ALIGE are asymptotically equivalent because n−1
∑n

i=1Xi con-
verges to E[X] faster than the terms that we estimate nonparametrically. Thus,

the asymptotic behavior of ̂ALIGE is driven by the behavior of the local linear
term. Under standard regularity conditions for smooth coefficient models (see
Cai, Fan, and Yao (2000) and Li, Huang, Li, and Fu (2002)) one can therefore
show that

n1/2h3/2( ̂ALIGE(t)− ALIGE(t))

= n−1/2h−3/2
n∑
i=1

E[X]′ (κ2fT (t)E[XX ′|t])−1Xi(Ti − t)Kh(Ti − t)Ui

d−→ N(0, VA)

where VA = f−1T (t)κ−22 κ22E[X]′E[XX ′|t]−1E[XX ′U2|t]E[XX ′|t]−1E[X]. In prac-
tice, we carry out pointwise inference using the wild bootstrap.

4. Application

We use data from Callaway and Huang (2018a) which comes from the Panel Study
of Income Dynamics (PSID). The data consists of 3,630 child-parent measures
of permanent income along with many other child and parent characteristics.
We include both daughters and sons in our analysis; and, for both parents and
children, we use family income (rather than individual income) averaged over
at least three years as our measures of permanent income. See Callaway and
Huang (2018a) for a detailed discussion of this particular dataset as well as for
summary statistics. Regressing the log of child’s income on the log of parents’
income results in an estimated IGE of 0.603.9

8Practically, the most important regularity condition is on the bandwidth. We use cross-validation to
choose the bandwidth. In practice, this will “undersmooth” for the derivative term in the local linear
estimator leading to the bias term going to zero asymptotically.

9This estimate of the IGE is somewhat large relative to most work on the IGE though it is consistent
with Mazumder (2005). One possible explanation is that IGE estimates tend to be larger in more recent
periods (as is the case in the current paper); see, e.g., Chetty et al. (2014) and Davis and Mazumder (2018).



Figure 1: The LIGE and ALIGE as a Function of Parents’ Income
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Notes: The left panel plots the LIGE and the right panel plots the ALIGE. Each is estimated using the
approaches discussed in the main text. The outcome is the log of child’s permanent income. For the
ALIGE, the covariates are child’s gender and birth year as well as the family head’s gender, race, educational
attainment, and veteran status. In each panel, the dashed lines are pointwise 95% confidence intervals
computed using the wild bootstrap with 500 iterations.
Sources: Panel Study of Income Dynamics, as described in text

Our main results are presented in Figure 1. We estimate the LIGE and ALIGE
over a grid of twenty equally spaced values of t ranging from log(20, 000) (roughly
equal to the poverty line) to log(140, 000). Without adjusting for differences in
covariates, the LIGE is equal to 0.69 for children whose parents’ income was
$20,000. It declines substantially in parents’ income. For children whose parents
income was $140,000, the LIGE is 0.51. These results suggest that the effect
of parents’ income on child’s income varies across different values of parents’
income; standard measures of intergenerational mobility such as the IGE cannot
show this type of heterogeneity.

For the ALIGE, the covariates that we include in our analysis are child’s gen-
der and birth year, and the family head’s gender, race, educational attainment,
and veteran status. We report estimates of β(t) and ∂β(t)

∂t
in the Supplemen-

tary Appendix. Adjusting for covariates somewhat diminishes estimates of local
intergenerational elasticities. However, even after adjusting for differences in
observed covariates across different values of parents’ income, the link between
child’s and parents’ income is still strong. For children whose parents’ income
was $20,000, the ALIGE is estimated to be 0.46. Interestingly, adjusting for co-
variates also substantially flattens estimated local intergenerational elasticities.
The point estimates of the ALIGE are very similar across all values of parents’
income (perhaps somewhat declining) and we cannot reject that the ALIGE is
constant for all values of parents’ income.



5. Conclusion

This paper has developed new local measures of intergenerational elasticities
that allow for the researcher to adjust for differences in the distribution of char-
acteristics across different values of parents’ income. We developed a flexible
semiparametric estimator of the adjusted local IGE and studied its properties.
We found that adjusting for covariates decreased the local IGE at all values of
parents’ income and tended to flatten the local IGE as well. From a policy per-
spective, our results suggest that differences in background characteristics are
partly responsible for differences in mobility across different values of parents’
income, but that they are not fully responsible. Going forward, it may be pos-
sible for policymakers to affect some of these background characteristics (e.g.,
parents’ education) that influence intergenerational mobility.

There are many interesting possible extensions of the current framework.
First, it would be interesting to develop formal tests that the LIGE or ALIGE is
constant across all values of parents’ income which could be accomplished using
results from the specification testing literature (e.g., Hardle and Mammen (1993)
and Zheng (1996), among many others); or, relatedly, to develop uniform confi-
dence bands for the LIGE or ALIGE. Second, one could develop tests for whether
the LIGE and ALIGE are equal at particular values of parents’ income or across
all values of parents’ income. Finally, it would be relatively straightforward using
our approach to examine the role of each covariate in explaining the difference
between the LIGE and ALIGE. This would allow one to decompose the gap be-
tween the LIGE and ALIGE into parts due to, for example, differences between
the distribution of race and education at particular values of parents’ income
and the overall distribution of race and education. We leave these extensions to
future work.
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