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Abstract

This paper considers the effect of a continuous treatment on the entire distribution of outcomes after
adjusting for differences in the distribution of covariates across different levels of the treatment. Our
methodology encompasses dose response functions, counterfactual distributions, and “distributional pol-
icy effects” depending on the assumptions invoked by the researcher. We propose a three-step estimator
that consists of (i) estimating the distribution of the outcome conditional on the treatment and other
covariates using quantile regression; (ii) for each value of the treatment, averaging over a counterfactual
distribution of the covariates holding the treatment fixed; (iii) manipulating the counterfactual distribu-
tion into a parameter of interest. We show that our estimators converge uniformly to Gaussian processes
and that the empirical bootstrap can be used to conduct uniformly valid inference across a range of val-
ues of the treatment. We use our method to study intergenerational income mobility where we consider
distributional effects of parents’ income on child’s income such as (i) the fraction of children with income
below the poverty line, (ii) the variance of child’s income, and (iii) the inter-quantile range of child’s
income – all as a function of parents’ income.
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1 Introduction

Researchers in economics often consider the effect of one variable (a treatment) on an outcome

while perhaps adjusting for differences in other variables that are related to outcomes and that

are distributed differently across different values of the treatment. While the case of a binary

treatment has received much attention in the literature (see, for example, the review of Imbens

and Wooldridge (2009)), this paper develops new methods for the case with a continuous treatment

which has received considerably less attention.

Methods for dealing with a continuous treatment are likely to be of interest to empirical

researchers across a variety of areas. To give some examples of applications with a continuous

treatment, Imbens, Rubin, and Sacerdote (2001) study the effect of unearned income on labor

market outcomes; Galvao and Wang (2015) consider an application on the effect of mother’s weight

gain during pregnancy on child’s birth weight; Jasova, Mendicino, and Supera (2018) study the

effect of the term structure of debt on banks’ lending behavior; and local labor markets approaches

common in labor economics often involve a continuous treatment (for example, Autor, Dorn, and

Hanson 2013; Acemoglu and Restrepo 2017; Collins and Niemesh 2017).

This paper proposes simple, but flexible, semiparametric estimators of distributional effects1

of a continuous treatment while adjusting for differences in the distribution of covariates across

different levels of the treatment. Our procedure requires three steps. First, we estimate the distri-

bution of the outcome conditional on the treatment and other observed characteristics by inverting

quantile regression (Koenker and Bassett Jr 1978; Koenker 2005; Chernozhukov, Fernandez-Val,

and Melly 2013) estimates of the conditional quantiles. The second step is to estimate the “coun-

terfactual distribution” which involves integrating over the first step estimates while changing the

distribution of observable characteristics. This step obtains the entire distribution of the outcome

1We use the term distributional effects broadly here. It encompasses counterfactual distributions, dose response
functions, treatment effects, and distributional policy effects with a continuous treatment depending on the assump-
tions invoked by the researcher. Dose response functions and treatment effects are defined in terms of potential
outcomes, and we consider these under the assumption of unconfoundedness. Counterfactual distributions are sim-
ilar, but do not rely on potential outcomes notation or the assumption of unconfoundedness. The counterfactual
distributions that we consider fix the return to characteristics (for a particular value of the treatment) but change
the distribution of the characteristics. Distributional policy effects compare (functionals of) the counterfactual dis-
tribution to (functionals of) the observed distribution of outcomes conditional on the treatment. They are closely
related to composition effects in the literature on decompositions.
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as a function of the continuous treatment after adjusting for differences in the distribution of

covariates across different levels of the treatment. Finally, parameters of interest such as measures

of the spread of the outcome and the probability of having a very low outcome (e.g. child’s income

being below the poverty line) are obtained as functions of the counterfactual distribution.

The literature on continuous treatment effects includes Hirano and Imbens (2004), Flores

(2007), Florens, Heckman, Meghir, and Vytlacil (2008), Flores, Flores-Lagunes, Gonzalez, and

Neumann (2012), Galvao and Wang (2015), and Kennedy, Ma, McHugh, and Small (2016). Within

this literature, the only paper that we are aware of that looks at distributional parameters is Gal-

vao and Wang (2015) which proposes a weighting estimator of quantile dose response functions

with a continuous treatment under the assumption of unconfoundedness. Our approach is different

in that our estimators are based on first step quantile regression and do not require estimating

conditional densities in the first step.2 There are trade-offs to using quantile regression relative to

weighting estimators based on conditional densities. Quantile regression imposes stronger para-

metric assumptions than nonparametrically estimating conditional densities, though it is much

simpler to implement in practice; on the other hand, quantile regression is much more flexible

(though perhaps somewhat harder to implement) than assuming a fully parametric model for a

conditional density.3

We obtain the limiting processes for each of our parameters of interest and develop inference

procedures using results from the empirical process literature (see, for example, Van Der Vaart

and Wellner (1996) and Kosorok (2007)) and results on first step quantile regression estimators

(Chernozhukov, Fernandez-Val, and Melly 2013). We show that the limiting processes can be

approximated using the empirical bootstrap. In the context of intergenerational mobility, these

results allow us to test functional hypotheses about income mobility such as (1) whether adjusting

2Another primary difference between our approach and that of Galvao and Wang (2015) is that quantile dose
response functions are not our primary object of interest. For studying intergenerational mobility, we found that
several other parameters (discussed in detail in Section 2) that are functions of the counterfactual distribution are
more useful. However, it seems that it would be possible to extend the results in Galvao and Wang (2015) to cover
these parameters as well.

3Our paper is also related to the literature on decompositions with a continuous treatment. Ñopo (2008)
and Ulrick (2012) provide decompositions for the mean with a continuous treatment. Ao, Calonico, and Lee
(2017) consider decompositions with a multi-valued discrete treatment. Bowles and Gintis (2002), Groves (2005),
Blanden, Gregg, and Macmillan (2007), and Richey and Rosburg (2017) have decomposed intergenerational mobility
parameters into parts that are explained by various background characteristics.
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for covariates has any effect on any particular parameter (e.g. the percentage of children with

income below the poverty line as a function of parents’ income), or (2) whether parameters of

interest are the same at all values of parents’ income (e.g. the variance of child’s income).

We use our method to study the effect of parents’ income on child’s income. It is well known

that children from families with high income tend to have higher incomes than children from

families with low income (see Solon (1992) and Solon (1999), among many others). However,

much less is known about the distribution of child’s income across parents’ income levels. And

learning about this distribution provides much more information to researchers and policy makers

about the effect of parents’ income on child’s income.

To give an example, our baseline estimates suggest that a child whose parents’ income is at

the poverty line (we set this to be $22,100 and discuss why below) has an income of $33,800 on

average. If this is all that a researcher knows about outcomes for children from families right

at the poverty line, it could be the case that (i) the variance of these individuals’ income is low

implying that many of them have incomes very close to $33,800, or (ii) the variance of these

individuals’ income is high implying that some of them have much higher incomes than $33,800

and others have much lower incomes. In the first case, most children from low income families

would be moving out of poverty and into the lower middle class; while in the second case, many

children would remain in poverty while others might have substantially higher incomes. These two

scenarios have quite different implications for our understanding of the effect of intergenerational

income mobility; in particular, if a researcher is interested in the role that parents’ income plays in

transmitting poverty, only knowing average income as a function of parents’ income is not enough.

From a methodological perspective, a key challenge is that parents’ income is a continuous

variable. There is a large literature on estimating counterfactual distributions with discrete groups

which includes DiNardo, Fortin, and Lemieux (1996), Machado and Mata (2005), Firpo (2007),

Firpo, Fortin, and Lemieux (2009), and Chernozhukov, Fernandez-Val, and Melly (2013) among

others. One idea would be to divide parents’ income into a small number of groups and use

techniques from this literature. However, this approach would suffer from requiring us to choose

cutoffs of parents’ income in some ad hoc way (see Bhattacharya and Mazumder (2011) for similar
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arguments about the cutoffs required for transition matrices). Instead, we keep parents’ income as

a continuous variable and develop new tools to study counterfactual distributions with a continuous

treatment.

The resulting counterfactual distribution is difficult to work with and not easy to directly

understand because it is a function of both child’s income and parents’ income. Instead, we focus

on various functionals of the counterfactual distribution that are functions only of parents’ income.

In particular, we consider (1) average child’s income, (2) the fraction of children whose incomes

are below the poverty line, (3) the variance of child’s income, (4) the inter-quantile range of child’s

income, and several others – all as a function of parents’ income. Each of these parameters can

be plotted in two dimensions and the results are easy to interpret.

Like most of the intergenerational income mobility literature, we find a strong relationship

between parents’ income and child’s income. Without adjusting for any differences in covariates,

we find that (1) children from low income families have lower income on average than children

from high income families; (2) children from low income families have higher income on average

than their parents, while children from high income families have lower income on average than

their parents; (3) children from low income families are much more likely to have income below

the poverty line than children from high income families; (4) children from low income families

are much less likely to be in the top 10% of income than children from high income families;

(5) children from low income families may have somewhat higher variance in their earnings than

children from high income families. The first two of these results are in common with almost all

of the intergenerational mobility literature. The last three results are similar to existing results

using transition matrices though our approach does not require specifying cutoffs of the continuous

treatment and provides a straightforward way to incorporate adjusting for covariates.

A second motivation of our paper is to look at the role that background characteristics play

in the transmission of income across generations. We find that background characteristics such as

parents’ education, race, and whether or not a child is from a single parent household, are strongly

correlated with parents’ income. We find that adjusting for covariates does not overturn any of the

five main results above; however, overall, adjusting for differences in observed characteristics across
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parents’ income levels does tend to reduce the effects of parents’ income. Adjusting for differences

in observed characteristics flattens somewhat the relationship between child’s income and parents’

income. It also reduces by about one quarter the estimated probability that a child’s income will

be below the poverty rate for children from families with income close to the poverty line. Taken

together, our results suggest that differences in background characteristics explain some, but not

all, of the differences in outcomes experienced by children whose parents had different incomes.

2 Parameters of Interest

This section develops several distributional parameters of interest for the case of a continuous

treatment. We are motivated by our application on intergenerational income mobility, but these

parameters are likely to be of interest in other applications as well. This section also distinguishes

between several classes of parameters: treatment effects, dose response functions, counterfactual

distributions, and distributional policy effects. The differences are based primarily on (i) the

particular application and (ii) whether or not the researcher wishes to invoke the assumption of

unconfoundedness.

Our approach is different from existing work on intergenerational income mobility in three

ways. First, we keep parents’ income as a continuous variable and all of our results are “local”;

that is, conditional on a particular value of parents’ income. This setup is different from most work

on intergenerational mobility that either estimates a single intergenerational mobility parameter

or breaks the observations into several groups. Second, our method allows us to look at the

entire distribution of child’s income conditional on parents’ income. This allows us to estimate

parameters such as the fraction of children below the poverty line or the variance of child’s income,

both as a function of parents’ income. These parameters provide much more information about

outcomes of children given their parents’ income than simply computing the average. Finally, we

also are interested in comparing these parameters that can be obtained directly from the observed

data to ones that result from “adjusting” the effect of parents’ income for differences in observable

characteristics. This section details the ideas behind each of these three contributions. Our

starting point is that we have a sample of observations from the joint distribution (Y, T,X). In
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the application, Y is the log of child’s income, T is the log of parents’ income and X are additional

covariates such as parents’ education, child’s birth year, gender, and race.

2.1 Identification

We use the following notation. Let Y denote an individual’s outcome, T denote an individual’s

level of treatment, and X denote a k × 1 vector of covariates. We let Y , T , and X denote the

supports of Y , T , and X. Next, let Y (t) denote an individual’s potential outcome – the outcome

that would occur for an individual if they experienced treatment level t. We consider the following

assumptions.

Assumption 1 (Unconfoundedness).

Y (t) ⊥⊥ T |X

Assumption 2 (Common Support).

fT |X is uniformly bounded away from 0 and ∞ on T X .

Assumption 1 says that, conditional on covariates X, treatment is as good as randomly as-

signed. Unconfoundedness is also known as selection on observables or ignorability. Some version

of Assumption 1 is invoked in much of the literature on continuous treatment effects (e.g. Hirano

and Imbens (2004), Flores (2007), Flores, Flores-Lagunes, Gonzalez, and Neumann (2012), and

Galvao and Wang (2015)). It is very closely related to the unconfoundedness assumption in the

literature with a binary treatment (e.g. Rosenbaum and Rubin (1983), Heckman, Ichimura, and

Todd (1997), Hirano, Imbens, and Ridder (2003), and Imbens and Wooldridge (2009)). Assump-

tion 2 imposes a common support assumption. It says that, for all values of the covariates, there

are individuals that experience each level of the treatment. This is a strong assumption. In the

context of intergenerational mobility, for example, it requires that there be some very poor parents

with very high education as well as some very rich parents with very low education. This type

of assumption is common in the treatment effects literature though; and, in the case where a

researcher is interested in effects at particular values of t, it could be weakened to hold only at

7



those values of the treatment. Under Assumptions 1 and 2, it is straightforward to show that for

any t ∈ T ,

P (Y (t) ≤ y) =

∫
X
FY |T,X(y|t, x) dFX(x) (2.1)

which says that the distribution of potential outcomes if all individuals were assigned the treatment

level t can be obtained by integrating the distribution of Y conditional on X and T over the

distribution of X for the entire population. In the continuous treatment effect literature, P (Y (t) ≤

y) is called the distribution dose response function. One can invert the distribution dose response

function to obtain the quantile dose response function or one can integrate over the distribution

to obtain the average dose response function. We discuss more parameters of interest in the next

subsection.

Interestingly, even without Assumption 1, the term on the right hand side of Equation (2.1)

has a useful interpretation. First, notice that the observed distribution of the outcome conditional

on the treatment is given by:

FY |T (y|t) =

∫
X
FY |T,X(y|t, x) dFX|T (x|t) (2.2)

that is, FY |T (y|t) is the same as integrating the distribution of the outcome Y conditional on

observed characteristics X and the treatment T = t over the distribution of X conditional on

T = t. One can also consider the counterfactual distribution of outcomes that individuals that

experience treatment level t would experience if the returns to observed characteristics X were held

constant but the distribution of covariates for individuals with treatment level t were manipulated

to be the same as the distribution of covariates for the entire population. It is given by

FC
Y |T (y|t) =

∫
X
FY |T,X(y|t, x) dFX(x) (2.3)

which is the same as Equation (2.1) and where we use the superscript C to indicate that it is

a counterfactual distribution.4 Notice that Equation (2.3) does not require Assumption 1 nor

4The counterfactual distribution mentioned above is not the only possible counterfactual distribution, though

8



does it require potential outcomes notation. We use the terminology counterfactual distribution

throughout the rest of the paper; however, depending on the application, a researcher may wish

to invoke Assumption 1 with the payoff being that the resulting parameters may be interpreted

as causal effects.

Although it is not equal to the observed distribution, all the terms on the right hand side

are identified and one can estimate this counterfactual distribution by plugging in to the above

equation. While it is possible to show that Equation 2.3 is equivalent to a weighting estimator

(weighting estimators are developed in DiNardo, Fortin, and Lemieux (1996) and Firpo (2007) in

the case where the treatment is binary and in Galvao and Wang (2015) in the continuous treat-

ment case), we find it more natural to estimate the conditional distribution directly in Equation

2.3 which is more similar to the approaches taken in Machado and Mata (2005), Melly (2005), and

Chernozhukov, Fernandez-Val, and Melly (2013), all in the case where the treatment is a discrete

variable. The reason is that, with a continuous treatment variable, the weights are given by condi-

tional density functions5 which are more challenging to estimate than the conditional distribution

function above. Relative to weighting estimators, our approach can be seen as a “regression-

adjustment” approach (see Wooldridge (2010)[Section 21.3.2]) to estimating distributional effects

with a continuous treatment.

In the context of intergenerational mobility, the counterfactual distribution of child’s income

is built by fixing the distribution of child’s income conditional on parents’ income and observed

characteristics but changing the distribution of observed characteristics conditional on parents’

income. In particular, we consider changing the distribution of observed covariates conditional on

parents’ income to be the distribution of covariates for the entire population. To give an example,

suppose the only covariate is parents’ education and that parents’ education is positively related to

parents’ income and child’s income. Further, suppose that we are interested in the distribution of

child’s income conditional on parents having low income. To obtain a counterfactual distribution,

we fix the distribution of child’s income conditional on both education and parents’ income, but

it is the most common. Other manipulations of the distribution of the covariates are possible (see the discussion
in Rothe (2010) and Chernozhukov, Fernandez-Val, and Melly (2013)).

5With a binary (or even discrete) treatment, the weights depend on the propensity score which is much more
straightforward to estimate – for example, one could use logit or probit.
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change the distribution of education to be that of the entire population – thus putting relatively

more weight on the income of children with highly educated parents who had low income.

2.2 Parameters of Interest

The observed distribution FY |T of the outcome conditional on the treatment and the coun-

terfactual distribution FC
Y |T contain much useful information, but they suffer from being difficult

to interpret or plot directly. In particular, they are both indexed by y and t which makes plots

that vary both y and t three dimensional and difficult to easily interpret. Instead, we focus on

estimating functionals of FY |T and FC
Y |T . This section covers these functionals.

Fraction of Individuals with “Low” Outcomes as a Function of the Treatment

The first parameter that we consider is the fraction of individuals whose outcome falls below

a particular cutoff yp as a function of the treatment variable. This is a particularly interesting

parameter in the context of intergenerational income mobility. Set yp equal to the poverty line.

Then, this parameter is the fraction of children whose permanent income falls below the poverty

line as a function of parents’ income. This is given by

FY |T (yp|t) and FC
Y |T (yp|t)

for the fraction below the poverty line coming from the observed data and from the counterfactual

distribution, respectively. These are straightforward measures to plot, as a function of t, and if

children with lower income parents are more likely to have permanent incomes below the poverty

line, then one would expect that this line would be downward sloping.

For intergenerational income mobility, we are also interested in the fraction of children that

have very high permanent income. Let yR be some particular value of child’s permanent income

– later we set this to be the 90th percentile of income in the U.S. in 2010. Then, the fraction of

“rich” children conditional on parents’ income is given by

1− FY |T (yR|t) and 1− FC
Y |T (yR|t)
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coming from the observed distribution and the counterfactual distribution, respectively.

Quantiles of the Outcome as a Function of the Treatment

One can obtain the quantiles of the outcome as a function of the treatment from the observed

distribution and counterfactual distributions. For some τ ∈ (0, 1), these are given by

QY |T (τ |t) = inf{y : FY |T (y|t) ≥ τ} and QC
Y |T (τ |t) = inf{y : FC

Y |T (y|t) ≥ τ}

for the quantiles of the observed distribution and the quantiles of the counterfactual distribution,

both as a function of the treatment. Under Assumption 1, QC
Y |T is called the quantile dose response

function in Galvao and Wang (2015). The quantiles are also useful inputs into the remaining

parameters of interest.

Average Outcome as a Function of the Treatment

The next parameter that we consider is the average outcome as a function of the treatment

which is given by

E[Y |T = t] =

∫ 1

0

QY |T (τ |t) dτ and EC [Y |T = t] =

∫ 1

0

QC
Y |T (τ |t) dτ

where these depend on the observed distribution and counterfactual distribution, respectively.6

Average child’s income conditional on parents’ income is closely related to the Intergenerational

Elasticity (IGE) that is very commonly estimated in the intergenerational mobility literature. IGE

is the coefficient on the log of parents’ income in the regression of log child’s income on log parents’

income. The slope of E[Y |T = t] corresponds to the IGE though, in our case, the slope is not

restricted to be constant.

Measures of Spread of the Outcome as a Function of the Treatment

Because our method obtains the entire observed distribution and counterfactual distribution

6In practice, we trim out the uppermost and lowermost quantiles so that the integration is from ε to 1− ε (for
some small positive ε) though it is likely to be possible to integrate from 0 to 1 under some additional conditions
as in Bhattacharya (2007), Barrett and Donald (2009), and Donald, Hsu, and Barrett (2012).
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of the outcome conditional on the treatment, we can study other features of these distributions

than just their mean. In this section, we consider the variance of the outcome conditional on

the treatment and the inter-quantile range of the outcome conditional on the treatment. For

intergenerational mobility, these give measures of the spread of child’s income conditional on

parents’ income.

Given the existing results in the intergenerational mobility literature, one would strongly sus-

pect that child’s income tends to increase with parents’ income, at least on average. However,

much less is known about the spread of child’s income conditional on parents’ income. It is possible

that the distribution of child’s income simply shifts to the right as parents’ income increases. If the

variance of child’s income decreases with parents’ income, that would suggest that having parents

with high income increases income on average and increases the certainty of obtaining higher in-

come. Decreasing variance would also suggest that the income of children from low income families

is riskier. On the other hand, if the variance of child’s income is increasing in parents’ income,

that would suggest that children from high income families are more likely to become very rich

but also have some risk of having low incomes (and the reverse would be true for children of low

income families).

The first measure of spread that we consider is the variance of the outcome as a function of

the treatment.7 It is given by

V ar(Y |T = t) =

∫ 1

0

(QY |T (τ |t)− E[Y |T = t])2 dτ

and

V arC(Y |T = t) =

∫ 1

0

(QC
Y |T (τ |t)− EC [Y |T = t])2 dτ

The second measure of spread is an inter-quantile range which is given by

IQR(τ1, τ2; t) = QY |T (τ1|t)−QY |T (τ2|t) and IQRC(τ1, τ2; t) = QC
Y |T (τ1|t)−QC

Y |T (τ2|t)

7In practice, for the variance, we trim out the uppermost and lowermost quantiles just like we did for the mean.
See the discussion in Footnote 6.
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where τ1 > τ2. A typical example would be to look at the spread between the 90th percentile of

child’s income and 10th percentile of child’s income conditional on parents’ income being given by

t.8

Distributional Policy Effects

Another interesting class of parameters to consider are those that determine how (functionals)

of the distribution of outcomes change as a result of adjusting for covariates. Rothe (2010) terms

these types of parameters “distributional policy effects,” and they are given by the difference

between (functionals) of FY |T and FC
Y |T .9 We denote these by

∆k(t) = Γk(FY |T )− Γk(F
C
Y |T )

where k indexes some particular parameter and Γk denotes the functional that transforms a condi-

tional distribution into the parameter of interest. For example, to examine the role that adjusting

for differences in covariates plays in terms of the fraction of children with income below the poverty

line, we can consider the parameter

∆POV (t) = FY |T (yp|t)− FC
Y |T (yp|t)

which is the difference in the poverty rates coming from the observed distribution and the coun-

terfactual distribution for some particular value of parents’ income t. Similarly, to assess the effect

of covariates on average child’s income conditional on parents’ income, one can also consider the

parameter

∆E(t) = E[Y |T = t]− EC [Y |T = t]

For some value t ∈ T , ∆E(t) > 0 implies that adjusting for covariates lowers average income for

8There are other parameters as well that we could consider given that the observed and counterfactual distribu-
tions are identified. For example, Barrett and Donald (2009) consider several varieties of Lorenz curves and Gini
coefficients that would be of interest in the case where a researcher is interested in inequality as a function of the
treatment.

9Distributional policy effects are also closely related to the composition effect in aggregate decompositions.
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children with parents with income t. If covariates, such as education, are positively related to

parents’ income and positively related to child’s income, then one would expect that ∆E(t) would

be negative for small values of t and positive for large values of t.

Treatment Effects

If one imposes Assumption 1, then our results are closely related to treatment effects. Then,

for example, the average treatment effect is given by

ATE(t, t′) = EC [Y |T = t]− EC [Y |T = t′]

and depends on two values of parents’ income. Setting t = t0.75 and t′ = t0.25 which represent the

75th percentile and 25th percentile of the treatment, respectively. ATE(t0.75, t0.25) is how much a

random individual’s income would increase on average if they changed from having parents in the

25th percentile of the income distribution to the 75th percentile. Similarly,

DTE(t, t′; yp) = FC
Y |T (yp|t)− FC

Y |T (yp|t′)

is how much the fraction of individual’s with income below the poverty line changes for t relative

to t′.

2.3 Testing if Parameters Depend on the Level of the Treatment

Each of the parameters mentioned above can be considered as a function of the treatment t.

As a final step in our analysis, we are interested in testing whether the treatment has any effect

on the parameters of interest. Let θ(t) denote a generic parameter of interest – this includes

parameters obtained from the observed distribution or the counterfactual distribution. Then, we

are interested in the null hypothesis that

θ(t) = E[θ(T )] for all t ∈ T
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Let Rθ(t) = θ(t)− E[θ(T )]. We are interested in testing the following hypothesis

H0 : Rθ(t) = 0 for all t ∈ T (2.4)

To give an example, one could be interested in testing whether the variance of child’s income

changes with parents’ income, both using the observed distribution and using the counterfactual

distribution that adjusts for differences in the distribution of covariates across different levels of

parents’ income. This sort of test allows one to do exactly that.

3 Estimation

Estimation proceeds in three steps. In step 1, we estimate the distribution of the outcome

Y conditional on the treatment T and possibly other observed characteristics X using quantile

regression to obtain the conditional quantiles and then inverting to obtain the conditional distri-

bution. For counterfactual distributions, step 2 involves integrating the conditional distribution

over a counterfactual distribution of X conditional on T . In particular, we consider the counter-

factual distribution FC
X|T = FX ; that is, we set the distribution of X conditional on T to be equal

to the distribution of X for the overall population for all values of T . With step 2 complete, we

have a (counterfactual) distribution of Y conditional on T . The final step is to manipulate the

(counterfactual) distribution into the particular parameters of interest given in Section 2.

3.1 Step 1: Estimating the Conditional Distribution

We estimate the conditional distribution function FY |T,X using quantile regression (Koenker

and Bassett Jr 1978; Koenker 2005; Chernozhukov, Fernandez-Val, and Melly 2013).10 We make

the following assumptions

10In the Supplementary Appendix, we consider an alternative approach based on first step distribution regression
(Foresi and Peracchi 1995; Chernozhukov, Fernandez-Val, and Melly 2013).
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Assumption 3. For all τ ∈ T

QY |T,X(τ |t, x) = P1(t, x)′α(τ)

where P1(t, x) are functions of t and x (e.g. the leading special case is that P1(t, x) is given by the

(k + 1)× 1 vector (t, x′)′ though it can also include interactions, higher order terms, etc.) and α

is a dim(P1(t, x))× 1 vector of parameters indexed by τ .

Assumption 4. For all τ ∈ T

QY |T (τ |t) = P2(t)′β(τ)

where P2(t) are functions of t and β(τ) is a dim(P2(t))× 1 vector of parameters indexed by τ .

Assumptions 3 and 4 impose that the conditional quantiles are linear in parameters and can be

estimated using standard quantile regression techniques. With the conditional quantiles in hand,

the conditional distribution can be obtained by inverting the conditional quantiles. To implement

the quantile regression estimator, we estimate the conditional quantiles over a fine, equally-spaced

grid of S possible values for τ satisfying 0 < τ1 < · · · < τS < 1. The estimated conditional

quantiles are given by

Q̂Y |T,X(τ |t, x) = P1(t, x)′α̂(τ) and Q̂Y |T (τ |t) = P2(t)′β̂(τ)

and which can each be inverted to obtain the conditional distributions by

F̂Y |T,X(y|t, x) =
1

S

S∑
s=1

1{Q̂Y |T,X(τs|t, x) ≤ y} and F̂Y |T (y|t) =
1

S

S∑
s=1

1{Q̂Y |T (τs|t) ≤ y}

F̂Y |T , given above, is the observed distribution which is one of our objects of interest; however, we

still need to manipulate F̂Y |T,X to be the counterfactual distribution of interest.
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3.2 Step 2: Estimating Counterfactual Distributions

From the subsection above, we obtained an estimator of FY |T,X . For fixed y and t, estimating

FC
Y |T (y|t) amounts to averaging over X while holding t fixed. That is,

F̂C
Y |T (y|t) =

1

n

n∑
i=1

F̂Y |T,X(y|t,Xi)

which is the same as replacing the population distribution function in Equation 2.3 with the

sample distribution function. We plug in the estimates F̂Y |T and F̂C
Y |T below to obtain estimates

of particular parameters of interest.

3.3 Step 3: Estimating Parameters of Interest

Once the observed distribution and counterfactual distribution of the outcome conditional on

the treatment have been estimated, one can estimate the parameters of interest considered in Sec-

tion 2. Estimating the fraction of individual’s with income below the poverty line is straightforward

and given by

F̂Y |T (yp|t) and F̂C
Y |T (yp|t)

Estimating quantiles of the outcome conditional on the treatment can also be obtained simply

by plugging in to the results in Section 2:

Q̂Y |T (τ |t) = inf{y : F̂Y |T (y|t) ≥ τ} and Q̂C
Y |T (τ |t) = inf{y : F̂C

Y |T (y|t) ≥ τ}

which simply inverts the counterfactual distribution of outcomes. Next, we can estimate E[Y |T =

t] by.

Ê[Y |T = t] =
1

S

S∑
s=1

Q̂Y |T (τs| t) and ÊC [Y |T = t] =
1

S

S∑
s=1

Q̂C
Y |T (τs| t)

where 0 < τ1 < τ2 < · · · < τS < 1 is the grid of values of τ given above. We can also estimate the
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conditional variance by plugging in

ˆV ar(Y |T = t) =
1

S

S∑
s=1

(
Q̂Y |T (τs| t)− Ê[Y |T = t]

)2

and

ˆV ar
C

(Y |T = t) =
1

S

S∑
s=

(
Q̂C
Y |T (τs|t)− ÊC [Y |T = t]

)2

Finally, estimates of the inter-quantile range are given by

ˆIQR(τ1, τ2; t) = Q̂Y |T (τ1|t)− Q̂Y |T (τ2|t) and ˆIQR
C

(τ1, τ2; t) = Q̂C
Y |T (τ1|t)− Q̂C

Y |T (τ2|t)

3.4 Asymptotic Theory

This section develops asymptotic theory and inference procedures for the parameters discussed

in Section 2. Our inference results are uniformly valid in the treatment T , and we derive the joint

limiting distributions of parameters that depend on the observed distribution FY |T and on the

counterfactual distribution FC
Y |T . We show that each of the parameters that we consider converges

uniformly to a Gaussian process. These results allow us to test functional hypotheses such as

(1) whether the results from adjusting for differences in other covariates X are different from the

results obtained directly from the observed data at any value of the treatment, (2) whether any

parameter of interest (such as the variance or inter-quantile range) of the outcome is constant

across different values of the treatment, among others. We develop these asymptotic results using

arguments from the empirical processes literature (see, for example Van Der Vaart and Wellner

1996; Kosorok 2007) and, in particular, they build off the theoretical results on first step quantile

regression in Chernozhukov, Fernandez-Val, and Melly (2013).11 For any discrete set of values

of T , a Gaussian process is just a (multivariate) normal distribution, so our results also contain

as special cases pointwise results. The second part of the results in this section shows that the

11This is similar to other papers that also use quantile regression as a first step estimator and build off the same
results in other contexts; e.g. Melly and Santangelo (2015) and Wuthrich (2015).
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empirical bootstrap is valid for conducting inference – both uniformly and pointwise. All proofs

are contained in the Appendix. We make the following assumption,

Assumption 5. (Random Sampling)

{Yi, Ti, Xi}ni=1 are iid draws from the joint distribution FY,T,X .

Several other standard assumptions for quantile regression and other technical conditions are

collected in Assumption A.1 in the Appendix. We use the following notation. Let l∞(S) denote

the space of all uniformly bounded functions on the set S equipped with the supremum norm

denoted ‖ · ‖∞. Let Y , T , and X denote the supports of Y , T , and X, respectively. Let

ĜC
Y |T (y|t) =

√
n(F̂C

Y |T (y|t)− FC
Y |T (y|t))

denote the empirical process of the counterfactual distribution of the outcome conditional on the

treatment. Further, let

ĜY |T (y|t) =
√
n(F̂Y |T (y|t)− FY |T (y|t))

denote the empirical process of the observed distribution of the outcome conditional on the treat-

ment.

Theorem 1 establishes the joint limiting process for the observed distribution and counterfactual

distribution.

Theorem 1. Let S = l∞(YT )2. Under Assumptions 2 to 5 and A.1 (given in Appendix A)

(ĜY |T (y|t), ĜC
Y |T (y|t)) (VY |T (y|t),VC

Y |T (y|t))

in the space S where (VY |T ,VC
Y |T ) is a tight Gaussian process indexed by (y, t) with mean 0 and

where VY |T (y|t) = GY |T (y|t) and VC
Y |T (y|t) =

∫
X GY |T,X(y|t, x) dFX(x)+

∫
X FY |T,X(y|t, x) dGX(x)

where GY |T , GY |T,X , and GX are given in Lemma 1 in the Appendix.

Theorem 1 is an important building block for establishing the limiting processes of each of

the parameters of interest in Section 2. It essentially follows from the results in Chernozhukov,
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Fernandez-Val, and Melly (2013) with relatively small differences related to establishing the joint

limiting process. It should also be noted that our results hold uniformly in the treatment T though

this does not require major changes in the theory. We will show next that each of the parameters

of interest is a Hadamard differentiable function of either the counterfactual distribution or the

observed distribution. Theorem 1 is also useful because it considers the joint limiting process

of the observed distribution and the counterfactual distribution which allows one to consider

uniform inference on the difference between particular parameters under the observed distribution

and counterfactual distribution. It will also be important for testing whether or not a particular

parameter changes across different values of the treatment.

The next corollary provides a general result for the limiting process of Hadamard differentiable

functions of FY |T and FC
Y |T . This result covers all of the parameters of interest in Section 2.

Corollary 1. Let D = l∞(YT ) and consider the Hadamard differentiable map Γ : DΓ ⊂ D 7→

l∞(T ) with derivative Γ′γ for γ ∈ D. Let ĜT (t) =
√
n(Γ(F̂Y |T (·|t)) − Γ(FY |T (·|t))) and ĜC

T (t) =

√
n(Γ(F̂C

Y |T (·|t))− Γ(FC
Y |T (·|t))). Then,

(ĜT (t), ĜC
T (t)) (Γ′FY |T

,Γ′FC
Y |T

)

in the space l∞(T )2.

In the Supplementary Appendix we show that each of the parameters that we consider in the

paper is indeed Hadamard differentiable and give explicit expressions for each term in Corollary 1

(which depend on the particular parameter of interest). In addition, given the results in Theorem 1

and Corollary 1, the validity of the empirical bootstrap for conducting uniform inference follows

using well known arguments (for example, Van Der Vaart and Wellner (1996) and Kosorok (2007)).

Let θ(t) generically denote one of the parameters of interest in the preceding sections, for example,

FY |T (yp|t) or EC [Y |T = t]. Let θ̂(t) denote an estimator of θ(t). In particular, we can construct

uniformly valid confidence bands that cover the entire curve with (1 − α) probability for any
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parameter of interest given by

Ĉθ(t) = θ̂(t)± ĉ1−αΣ̂(t)1/2/
√
n

where ĉ1−α is a critical value satisfying

lim
n→∞

P (θ(t) ∈ Ĉθ(t) for all t ∈ T ) = 1− α

Here, Σ̂(t) denotes a uniformly consistent estimator of Σ(t), the asymptotic variance function of

√
n(θ̂(t)− θ(t)), such as

Σ̂(t) =
q0.75(t)− q0.25(t)

z0.75(t)− z0.25(t)
(3.1)

which is the bootstrap interquartile range scaled by the interquartile range of the standard normal

distribution (this is a uniformly consistent estimate of Σ(t), see Chernozhukov and Fernández-Val

(2005)).

Consider the following bootstrap procedure. For some large numberB and for each b = 1, . . . , B

compute

ĉb = sup
t∈T

Σ̂(t)−1/2|
√
n(θ̂b(t)− θ̂(t))|

where θ̂b(t) is the bootstrapped estimate of θ(t) using the b-th boostrapped sample. Then, setting

ĉ1−α to be the (1 − α) quantile of {ĉb : 1 ≤ b ≤ B} implies that Ĉθ(t) asymptotically covers θ(t)

for all values t ∈ T with probability (1− α).

We provide the theoretical justification for the above procedure in the Supplementary Ap-

pendix. Finally, and using similar arguments as above, one can establish the limiting process and

prove the validity of the empirical bootstrap for testing whether or not parameters depend on the

value of the treatment as in Section 2.3. We also provide the details for this procedure in the

Supplementary Appendix.
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4 Application on Intergenerational Income Mobility

4.1 Related Literature

The literature on intergenerational income mobility is vast and we briefly summarize some

of the most relevant parts (a much more detailed review of the literature can be found in Black

and Devereux (2011)). Our results are related to work that has used quantile regression to study

intergenerational mobility (Eide and Showalter 1999; Grawe 2004). These papers show that the

distribution of child’s income conditional on parents’ income narrows as parents’ income increases.

Our unconditional results can be compared directly with the results in those papers. However,

our counterfactuals are fundamentally different than quantile regression specifications that include

additional control variables. Richey and Rosburg (2016) propose a similar counterfactual distri-

bution to the one in the current paper in the context of a decomposition of intergenerational

income mobility though they propose a first step distribution regression estimator and second step

simulation estimator. The intergenerational elasticity (IGE), which is the slope coefficient from

a regression of the log of child’s income on the log of parents’ income, has a long history in the

intergenerational income mobility literature. But recent work has considered more complicated

setups such as (1) transition matrices, (2) the probability that child’s income is greater than par-

ents’ income, and (3) the correlation of the ranks of child’s income and parents’ income, among

other ideas (Jantti et al. 2006; Bhattacharya and Mazumder 2011; Murtazashvili 2012; Chetty,

Hendren, Kline, and Saez 2014; Chetty et al. 2014; Murtazashvili, Liu, and Prokhorov 2015; An,

Le, and Xiao 2017; Chetty et al. 2017; Collins and Wanamaker 2017; Kitagawa, Nybom, and

Stuhler 2017).

Of these, transition matrices are most closely related to our approach and have received con-

siderable attention in the intergenerational income mobility literature (see Jantti et al. (2006),

Bhattacharya and Mazumder (2011), Black and Devereux (2011), and Richey and Rosburg (2015),

among others). In principle, one could use a transition matrix to calculate the probability that a

child’s income is below the poverty line for different values of parents’ income. However, transition

matrices typically pick cutoff points at particular quantiles of parents’ income (e.g. at the 25th,
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50th, and 75th percentiles) and look at quantiles of child’s income as well. A key advantage of our

approach is that it does not require choosing cutoffs like this. Another advantage of our approach

is that it is straightforward to include covariates in the analysis. A final distinction is that because

quantiles of income depend both on an individual’s income and on the income of other individuals,

transition matrices are relative mobility measures. On the other hand, calculating the probability

that a child’s income is below the poverty line as a function of parents’ income is an absolute

mobility measure as it does not depend on outcomes for other individuals.

4.2 Data

The data that we use comes from the Panel Study of Income Dynamics (PSID) which has

been the primary database used in much of the literature on intergenerational mobility. Like the

majority of the income mobility literature using the PSID, we use total family income (including

both father’s and mother’s income) instead of individual income (Chadwick and Solon 2002; Mayer

and Lopoo 2005; Bloome 2015).12 The other main data issue in the intergenerational mobility

literature is constructing measures of permanent income. Here we follow existing work and use

averages of income over several years to construct the permanent income (Solon 1992; Zimmerman

1992; Mazumder 2005). We construct child’s permanent income (our outcome variable) in their

adulthood by averaging at least three family incomes conditional on being at least 25 years old

and being the head or the spouse of a household. We measure the parents’ family income (our

treatment variable) by averaging at least three family incomes when the child is 16 years old or

younger. Before we calculate these family incomes, we drop yearly family incomes less than $100.

We also change all family incomes in all years into 2010 dollars using the CPI-U-RS series. Our

sample consists of individuals whose ages are at least 1 in 1987 such that these individuals are at

least 25 years old in 2011. Also, these individuals have to be less than 16 years old in 1970 to

ensure that these individuals are sons or daughters at the very beginning of the survey. Finally,

12The main alternative is to use only father’s and son’s income, but our approach offers several advantages. First,
it seems likely that it is total family income that would affect a child’s outcomes. Second, this approach allows us
to keep daughters in the analysis; in particular, families with one spouse with high income and the other with low
income (or out of the labor force) will be treated as high income families in our analysis rather than as low income
families.
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we drop the Survey of Economic Opportunity (SEO) part of the PSID sample; this is standard in

the intergenerational mobility literature.

The covariates that we use in our analysis include child’s gender and year of birth and the

family head’s gender, race, educational attainment, and veteran status. The main complication

in obtaining the covariates of the family head is determining who is the family head, because

the family head can change over time – for example, parents may divorce, remarry, or die over

the course of their child’s childhood. We set the family head characteristics as the mode of

characteristics for the individual coded as the family head between the time that a child is born

and reaches 16 years old. Our sample consists of 3,630 child-parent pairs.

Table 1 provides summary statistics by quartile of parents’ income. The 25th percentile of

parents’ income is $44,200, the median is $59,200, and the 75th percentile is $78,000. As expected,

child’s income is increasing in parents’ income. On average, children from families in the 1st, 2nd,

and 3rd quartiles have higher income than their parents; children from the fourth quartile have

lower income on average than their parents.

There are some striking patterns in the data that are immediately noticeable, and most of these

differences are most pronounced between the 1st and 2nd quartiles of parents’ income. Parents in

the first quartile are much more likely to be non-white than parents in the 2nd quartile (28% vs.

7%). Children from families in the 1st quartile are much less likely to have a male head (77% vs.

95%) which likely indicates that these children are from a single parent family. Finally, there are

big differences across parents’ income quartiles in education. 35% of family heads in the lowest

quartile have less than a high school education. The corresponding quantities are 19%, 8%, and

5% for the 2nd, 3rd, and 4th quartiles, respectively. There are also big differences in the fraction of

heads with at least a college degree – 7% in the first quartile, 17% in the 2nd, 34% in the 3rd, and

57% in the 4th. Taken together, the summary statistics suggest that child’s income is positively

correlated with parents’ income. But child’s income is also correlated with other background

family characteristics – primarily education, race, and coming from a two-parent family – that are

likely to also be important contributors to a child’s income.

Table 2 presents OLS regression results of the log of child’s income on the log of parents’
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income as well as additional controls. These results are useful to compare with the existing

literature as well as to serve as a prelude to our main results. Without additional controls, the

estimated IGE is 0.609.13 Adding demographic controls, as in specification (2) in the table, shrinks

the estimated coefficient to 0.573. By far, the most important demographic control is a dummy

variable for whether or not the race of a family is non-white. The third specification adds a control

for year born which is likely to be important as older individuals have more work experience; it

has the expected sign but the estimate of the IGE does not change much. The fourth column

adds education controls. Once again, the estimated IGE shrinks considerably to 0.452; so, here,

adding additional controls reduced the estimated IGE by about 26%. The coefficients on the

family head having less than a high school education and on the family head having at least a

college degree (having a high school degree but less than a college degree is the omitted group)

are large in magnitude. These results suggest that controlling for covariates such as race and

education mitigates the effect of parents’ income on child’s income, though parents’ income is still

an important determinant of child’s income.

4.3 Main Results

Our main results are provided in Figures 1 to 5 below. Each one corresponds to one of our main

parameters of interest, and they each follow the same pattern. The top left panel provides the

parameter as a function of parents’ income from the observed data. The top right panel provides

the same parameter as a function of parents’ income but using the counterfactual distribution

which adjusts for differences in observed covariates across different levels of parents’ income.

The bottom left panel shows the difference between the parameter coming from the observed

distribution and the one coming from the counterfactual distribution. And the bottom right panel

tests whether the parameter coming from the counterfactual distribution is the same across all

values of parents’ income. Each panel provides uniform confidence bands for the parameter of

interest. This allows us to reject any hypothesis of interest for the entire function if the band does

13This estimate is towards the upper end of the range estimates of the IGE in the literature (Mazumder 2005;
Black and Devereux 2011; Chetty, Hendren, Kline, and Saez 2014). However, recent work suggests that the IGE is
larger using more recent periods, like in the current paper, than in earlier periods (Chetty et al. 2014; Davis and
Mazumder 2017).
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not cover zero. We also impose that QY |T,X(τ |t, x) = α1(τ)t + x′α2(τ) (and that X includes an

intercept term) and that QY |T (τ |t) = β0(τ) + β1(τ)t, both for all values of τ .

Question 1: How much does adjusting for covariates matter?

The first part of our analysis considers very similar research questions as much existing work.

We first focus on average child’s income as a function of parents’ income and its derivative which

is a local version of the Intergenerational Elasticity (IGE) measure commonly reported in the

intergenerational mobility literature.14 Average child’s income as a function of parents’ income is

reported in Figure 1. As expected, child’s income is increasing in parents’ income. This result

holds using the observed distribution (top left panel) or after adjusting for differences in covariates

(top right panel). On average, children from families with lower income have higher income than

their parents while children from higher income families tend to have lower incomes than their

parents. They cross at $61,000 without adjusting for covariates and $59,900 after adjusting for

covariates.

Most interestingly, however, is that we can reject that adjusting for covariates does not make a

difference in the estimates. Adjusting for covariates tends to increase expected income of children

from low income families and decrease expected income of children from high income families (see

the bottom left panel of Figure 1). This is in line with the results from the previous section where

we saw that parents’ income was strongly correlated with parents’ education, parents’ race, and

having a male household head. It suggests that adjusting for differences in covariates decreases

the strength of the relationship between parents’ income and child’s income.

As for our local IGE measures (the slope of average child’s income as a function of parents’

income), with or without adjusting for differences in covariates, they are roughly constant across

all levels of parents’ income. However, the level is quite different. Without adjusting for covariates,

our local measure of IGE tends to be around 0.57 across all values of parents’ income. Adjusting

14For the IGE, we take a numerical derivative of E[Y |T ] and EC [Y |T ], respectively. For example, for the
counterfactual IGE, we calculate IGEC(t) = δ−1(EC [Y |T = t + δ/2] − EC [Y |T = t − δ/2]) for some small, fixed
δ (we set this equal to 0.1 in practice). One difference between our results and most existing work is that our
measure of the IGE is local, though Landersø and Heckman (2017) have considered a local IGE in previous work.
However, the main departure here from existing work is that we also consider average child’s income and local IGE
after adjusting for differences in covariates across different levels of parents’ income.

26



for covariates, the local IGE is around 0.42 across all value of parents’ income. Taken together,

these results suggest that, on average, the effect of increasing parents’ income on child’s income is

roughly the same across all levels of parents’ income and that taking into account differences in the

distribution of covariates across different levels of parents’ income tends to somewhat decrease the

effect of parents’ income – results that are in line with the existing literature on intergenerational

income mobility. Next, we turn to looking at distributional effects of parents’ income on child’s

income.

Question 2: What is the effect of parents’ income on the distribution of child’s income?

Average child’s income conditional on parents’ income only tells part of the story of their

relationship. Our estimates in the previous section indicate that children from low income families

have higher incomes than their parents on average. However, of course, not all children from

families whose income takes a particular value have actual incomes equal to the average. Our

methods allow us to look at these distributional parameters. First, we consider the effect of

parents’ income on the probability that a child’s income is below the poverty line.

The results for the poverty rate are presented in Figure 2. Without adjusting for covariates,

21.7% of children from families with incomes at the poverty line are estimated to have incomes

below the poverty line themselves. After adjusting for covariates, only 16.3% are estimated to have

incomes below the poverty line. At the median of parents’ income, without adjusting for covariates

4.3% of children have income below the poverty line and slightly more, 4.7%, have income below

the poverty line after adjusting for differences in observed characteristics (this difference is not

statistically significant). For children of families in the 90th percentile of income, we estimate that

only 1.0% have incomes below the poverty line without adjusting for covariates while 1.7% have

incomes below the poverty line when we do adjust for covariates (this difference is not statistically

significant). These results say that children from relatively poor families are much more likely to

have incomes below the poverty line than children from middle or upper income families. This

provides substantially more detail than simply looking at average child’s income as a function of

parents’ income. In fact, children from relatively poor families do not just have lower incomes on
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average than children from other families, they are much more likely to have very low incomes

themselves.

Similarly, children from low income families are much less likely to become “rich” than children

from middle or high income families (we set the value to be considered “rich” at $132,923 which is

the 90th percentile of income in the U.S. in 2010). Without adjusting for covariates, we estimate

that 2.0% of children from families at the poverty line, 7.4% of children from families at the

median, and 26.7% of children from families at the 90th percentile become rich. Adjusting for

covariates does not make much difference except for children from families at the 90th percentile

where the estimate is reduced to 20.1%.

Next, we consider how wide the distribution of child’s income is as a function of parents’

income. To do this, we examine the variance of child’s income and the inter-quantile range of

child’s income. First, Figure 4 plots the variance of child’s income as function of parents’ income.

There are clear differences between the variance depending on whether or not the model adjusts

for covariates. Without covariates, the variance of child’s income is higher for children with low

income parents relative to high income parents (see the top left panel). However, once one accounts

for differences in covariates across parents’ incomes, the variance flattens (see the top right panel

and bottom right panel). Our results for the variance, however, are relatively imprecise and we

cannot reject that adjusting for covariates has no effect nor can we reject that the results that

adjust for covariates do not change across parents’ incomes. On the other hand, we can reject

that the variance is constant in the case where we do not adjust for covariates (results not shown

in figure).

The inter-quantile range tells a similar story. These results are presented in Figure 5 (in the

figure, we set τ1 = 0.9 and τ2 = 0.1). Without covariates, it appears that the spread of child’s

income, as measured by the IQR, is decreasing in parents’ income. But adjusting for covariates

instead indicates that the IQR is flat across parents’ incomes and that the differences are driven

by differences for parents with very low income.

Treatment Effects

It seems unlikely that our estimates should be considered to be estimates of the causal effect
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of parents’ income on child’s income, but we briefly consider the relationship of our estimates to

treatment effect estimates under Assumption 1.15 We estimate that, on average, moving from

the 25th percentile to the 75th percentile of parents’ income increases child’s income by 24.7 log

points. Under the assumption of unconfoundedness, this should be interpreted as a causal effect.

Similarly, we estimate that, under unconfoundedness, moving from the 25th percentile to the 75th

percentile of parents’ income decreases the probability of a child’s income being below the poverty

line by 4.2 percentage points (a 59% reduction).

Summary of Main Results

Our estimates of average child’s income as a function of parents’ income and of the local

IGE are largely in line with the existing literature. Children from families with relatively low

income have lower earnings than children from higher income families. This result holds, though

is somewhat reduced, when differences in covariates such as race and education are accounted for.

More interestingly, we were able to estimate the entire distribution of child’s income as a

function of parents’ income. We found that children from families with low incomes were much

more likely to have incomes below the poverty line than children from higher income families;

again, this was somewhat mitigated when adjustments were made for differences in background

characteristics, but there were still substantial differences. We also found suggestive evidence

that the variance of child’s income was larger for children from low income families than from

high income families, but adjusting for differences in covariates completely flattened the variance

across parents’ income levels.

15We suspect that, in the context of intergenerational income mobility, estimates of the average effect of moving
from a low level of parents’ income to a high level of parents’ income using our approach are likely to overstate the
causal effect of parents’ income on child’s income. This would be the case if children of high income parents have
some latent characteristics (or their parents have some latent characteristics) that lead to higher income relative
to children of low income parents even after conditioning on observables. One small piece of evidence related to
this concerns parents’ education. For education, we include three dummy variables – less than high school, high
school graduate but not a college graduate, or a college graduate. Looking within these three groups, parents in
the top quartile have more education than parents from the bottom quartile; for example, parents with a college
degree from the top quartile are relatively more likely to have an advanced degree and parents with a high school
degree are relatively more likely to have some college than parents in the bottom quartile. Likewise, we suspect
that our estimates of the effect of parents’ income on the probability of a child having income below the poverty
line will overstate the causal effect of parents’ income for similar reasons. It is less clear the direction of the bias
for estimating the spread parameters, such as the variance of child’s incomes, conditional on parents’ income.
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5 Conclusion

This paper has developed new tools to study distributional effects of a continuous treatment.

We proposed a straightforward three step procedure to estimate these distributional effects that is

based on first step quantile regression. Our procedure is easy to implement in practical applications

and more flexible than making distributional assumptions about the treatment or outcome.

We applied these methods to study intergenerational income mobility. Our methods allow us

to (1) study the entire distribution of child’s income conditional on parents’ income, (2) adjust

for differences in observed characteristics among children who have parents with different income

levels, and (3) treat parents’ income as a continuous variable rather than splitting it into a small

number of groups. These tools may be useful to researchers in other fields who are interested

in distributional effects with a continuous treatment or are interested in the causal effect of a

continuous treatment under the assumption of unconfoundedness.
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A Additional Assumptions

Assumption A.1.

(i) YT X , which denotes the Cartesian product of the supports of Y , T , and X, is a compact

subset of R2+k where k is the dimension of X.

(ii) Y is continuously distributed with conditional density fY |T,X(y|t, x) uniformly bounded away

from 0 and ∞ and continuous in (y, t, x) ∈ YT X .

(iii) The support T of T is the compact interval [tmin, tmax] with density fT (t) bounded away

from 0 and ∞ on T .

(iv) For U = [ε, 1−ε] ⊂ (0, 1), FY |T and FC
Y |T admit positive continuous densities fY |T and fCY |T

on an interval [a, b] containing an ε-enlargement of the sets {QY |T (τ |t) : τ ∈ U} and {QC
Y |T (τ |t) :

τ ∈ U}, respectively.

(v) E‖P1(T,X)‖2+ε <∞ and E‖P2(T )‖2+ε <∞ for some ε > 0.

(vi) Let J1(τ) = E
[
fY |T,X(P1(T,X)′α(τ)|T,X)P1(T,X)P1(T,X)′

]
. Also, let

J2(τ) = E
[
fY |T (P2(T )′β(τ)|T )P2(T )P2(T )′

]
. The minimum eigenvalues of J1(τ) and J2(τ)

are uniformly bounded away from zero.

B Proofs

B.1 Proof of Theorem 1

Let

ĜY |T,X(y|t, x) =
√
n(F̂Y |T,X(y|t, x)− FY |T,X(y|t, x)) and ĜY |T (y|t) =

√
n(F̂Y |T (y|t)− FY |T (y|t))

and let

ĜX(x) =
√
n(F̂X(x)− FX(x))

which are the empirical processes of the conditional distribution of the outcome and the distribu-

tion of other observable characteristics.

Also, let ξ = (y, t, x, ȳ, t̄, x̄) and W = (Y, T,X) and let

ψ1(W, ξ) = fY |T,X(y|t, x)P1(t, x)′J1(FY |T,X(y|t, x))−1H1(Y, T,X, FY |T,X(y|t, x))

where

H1(Y, T,X, τ) = (1{Y ≤ P1(T,X)′α(τ)} − τ))P1(T,X)
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Next, let

ψ2(W, ξ) = fY |T (ȳ|t̄)P2(t̄)′J2(FY |T (ȳ|t̄))−1H2(Y, T, FY |T (y|t))

where

H2(Y, T, τ) = (1{Y ≤ P2(T )′β(τ)} − τ)))P2(T )

and let

ψ3(W, ξ) = 1{X ≤ x̄} − FX(x̄)

The first result establishes the joint limiting distribution of ĜY |T , ĜY |T,X , and ĜX .

Lemma 1. Let S = l∞(YT X ) × l∞(YT ) × l∞(X ). Under Assumptions 2 to 5 and Assumption

A.1,

(ĜY |T,X(y|t, x), ĜY |T (ȳ|t̄), ĜX(x)) (GY |T,X ,GY |T ,GX)

in the space S and where (GY |T,X ,GX) is a tight Gaussian process with mean 0 with covariance

function V (ξ1, ξ2) defined on S and given by

V (ξ1, ξ2) = E [ψ(W, ξ1)ψ(W, ξ2)′]

where ψ(W, ξ) = (ψ1(W, ξ), ψ2(W, ξ), ψ3(W, ξ))′

Proof. The result follows immediately under Assumptions 5 and A.1 and from the results in

Chernozhukov, Fernandez-Val, and Melly (2013).

Before proving the main result, we consider the following result first.

Lemma 2. Consider the map ψ : Dψ ⊂ D = l∞(YT X )× l∞(X ) 7→ l∞(YT ) given by

ψ(Λ) =

∫
X

Λ1(·|·, x) dΛ2(x)

for Λ = (Λ1,Λ2) ∈ D. Then, under Assumptions 2 to 5 and Assumption A.1, the map ψ is

Hadamard differentiable at Λ0 tangentially to D with derivative at Λ0 in λ = (λ1, λ2) ∈ D given by

ψ′Λ0
(λ) =

∫
X
λ1(·|·, x) dΛ20(x) +

∫
X

Λ10(·|·, x) dλ2(x)
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Proof. Consider any sequence tk > 0 and Λk ∈ D for k = 1, 2, 3, . . . with tk ↓ 0 and

λ1k =
Λ1k − Λ1

tk

λ2k =
Λ2k − Λ2

tk

with (λ1k, λ2k)→ (λ1, λ2) ∈ D as k →∞.

Then,

ψ(Λk)− ψ(Λ)

tk
− ψ′Λ(λ) =

∫
X

Λ1k(·|·, x) dΛ2k(x)/tk −
∫
X

Λ1(·|·, x) dΛ2(x)/tk

−
∫
X
λ1(·|·, x) dΛ2(x)−

∫
X

Λ1(·|·, x) dλ2(x)

=

∫
X

Λ1k(·|·, x)− Λ1(·|·, x)

tk
d(Λ2k(x)− Λ2(x))

+

∫
X

Λ1k(·|·, x)− Λ1(·|·, x)

tk
dΛ2(x)

+

∫
X

Λ1(·|·, x) d(Λ2k(x)− Λ2(x))/tk

−
∫
X
λ1(·|·, x) dΛ2(x)−

∫
X

Λ1(·|·, x) dλ2(x)

= tk

∫
X
λ1k(·|·, x) dλ2k(x)

+

∫
X

(λ1k(·|·, x)− λ1(·|·, x) dΛ2(x)

+

∫
X

Λ1(·|·, x) d(λ2k − λ2)(x)

→ 0 as k →∞

where, in the last equation, the first line is O(tk) which converges to 0 as k →∞, and the second

and third terms converge to 0 because (λ1k, λ2k)→ (λ1, λ2).

Lemma 3. Consider the map φ : Dφ ⊂ l∞(YT )× l∞(YT X )× l∞(X ) 7→ l∞(YT )2 given by

φ(Γ) = (Γ1, ψ(Γ2,Γ3))

in Γ = (Γ1,Γ2,Γ3) ∈ l∞(YT )× l∞(YT X )× l∞(X ) and the map ψ : Dψ ⊂ l∞(YT X )× l∞(X ) 7→
l∞(YT ) is given in Lemma 2. Then, under Assumptions 2 to 5 and Assumption A.1, the map φ

is Hadamard differentiable at Γ0 tangentially to l∞(YT ) × l∞(YT X ) × l∞(X ) with derivative at

38



Γ0 in γ = (γ1, γ2, γ3) ∈ D given by

φ′Γ0
(γ) = (γ1, ψ

′
(Γ20,Γ30)(γ2, γ3))

=

(
γ1,

∫
X
γ2(·|·, x) dΓ30(x) +

∫
X

Γ20(·|·, x) dγ3(x)

)
Proof. The result follows immediately from Lemma 2.

Proof of Theorem 1

Lemma 3 implies

(ĜY |T (y|t), ĜC
Y |T (ȳ|t̄)) (GY |T ,GC

Y |T )

indexed by (y, t, ȳ, t̄) in S = l∞(YT )2 and where GY |T is given in Lemma 1 and

GC
Y |T =

∫
X
GY |T,X(·|·, x) dFX(x) +

∫
X
FY |T,X(·|·, x) dGX(x)

(GY |T,X and GX are given in Lemma 1). Then, the process given in Theorem 1 is given by setting

ȳ = y and t̄ = t.
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C Tables and Figures

Table 1: Summary Statistics

Q1 Q2 Q3 Q4 All

Parents’ Income (1000s) 32.53 51.47 67.97 107.49 64.87

(0.291) (0.144) (0.183) (1.289) (0.568)

Child’s Income (1000s) 45.96 64.02 74.8 96.8 70.4

(0.935) (1.518) (1.491) (2.393) (0.888)

Head White 0.72 0.93 0.95 0.96 0.89

(0.015) (0.008) (0.007) (0.006) (0.005)

Head Non-White 0.28 0.07 0.05 0.04 0.11

(0.015) (0.008) (0.007) (0.006) (0.005)

Child Male 0.49 0.47 0.48 0.5 0.48

(0.017) (0.017) (0.017) (0.017) (0.008)

Head Male 0.77 0.95 0.97 0.99 0.92

(0.014) (0.007) (0.006) (0.003) (0.004)

Year Born 1970.69 1970.29 1970.64 1969.32 1970.23

(0.324) (0.309) (0.32) (0.345) (0.163)

Head Veteran 0.26 0.37 0.47 0.47 0.39

(0.014) (0.016) (0.017) (0.017) (0.008)

Head Less than HS 0.35 0.19 0.08 0.05 0.17

(0.016) (0.013) (0.009) (0.007) (0.006)

Head HS 0.58 0.64 0.58 0.39 0.55

(0.016) (0.016) (0.016) (0.016) (0.008)

Head College 0.07 0.17 0.34 0.57 0.29

(0.008) (0.013) (0.016) (0.016) (0.007)

Cutoff 44.24 59.17 78.01 434.44

N 908 907 907 908 3630

Notes: Summary statistics for the main dataset used in the paper. Each column
provides average values of available variables by parents’ income quartile. Standard
errors are given in parentheses beneath the average. The row “Cutoff” is the
maximum value of parents’ income in that quartile (i.e. the dividing line between
parents’ income across two columns).
Sources: Panel Study of Income Dynamics, as described in text
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Table 2: Intergenerational Elasticity (IGE) Estimates

Dependent variable:

Log Child’s Income

(1) (2) (3) (4)

Log Parents’ Income 0.609∗∗∗ 0.573∗∗∗ 0.559∗∗∗ 0.452∗∗∗

(0.023) (0.024) (0.024) (0.027)

Head Non-White −0.245∗∗∗ −0.253∗∗∗ −0.236∗∗∗

(0.040) (0.040) (0.039)

Male 0.025 0.022 0.023
(0.019) (0.019) (0.019)

Head Male −0.076∗ −0.056 −0.019
(0.043) (0.043) (0.043)

Year Born −0.009∗∗∗ −0.013∗∗∗

(0.001) (0.001)

Head Veteran −0.006
(0.021)

Head Less Than HS Educ. −0.225∗∗∗

(0.030)

Head College Educ. 0.104∗∗∗

(0.024)

Constant 4.282∗∗∗ 4.761∗∗∗ 22.282∗∗∗ 31.110∗∗∗

(0.255) (0.261) (1.984) (2.211)

Notes: Results come from regressions of the log of child’s income on the log of parents’ income and additional
controls using the full sample of 3,630 observations. Standard errors are heteroskedasticity robust.
Sources: Panel Study of Income Dynamics, as described in text

41



Figure 1: Expected Child’s Income Conditional on Parents’ Income
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Notes: The top left panel plots average child’s income as a function of parents’ income with no adjustments for
other covariates. The top right panel adjusts for differences in the covariates family head’s race, family head’s
gender, gender of child, child’s birth year, family head’s veteran status, and family head’s education (dummy
variables for less than high school degree, high school degree but less than college degree, and college degree or
more). The bottom left panel plots the difference between the estimates that do not adjust for covariates and
that do adjust for covariates (i.e. the difference between the top left and top right panels as a function of parents’
income). The bottom right panel plots the difference between the results that adjust for covariates and the average
over t of the same results, as discussed in the text. In each panel, the dashed lines are 95% confidence bands
that cover the entire curve with fixed probability. These are calculated using the bootstrap with 500 iterations as
described in the text.
Sources: Panel Study of Income Dynamics, as described in text
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Figure 2: Fraction of Children below the Poverty Line
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Notes: The top left panel plots the fraction of children below the poverty line as a function of parents’ income
with no adjustments for other covariates. The poverty line is set to be $22,113 which is the poverty line for a
family with two adults and two children in 2010. The top right panel adjusts for differences in the covariates
family head’s race, family head’s gender, gender of child, child’s birth year, family head’s veteran status, and
family head’s education (dummy variables for less than high school degree, high school degree but less than college
degree, and college degree or more). The bottom left panel plots the difference between the estimates that do not
adjust for covariates and that do adjust for covariates (i.e. the difference between the top left and top right panels
as a function of parents’ income). The bottom right panel plots the difference between the results that adjust for
covariates and the average over t of the same results, as discussed in the text. In each panel, the dashed lines are
95% confidence bands that cover the entire curve with fixed probability. These are calculated using the bootstrap
with 500 iterations as described in the text.
Sources: Panel Study of Income Dynamics, as described in text
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Figure 3: Fraction of “Rich” Children
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Notes: The top left panel plots the fraction of “rich” children as a function of parents’ income with no adjustments
for other covariates where “rich” is defined as having income above the 90th percentile of income in the U.S. in 2010
which is $132,923. The top right panel adjusts for differences in the covariates family head’s race, family head’s
gender, gender of child, child’s birth year, family head’s veteran status, and family head’s education (dummy
variables for less than high school degree, high school degree but less than college degree, and college degree or
more). The bottom left panel plots the difference between the estimates that do not adjust for covariates and
that do adjust for covariates (i.e. the difference between the top left and top right panels as a function of parents’
income). The bottom right panel plots the difference between the results that adjust for covariates and the average
over t of the same results, as discussed in the text. In each panel, the dashed lines are 95% confidence bands
that cover the entire curve with fixed probability. These are calculated using the bootstrap with 500 iterations as
described in the text.
Sources: Panel Study of Income Dynamics, as described in text
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Figure 4: Variance of Child’s Income Conditional on Parents’ Income
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Notes: The top left panel plots the variance of child’s income as a function of parents’ income with no adjustments
for other covariates. The top right panel adjusts for differences in the covariates family head’s race, family head’s
gender, gender of child, child’s birth year, family head’s veteran status, and family head’s education (dummy
variables for less than high school degree, high school degree but less than college degree, and college degree or
more). The bottom left panel plots the difference between the estimates that do not adjust for covariates and
that do adjust for covariates (i.e. the difference between the top left and top right panels as a function of parents’
income). The bottom right panel plots the difference between the results that adjust for covariates and the average
over t of the same results, as discussed in the text. In each panel, the dashed lines are 95% confidence bands
that cover the entire curve with fixed probability. These are calculated using the bootstrap with 500 iterations as
described in the text.
Sources: Panel Study of Income Dynamics, as described in text
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Figure 5: Inter-Quantile Ranges
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Notes: The top left panel plots the inter-quantile Range as a function of parents’ income with no adjustments for
other covariates for τ1 = 0.9 and τ2 = 0.1 (these are the values of τ1 and τ2 used in each panel). The top right
panel adjusts for differences in the covariates family head’s race, family head’s gender, gender of child, child’s
birth year, family head’s veteran status, and family head’s education (dummy variables for less than high school
degree, high school degree but less than college degree, and college degree or more). The bottom left panel plots
the difference between the estimates that do not adjust for covariates and that do adjust for covariates (i.e. the
difference between the top left and top right panels as a function of parents’ income). The bottom right panel
plots the difference between the results that adjust for covariates and the average over t of the same results, as
discussed in the text. In each panel, the dashed lines are 95% confidence bands that cover the entire curve with
fixed probability. These are calculated using the bootstrap with 500 iterations as described in the text.
Sources: Panel Study of Income Dynamics, as described in text
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