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This supplementary appendix contains additional results for the paper “Distributional Effects
of a Continuous Treatment with an Application on Intergenerational Mobility.” The first set
of results show that all the parameters of interest are indeed Hadamard differentiable maps of
FY |T and FC

Y |T and therefore the results from Corollary 1 hold. This part also provides explicit
expressions for each of the terms in Corollary 1 for each parameter of interest. The second
set of results includes additional details and results for estimating the conditional distribution
FY |T,X(y|t, x) using distribution regression and compares the results in the main part of the paper,
which use quantile regression, to results using distribution regression in the first step.

1 Additional Details on Asymptotic Results

This section shows that all the parameters that we consider are Hadamard differentiable maps
of FY |T and FC

Y |T , the validity of using the empirical bootstrap for inference, and details on how
to test if a particular parameter changes with the treatment level.

1.1 Hadamard Differentiability of Parameters of Interest

The first result establishes the limiting process for the fraction of individuals who have “low”
outcomes (e.g. child’s income being below the poverty line) as a function of the treatment.

SA Theorem 1. Let ĜPOV
T (yp|t) =

√
n(F̂Y |T (yp|t)−FY |T (yp|t)) where yp ∈ Y denotes a particular

value for a “low” outcome (e.g. the poverty line) and is fixed; let ĜC,POV
T (yp|t) =

√
n(F̂C

Y |T (yp|t)−
FC
Y |T (yp|t)). Under Assumptions 2 to 5 and Assumption A.1,

(ĜPOV
T (yp|t), ĜC,POV

T (yp|t)) (VPOV
yp (t),VC,POV

yp (t))

where VPOV (t) is a stochastic process in the metric space l∞(T ) given by VY |T (yp|t) and where
VC,POV (t) is a stochastic process in the metric space l∞(T ) given by VC

Y |T (yp|t). In addition,

√
n(∆̂POV (yp, t)−∆POV (yp, t)) VPOV

yp (t)− VC,POV
yp (t)
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in the space l∞(T ).

Proof. The result follows immediately from Theorem 1.

The results of SA Theorem 1 apply to the case where the fraction of individuals with a “low”
outcome is computed using the observed conditional distribution, the counterfactual distribution,
and also provides the limiting process for their difference. This last result allows one to formally
test whether accounting for differences in covariates across different levels of the treatment accounts
for differences in the fraction of individuals with “low” outcomes.

The next result shows that the observed quantiles of the outcome conditional on the treatment
and the counterfactual quantiles of the outcome conditional on the treatment converge uniformly
both in the quantile τ and the treatment to a Gaussian process.

SA Theorem 2. Let ẐY |T (τ |t) =
√
n(Q̂Y |T (τ |t)−QY |T (τ |t)) and let ẐC

Y |T (τ |t) =
√
n(Q̂C

Y |T (τ |t)−
QC
Y |T (τ |t)). Let S = l∞(UT )2. Under Assumptions 2 to 5 and Assumption A.1,

(ẐY |T (τ |t), ẐC
Y |T (τ |t)) (Z(τ |t),ZC(τ |t))

in the space S with

Z(τ |t) =
VY |T (QY |T (τ |t))
fY |T (QY |T (τ |t)|t)

and ZC(τ |t) =
VC
Y |T (QC

Y |T (τ |t))
fCY |T (QC

Y |T (τ |t)|t)

Moreover,
√
n(∆̂Q(τ |t)−∆Q(τ |t)) Z(τ |t)− ZC(τ |t)

in the space l∞(T ).

Proof. The result follows from SA Theorem 1 and by Lemma 3.9.23(ii) in Van Der Vaart and
Wellner (1996).

Quantiles of counterfactual distributions may be of interest in themselves. We also use SA
Theorem 2 in the next set of theorems. SA Theorem 2 is also useful as a building block for other
parameters of interest, in particular for E[Y |T = t], V ar(Y |T = t), and IQR(τ1, τ2; t) as well as
their counterfactual counterparts.

The next theorem establishes the limiting process for the average outcome as a function of the
treatment which holds uniformly in the treatment. Here we define the average as the trimmed
version of the average, i.e. E[Y |T = t] =

∫ 1−ε
ε

QY |T (τ |t) dτ and EC [Y |T = t] =
∫ 1−ε
ε

QC
Y |T (τ |t) dτ ,

but noting that under some additional conditions one may be able to integrate all the way to 0
and 1 (see Footnote 6 in the main text).

SA Theorem 3. Let ĜE
T (t) =

√
n(Ê[Y |T = t] − E[Y |T = t]) and let ĜC,E

T (t) =
√
n(ÊC [Y |T =

t]− EC [Y |T = t]). Under Assumptions 2 to 5 and Assumption A.1,

(ĜE
T (t), ĜC,E

T (t)) (VE
T (t),VC,E

T (t))

in the space l∞(T )2 where VE
T is a tight Gaussian process with mean 0 given by VE

T =
∫ 1−ε
ε

Z(τ |·) dτ

and VE
T is a tight Gaussian process with mean 0 given by VC,E

T =
∫ 1−ε
ε

ZC(τ |·) dτ . In addition,

√
n(∆̂E(t)−∆E(t)) VE

T (t)− VC,E
T (t)

in the space l∞(T ).
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Before proving SA Theorem 3, we first prove the following lemma.

SA Lemma 1. Let D = l∞(UT ) and define the map φ : Dφ ⊂ D 7→ l∞(T ) given by

φ(Φ) =

∫ 1−ε

ε

Φ(τ |·)dτ

for Φ ∈ D. Then, the map φ is Hadamard differentiable at Φ0 tangentially to D with derivative at
Φ0 in ξ ∈ D given by

φ′Γ0
(ξ) =

∫ 1−ε

ε

ξ(τ |·)dτ

Proof. Consider any sequence tk > 0 and Φk ∈ D for k = 1, 2, 3, . . . with tk ↓ 0 and

ξk =
Φk − Φ

tk
→ ξ ∈ D as k →∞

Then,

φ(Φk)− φ(Φ)

tk
− φ′Φ(ξ) =

∫ 1−ε

ε

Φk(τ |·)− Φ(τ |·)
tk

dτ −
∫ 1−ε

ε

ξ(τ |·) dτ

=

∫ 1−ε

ε

ξk(τ |·)− ξ(τ |·) dτ

≤ ‖ξk − ξ‖∞
∫ 1−ε

ε

dτ → 0 as k →∞

Proof of SA Theorem 3. For the first part,

√
n(Ê[Y |T = t]− E[Y |T = t]) =

√
n

(
1

S

S∑
s=1

Q̂Y |T (τs|t)− φ(Q̂Y |T )

)
+
√
n(φ(Q̂Y |T )− φ(QY |T ))

= φ′QY |T

√
n(Q̂Y |T +QY |T ) + op(1)

which holds uniformly in t under the condition that S is large enough, e.g. S = Cn1/2+δ for some
C > 0 and δ > 0, and by SA Lemma 1. This implies the result.

The second and third parts follows exactly the same argument.

SA Theorem 3 provides a way to construct uniform confidence bands for E[Y |T = t], EC [Y |T =
t], and their difference. In the application on intergenerational mobilty, these results allow us to
compare average child’s income across parents’ income and learn about the role that covariates
play in the intergenerational transmission of income.

The next result establishes the limiting process for the variance of the outcome conditional on
the treatment; here, like for the mean, we consider a trimmed version of the variance.

SA Theorem 4. Under Assumptions 2 to 5 and Assumption A.1,

√
n( ˆV ar(Y |T = t)− V ar(Y |T = t)) VV

T (t)
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in the space l∞(T ) where VV
T is tight Gaussian process with mean 0 that is given by

VV
T (t) = 2

∫ 1−ε

ε

(QY |T (τ |t)− E[Y |T = t])

(
Z(τ, t)−

∫ 1−ε

ε

Z(u, t) du

)
dτ

In addition,

√
n( ˆV ar

C
(Y |T = t)− V arC(Y |T = t)) VC,V

T (t)

in the space l∞(T ) where VC,V
T is a tight Gaussian process with mean 0 that is given by

VC,V
T (t) = 2

∫ 1−ε

ε

(QC
Y |T (τ |t)− EC [Y |T = t])

(
ZC(τ, t)−

∫ 1−ε

ε

ZC(u, t) du

)
dτ

Finally,

√
n(∆̂V ar(t)−∆V ar(t)) V∆,V ar

T (t)

where V∆,V ar
T is a tight Gaussian process with mean 0 that is given by V∆,V ar

T = VV
T − VC,V

T .

Before proving the theorem, we prove the following lemma.

SA Lemma 2. Let D = l∞(UT ) and define the map π : Dπ ⊂ D 7→ l∞(T ) by

π(Γ) =

∫ 1−ε

ε

(
Γ(τ |·)−

∫ 1−ε

ε

Γ(u|·) du

)2

dτ

for Γ ∈ D. Then, the map π is Hadamard differentiable at Γ0 tangentially to D with derivative at
Γ0 in γ ∈ D given by

π′Γ0
(γ) = 2

∫ 1−ε

ε

{(
Γ0(τ |·)−

∫ 1−ε

ε

Γ0(u|·) du

)(
γ(τ |·)−

∫ 1−ε

ε

γ(u|·) du

)}
dτ

Proof. Consider the maps φ : Dφ ⊂ D 7→ l∞(T ) given in SA Lemma 1, π1 : Dπ1 ⊂ l∞(UT ) ×
l∞(T ) 7→ Dπ2 given by

π1(Λ) = Λ1 − Λ2

for Λ = (Λ1,Λ2) ∈ l∞(UT )× l∞(T ) and the map π2 : Dπ2 ⊂ l∞(UT ) 7→ Dφ given by

π2(Θ) = Θ2

for Θ ∈ l∞(UT )
First, notice that the map π is given by the composition map π(Γ) = φ ◦ π2 ◦ π1(Γ, φ(Γ)).

Lemma 3.9.3 of Van Der Vaart and Wellner (1996) implies

π′Γ0
(γ) = φ′π2◦π1(Γ0,φ(Γ0)) ◦ π′2,π1(Γ0,φ(Γ0)) ◦ π′1,(Γ0,φ(Γ0))(γ, φ

′
Γ0

(γ)) (1.1)

Next, the map π1 is Hadamard differentiable at Λ0 = (Λ10,Λ20) ∈ l∞(UT ) × l∞(T ) tangentially
to l∞(UT )× l∞(T ) with derivative at Λ0 in λ = (λ1, λ2) in l∞(UT )× l∞(T ) given by

π′1,Λ0
(λ) = λ1 − λ2 (1.2)
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Next, the map π2 is Hadamard differentiable at Θ0 tangentially to l∞(UT ) with derivative at
Θ0 in θ ∈ l∞(UT ) given by

π′2,Θ0
(θ) = 2Θ0θ (1.3)

Consider any sequence tk > 0 and Θk ∈ l∞(UT ) and for k = 1, 2, 3, . . . tk ↓ 0 and

θk =
Θk −Θ0

tk
→ θ ∈ l∞(UT ) as k →∞

Then,

π2(Θk)− π2(Θ0)

tk
− π′2,Θ0

(θ) =
(Θ0 + tkθk)

2 −Θ2
0

tk
− 2Θ0θ

= 2Θ0(θk − θ) + θ2
ktk → 0 as k →∞

which shows the result. And the main result follows from SA Lemma 2 and Equations 1.1, 1.2,
and 1.3.

Proof of SA Theorem 4. For the first part of the result,

√
n
(

ˆV ar(Y |T = t)− V ar(Y |T = t)
)

=
√
n

(
1

S

S∑
s=1

(
Q̂Y |T (τs|t)− Ê[Y |T = t]

)2

− π(Q̂Y |T )

)
+
√
n(π(Q̂Y |T )− π(QY |T ))

= π′QY |T

√
n(Q̂Y |T −QY |T ) + op(1)

which holds uniformly in t as long as S is large enough, e.g. S = Cn1/2+δ for C > 0 and δ > 0,
and by SA Lemma 3. This implies the result. The second and third parts of the result hold using
the same arguments.

The final theorem in this section provides the limiting process of the inter-quantile range of
the outcome conditional on the treatment.

SA Theorem 5. Under Assumptions 2 to 5 and Assumption A.1,

√
n( ˆIQR(τ1, τ2, t)− IQR(τ1, τ2, t)) GIQR

T (τ1, τ2, t)

in the space l∞(T ) where GIQR
T is a tight mean 0 Gaussian process given by GIQR

T (τ1, τ2, t) =
Z(τ1|t)− Z(τ2|t) where Z is given in SA Theorem 2. Also,

√
n( ˆIQR

C
(τ1, τ2, t)− IQRC(τ1, τ2, t)) GC,IQR

T (τ1, τ2, t)

in the space l∞(T ) where GC,IQR
T is a tight Gaussian process with mean 0 given by GC,IQR

T (τ1, τ2, t) =
ZC(τ1|t)− ZC(τ2|t) where ZC is given in SA Theorem 2. Finally,

√
n(∆̂IQR(τ1, τ2, t)−∆IQR(τ1, τ2, t)) GIQR

T (τ1, τ2, t)−GC,IQR
T (τ1, τ2, t)

Proof. The result follows immediately from SA Theorem 2
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1.2 Inference using the Bootstrap

The limiting processes above depend on unknown nuisance parameters which complicate in-
ference. Thus, to conduct inference, we use the empirical bootstrap. This section shows that the
empirical bootstrap procedure can be used to construct asymptotically valid uniform bands for
each of the parameters considered above.

Let θ̂∗(t) denote a bootstrapped version of the estimator; in other words, computed using draws
from the empirical distribution F̂Y,T,X in the same manner as θ̂(t).

SA Theorem 6. Under Assumptions 2 to 5 and Assumption A.1,
√
n(θ̂∗(t)− θ̂(t)) ∗ VθT (t)

where ∗ indicates weak convergence under the bootstrap law and VθT is the tight mean 0 Gaussian
process for each parameter θ(t) given above.

As a first step, we prove the following lemma.

SA Lemma 3. Under Assumptions 2 to 5 and Assumption A.1,

(Ĝ∗Y |T (y|t), ĜC∗
Y |T (y|t)) ∗ (VY |T ,VC

Y |T )

where  ∗ indicates weak convergence under the bootstrap law and (VY |T ,VC
Y |T ) is the Gaussian

process from SA Theorem 1.

Proof. The result follows from SA Theorem 1 and by Theorem 3.6.1 of Van Der Vaart and Wellner
(1996).

Proof of SA Theorem 6. The result follows from SA Lemma 3, that θ(t) is a Hadamard differen-
tiable function of the FY |T and FC

Y |T , and by the functional delta method applied to the boot-
strap.

1.3 Testing if parameters depend on the value of the treatment

We are also interested in testing whether each of the parameters of interest depends on t
as discussed in Section 2.3. As in the previous section, let θ(t) generically denote one of the
parameters of interest. The results in SA Theorems 1 to 5 imply that

√
n(θ̂(t) − θ(t))  VθT in

the space l∞(T ) where θ̂(t) is the estimator of θ(t) and VθT is some tight mean 0 Gaussian process
that depends on which parameter is being estimated. Each of the parameters considered in the
paper satisfies the following condition.

Condition 1. Denote any of the parameters considered above by θ(t) and its estimator given in
the parameter by θ̂(t). Also, for µθ = E[θ(T )], let

1√
n

n∑
i=1

ζθi =
1√
n

n∑
i=1

(θ(Ti)− µθ)

denote the influence function for estimating µθ when θ is known. Then,(
√
n(θ̂(t)− θ(t)), 1√

n

n∑
i=1

ζθi

)
 (VθT (t),Wθ)

in the space l∞(T ).
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Consider Rθ(t) = θ(t)−E[θ(T )]. In this section, we are interested in forming uniform confidence
bands for Rθ(t) as well as testing the null hypothesis

H0 : Rθ(t) = 0 for all t ∈ T (1.4)

A natural estimator of Rθ(t) is given by R̂θ(t) = θ̂(t)− 1
n

∑n
i=1 θ̂(Ti). The next result establishes

the limiting process for R̂θ(t).

Proposition 1. Under Assumptions 2 to 5 and Assumption A.1 and Condition 1

√
n
(
R̂θ(t)−Rθ(t)

)
 V R

θT (t)

in the space l∞(T ) where VR
θT (t) is a tight mean 0 Gaussian process given by VR

θT (t) = VθT (t) +∫
T VθT (t) dFT (t) + Wθ.

Before proving Proposition 1, we prove the following lemma.

SA Lemma 4. Consider the map ψ : Dψ ⊂ l∞(T ) 7→ R given by

ψ(Λ) =

∫
T

Λ(t) dFT (t)

in Λ ∈ l∞(T ). Then, the map ψ is Hadamard differentiable at Λ0 tangentially to l∞(T ) with
derivative at Λ0 in λ ∈ l∞(T ) given by

ψ′Λ0
(λ) =

∫
T
λ(t) dFT (t)

Proof. The proof of this result follows using essentially the same arguments as in SA Lemma 1,
though this case is somewhat easier.

Proof of Proposition 1.

√
n
(
R̂θ(t)−Rθ(t)

)
=
√
n

(
θ̂(t)−

∫
T
θ̂(t) dF̂T (t)

)
−
√
n

(
θ(t)−

∫
T
θ(t) dFT (t)

)
=
√
n(θ̂(t)− θ(t)) (1.5)

+
√
n

∫
T
θ̂(t)− θ(t) dF̂T (t) (1.6)

+
1√
n

n∑
i=1

θ(Ti)− E[θ(T )] (1.7)

The term in Equation 1.5 weakly converges to VθT and the term in Equation 1.7 weakly converges
to W – both of these hold by Condition 1.

For Equation 1.6, note that

√
n

∫
T
θ̂(t)− θ(t) dF̂T (t) =

√
n

∫
T
θ̂(t)− θ(t) d(F̂T − FT )(t) +

√
n

∫
T
θ̂(t)− θ(t) dFT (t)

=
√
n

∫
T
θ̂(t)− θ(t) dFT (t) + op(1)

which weakly converges to
∫
T VθT (t) dFT (t) by SA Lemma 4. This implies the result.
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Proposition 1 can be used as the basis for constructing uniform confidence bands that asymp-
totically cover the entire curve with (1−α) probability. To do this, we use the empirical bootstrap.
Let R̂∗θ(t) denote the bootstrap version of Rθ(t). Given the result in Proposition 1, the following
result follows

Corollary 1. Under Assumptions 2 to 5 and Assumption A.1 and under Condition 1

√
n
(
R̂∗θ(t)− R̂θ(t)

)
 ∗ V

R
θT (t)

where V R
θT (t) is the Gaussian process given in Proposition 1.

The next corollary shows how to test H0 given in Equation 1.4

Corollary 2. Let KSθ = supt∈T ΣR(t)−1/2|Rθ(t)| and K̂Sθ = supt∈T Σ̂R(t)−1/2|R̂θ(t)|. Here,

ΣR(t) is the asymptotic variance function of
√
n(R̂θ(t)−Rθ(t)) and Σ̂R(t) is a uniformly consistent

estimate of ΣR(t). Then, under H0 (and under Assumptions 2 to 5 and Assumption A.1 and
Condition 1),

√
n
(
K̂Sθ −KSθ

)
 sup

t∈T
ΣR(t)−1/2|VR

θT |

Moreover, let K̂S
∗
θ denote the bootstrapped version of KSθ. Then,

√
n
(
K̂S

∗
θ − K̂Sθ

)
 ∗ sup

t∈T
ΣR(t)−1/2|VR

θT |

Corollary 2 follows immediately from the continuous mapping theorem. It shows that one can
test H0 by comparing K̂Sθ to a critical value given by the (1 − α) quantile of the bootstrapped
√
n
(
K̂S

∗
θ − K̂Sθ

)
which can be simulated a large number of times.

The last corollary of this section shows how to construct uniformly valid confidence bands for
Rθ(t).

Corollary 3. Under Assumptions 2 to 5 and Assumption A.1 and Condition 1 and consider the
confidence region given by

ĈR
θ (t) = R̂θ(t)± ĉR1−αΣ̂R(t)1/2/

√
n

where ĉR1−α is the (1 − α) quantile of
√
n
(
R̂∗θ(t)− R̂θ(t)

)
which can be simulated a large number

of times and where Σ̂R(t) is the same as in Corollary 2. Then,

lim
n→∞

P (Rθ(t) ∈ Ĉθ
R(t) for all t ∈ T ) = 1− α

2 Alternative Specifications for FY |T,X

In this section, we consider estimating the conditional distribution FY |T,X using distribution
regression rather than quantile regression. The main idea here is to estimate a series of binary
response models using 1{Y ≤ y} as the dependent variable while varying y; that is

FY |T,X(y|t, x) =E[1{Y ≤ y}|T = t,X = x]

=Λ(α1(y)t+ x′α2(y))
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where Λ is a known link function – we use the logistic link function though one could make some
other choice here. α1(y) and α2(y) are unknown parameters corresponding to each y, i.e., the
parameters α1 and α2 change as y changes. 1{Y ≤ y} is an indicator function that equals one if
Y ≤ y is true and zero otherwise.

To implement the distribution regression estimator, we estimate a series of logit models over
a fine grid of possible values for y. The estimated conditional distribution is1

F̂Y |T,X(y|t, x) = Λ(α̂1(y)t+ x′α̂2(y)) (2.1)

We plug these estimators in to the counterfactual operations discussed next.
Similarly, we also estimate FY |T (y|t) (the observed distribution of the outcome conditional on

the treatment) using distribution regression. Here, we suppose that

FY |T (y|t) = Λ(β0(y) + β1(y)t)

and estimate the parameters β0(y) and β1(y) using logit over a fine grid of values for y. Then, the
estimated value of FY |T (y|t) is given by

F̂Y |T (y|t) = Λ(β̂0(y) + β̂1(y)t)

The other remaining steps of our procedure are exactly the same as in the case where a researcher
uses quantile regression as in the main text of the paper.

2.1 Intergenerational Mobility Results using Distribution Regression

In the final part of this Supplementary Appendix, we show SA Figure 1 to compare our main
results using QR and DR for the counterfactual distribution. For the mean of child’s income as a
function of parents’ income, the DR estimates tend to be somewhat steeper, indicating a higher
intergenerational elasticity and somewhat mitigating the role of covariates (though not entirely).
The DR and QR estimates of average child’s income as a function of parents’ income are statis-
tically different for relatively low values of parents’ income and for some high values of parents’
income. The results coming from DR tend to have lower estimates of average child’s income for
children whose parents had relatively low income, and the DR estimates tend to have higher esti-
mates of average child’s income for children whose parents had relatively high income. Differences
between estimates of the variance are not statistically different at any value of parents’ income
and the differences are quantitatively small. Differences in the fraction below the poverty line are
only statistically different from 0 for middle values of parents’ income (though the differences are
quantitatively small) although using DR tends to increase the fraction of individuals estimated to
be below the poverty line for low values of parents’ income. For the fraction of “rich” children,
the estimates are similar for DR and QR though they are statistically different for some middle
values of parents’ income.

Using DR instead of QR does change the magnitude of some of our estimates, but it does not
change any of the qualitative results in the paper.

1Since the estimated conditional distribution obtained above may be non-monotonic in y, we apply the mono-
tonization method of Chernozhukov, Fernández-Val, and Galichon 2010 based on rearrangement.
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Figure 1: Differences between QR and DR estimates
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Notes: This figure contains differences in estimated counterfactual parameters of interest using distribu-
tion regression and quantile regression. The plots contain the estimated parameter of interest using DR
minus the estimated parameter of interest using QR along with a uniform confidence band. The top left
panel plots the difference in average child’s income as a function of parents’ income. The top right panel
plots the difference in the variance of child’s income as a function of parents’ income. The bottom left
panel plots the difference in the fraction of children with income below the poverty line as a function of
parents’ income. The bottom right panel plots the difference in the fraction of children with income above
the 90th percentile as a function of parents’ income. In each panel, the dashed lines are 95% confidence
bands that cover the entire curve with fixed probability. These are calculated using the bootstrap with
500 iterations.
Sources: Panel Study of Income Dynamics, as described in text
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