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1 Introduction

This chapter reviews a number of recent contributions related to difference-in-differences (DID) ap-

proaches to evaluate economic policies. Difference-in-differences approaches are extremely popular in

applied work in economics,1 and difference-in-differences methodology features prominently in well known

textbooks such as Angrist and Pischke (2008) and Cunningham (2021). Although difference-in-differences

identification strategies have been popular in empirical work for roughly the past 30 years (Card (1990) and

Card and Krueger (1994)), there has been renewed interest in methodological issues related to difference-

in-differences approaches in recent years. This interest stems from several highly influential papers that

have pointed out potentially severe weaknesses with the two way fixed effects (TWFE) regressions that

have been the primary way that DID identification strategies have been implemented (Meer and West

(2016), de Chaisemartin and D’Haultfœuille (2020), Borusyak, Jaravel, and Spiess (2021), Goodman-

Bacon (2021), Sun and Abraham (2021), Athey and Imbens (2022), and Ishimaru (2022)). One of the

main goals of this chapter is to summarize these papers as well as to review a number of recently proposed

approaches that are able to circumvent the limitations of TWFE regressions.

Before proceeding along these lines, it is worth fixing ideas on what exactly DID is as well as pointing

out some peculiarities of DID identification strategies. First, DID identification strategies involve observing

some units in some period(s) before they become treated as well as in some period(s) after they become

treated — collectively, these units are referred to as the “treated group.” Observing some units in time

periods before and after they become treated is a particularly powerful framework for learning about

causal effects. This is arguably the reason that DID identification strategies are often included among

“natural experiment” methods in economics and is a primary difference relative to traditional panel data

approaches in economics.

Second, difference-in-differences strategies typically focus on identifying and estimating the Average

Treatment Effect on the Treated (ATT); this is exactly the average effect of the treatment among those

who switch from being untreated to being treated. The ATT is equal to the average path of outcomes

experienced over time by the treated group relative to the average path of outcomes that the treated group

would have experienced had it not participated in the treatment. Thus, the key identification challenge

in DID applications is recovering this “counterfactual” path of outcomes for the treated group. The

main identifying assumption underlying DID is called the parallel trends assumption. It says that, in the

absence of participating in the treatment, the counterfactual path of outcomes for the treated group is

the same as the path of outcomes that the “untreated group” (the group of units that did not participate

in the treatment) actually experienced. Third, DID identification strategies allow for treatment effect

heterogeneity; that is, that the effect of participating in the treatment can vary across units (within time

periods), across time periods, and across length of exposure to the treatment.

The dominant approach to implementing DID identification strategies has been to use two-way fixed

effects (TWFE) regressions. The simplest and most common version of this approach is the following

regression

Yit = θt + ηi + αDit + vit (1)

where Yit is the outcome of interest, θt is a time fixed effect, ηi is a unit fixed effect, Dit is an indicator for

whether or not unit i participated in the treatment in time period t, and vit are idiosyncratic, time-varying

unobservables.

Under treatment effect homogeneity (and under the parallel trends assumption), α in the TWFE

1For example, Currie, Kleven, and Zwiers (2020), which uses text analysis to study trends over time in methodological
approaches in economics, notes about the popularity of DID approaches in empirical work in economics: “It is quite striking
that today almost 25 percent of all NBER working papers in applied micro make references to difference-in-differences” (p. 45).
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regression is equal to the causal effect of participating in the treatment. However, in cases with treatment

effect heterogeneity, researchers have often (loosely) interpreted α as an overall average treatment effect.

That a TWFE regression delivers a single summary measure of the effect of the treatment is appealing

in many applications. Unfortunately, this kind of TWFE regression is not generally robust to treatment

effect heterogeneity (Goodman-Bacon (2021), de Chaisemartin and D’Haultfœuille (2020), and Borusyak,

Jaravel, and Spiess (2021)).2 Section 3 discusses these issues extensively, but a rough intuition is that

researchers ask “too much” out of a TWFE regression; that is, they ask the TWFE regression to both

allow for treatment effect heterogeneity and to fully summarize the causal effect of participating in the

treatment into a single number α, but the TWFE regression can only do one of these.3 Goodman-Bacon

(2021) provides an alternative explanation for the non-robustness of TWFE regressions to treatment

effect heterogeneity: α can be shown to be equal to a weighted average of underlying comparisons of

paths of outcomes among groups whose treatment status changes relative to groups whose treatment

status remains the same across time periods. These comparisons include both (i) using groups that are

not-yet-treated as the comparison group and (ii) using groups that were treated in previous periods as

the comparison group. The first comparison is exactly the type of comparison that should be used in

DID applications, but the second type of comparison (sometimes called “bad comparisons” or “forbidden

comparisons”) is generally not desirable in applications and can lead to poor estimates of causal effect

parameters, particularly in the presence of treatment effect dynamics. Even in cases without treatment

effect dynamics, the weights on underlying treatment effect parameters are still (undesirably) driven by

the estimation method which can lead to estimates of overall treatment effects being different from the

actual overall treatment effect. Both of these issues open up the possibility of poor estimates of causal

effect parameters due to the estimation strategy, even when the identification strategy is valid. These are

major weaknesses of using TWFE regressions in this context.

One of the main contributions of recent work on DID is to more clearly separate identification and es-

timation. In particular, following Callaway and Sant’Anna (2021), the current chapter defines group-time

average treatment effects, ATT (g, t), to be the average treatment effect for a particular group at a particu-

lar point in time; a leading example of a group is to define it by the time period when a unit first becomes

treated. The group-time average treatment effect is a natural generalization of the ATT from the case

with two time periods to the case with more time periods and variation in treatment timing. Identification

arguments for group-time average treatment effects are essentially analogous to identification arguments

for the ATT in the two period case, and identification holds under the parallel trends assumptions without

requiring additional assumptions restricting treatment effect heterogeneity. Group-time average treatment

effects can provide important information about treatment effect heterogeneity with respect to group and

time period and/or length of exposure to the treatment. Perhaps more importantly, group-time average

treatment effects can play the role of a building-block for more aggregated treatment effect parameters.

For example, if desired by the researcher, they can be aggregated into alternative target parameters such

as an overall ATT parameter or into an event study.

Interestingly, the usefulness of the strategy of identifying group-time average treatment effects in the

2TWFE regressions do have some robustness to treatment effect heterogeneity; for example, it is straightforward to show
that this TWFE regression does perform well in the case with exactly two time periods even in the presence of treatment
effect heterogeneity (see discussion in Section 2 below for more details), but it has less than full robustness to treatment effect
heterogeneity.

3It is understandable why researchers would like a single summary measure of the causal effect of a particular policy as
these can easily be reported in research (e.g., in the abstract of an empirical paper) or explained to policymakers. TWFE do
provide a single summary measure, but they come with the additional conditions (often implicit) that treatment effects do not
vary across time, group, or length of exposure to the treatment. For example, Wooldridge (2021, p. 34) notes that “One of the
important conclusions is that there is nothing inherently wrong with TWFE as an estimation method. The problem is that it
is often applied to a model that is too restrictive.” Wooldridge (2021) goes on to propose an alternative TWFE regression that
includes a large number of interaction terms, thus allowing for general forms of treatment effect heterogeneity, but coming at
the “cost” of requiring a second “aggregation step” in order to deliver a single summary parameter.
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presence of multiple time periods, variation in treatment timing, and treatment effect heterogeneity applies

much more broadly than just to DID applications. In particular, this strategy provides a path to extending

any sort of identification arguments from the case without variation in treatment timing to cases with

more time periods and variation in treatment timing. See Remark 2 below for additional discussion along

these lines.

Another main goal of this chapter is to compare some of the main new approaches to estimating causal

effect parameters that have been proposed recently proposed; this chapter mainly considers the approach

proposed in Callaway and Sant’Anna (2021), the “imputation” approaches proposed in Liu, Wang, and

Xu (2021), Gardner (2021), and Borusyak, Jaravel, and Spiess (2021), and the regression approaches

proposed in Sun and Abraham (2021) and Wooldridge (2021).4 All of these procedures follow similar

high-level strategies: in a first step, they explicitly make the same “good comparisons” that show up in

the TWFE regression (i.e., the comparisons that use units that become treated relative to units that are

not-yet-treated) while explicitly avoiding the “bad comparisons” that show up in the TWFE regression

(i.e., the comparisons that use already-treated units as the comparison group). Then, in a second step,

they combine these underlying treatment effect parameters into target parameters of interest such as an

overall average treatment effect on the treated or into an event study. This discussion suggests a high

degree of similarity between all of these approaches. That being said, these approaches typically do not

lead to exactly the same estimates of causal effect parameters (except in a few special cases). One main

reason for this is different default choices in the software implementations of different procedures.5 To

my knowledge, there are perhaps only two meaningful differences between approaches. In cases where the

parallel trends assumption includes covariates, the doubly robust approach in Callaway and Sant’Anna

(2021) generally imposes weaker functional form requirements on the way covariates enter the model

than alternative approaches; moreover, these types of identification arguments can be connected to the

literature on double/de-biased machine learning (e.g., Chernozhukov et al. (2018) and Chang (2020)) which

could further substantially weaken functional form requirements with respect to observed covariates. On

the other hand, imputation strategies are often very convenient to implement in that they only involve

estimating panel data-type regressions and computing predicting values. This is an important advantage

particularly in “non-standard” setups.6 That being said, even these differences are arguably second order

relative to the first order issues with TWFE regressions that all of these approaches address.

Next, the chapter turns to two useful extensions of the previous results. The first extension is to the case

where the parallel trends assumption holds only after conditioning on some covariates. To give a simple

example where conditioning on covariates in the parallel trends assumption is useful, consider a labor

economist interested in the effect of some treatment on a person’s earnings. In this type of application, it

seems likely that paths of earnings (in the absence of participating in the treatment) depend on things like

demographic characteristics and years of education. If these variables are distributed differently among

the treated and untreated group, then the “unconditional” parallel trends assumptions considered so far

4This part of the chapter complements Baker, Larcker, and Wang (2021) which provides a detailed comparison of the
approaches in Callaway and Sant’Anna (2021) and Sun and Abraham (2021) and “stacked regression” as in Cengiz, Dube,
Lindner, and Zipperer (2019).

5For example, by default, the software implementations of Callaway and Sant’Anna (2021) and Sun and Abraham (2021)
only impose parallel trends assumptions from the period right before treatment starts until the last time period while software
implementations of Gardner (2021), Borusyak, Jaravel, and Spiess (2021), and Wooldridge (2021) impose parallel trends in
all time periods. In practice, estimation strategies that impose parallel trends assumptions across more periods tend to be
more efficient while estimation strategies that impose parallel trends assumptions across fewer periods tend to be more robust
to violations of parallel trends assumptions in some periods. But these are not fundamental differences across methods; it is
relatively straightforward to adapt each of these estimation strategies to exploit more or less parallel trends assumptions.

6To give a concrete example, consider the case with a multi-valued treatment and where the amount of the treatment can
change for a particular unit across different points in time. To my knowledge, there is no existing software package that directly
implements any of the new approaches to DID in this context. That said, it would be relatively straightforward to use an
imputation estimator in this case.
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are generally violated. The new approaches to DID discussed above can readily accommodate including

covariates in the parallel trends assumption; moreover, the chapter further reviews the case where the

covariates may themselves be affected by participating in the treatment (sometimes referred to as a “bad

control” problem) and discusses recent methodological innovations in this context as well.

The second extension is for the case where parallel trends is violated (even after potentially condi-

tioning on covariates). It is important to emphasize that the parallel trends assumption does not hold

automatically in applications with repeated observations over time. The most common way to rationalize

the parallel trends assumption is using the following model for untreated potential outcomes

Yit(0) = θt + ηi + vit (2)

where Yit(0) denotes unit i’s untreated potential outcome in time period t — this is the outcome that

unit i would have experienced in time period t if it had not participated in the treatment, θt is a time

fixed effect, ηi is an individual fixed effect that can follow a different distribution for the treated group

relative to the untreated group, and vit are (idiosyncratic) time varying unobservables (see, for example,

Blundell and Costa Dias (2009), Gardner (2021), and Borusyak, Jaravel, and Spiess (2021)).7 There are

a number of attractive features of this model. First, it does not put any structure on how untreated

potential outcomes are generated at all. Second, it allows for arbitrary treatment effect heterogeneity.

Third, units can select into the treatment on the basis of their treated potential outcomes or on their

time invariant unobservables that affect untreated potential outcomes, ηi, but not on the basis of the time

varying unobservables, vit.

Besides these, many economic models involve unobserved heterogeneity (like ηi) that may be dis-

tributed differently between the treated group and the untreated group as well as trends in outcomes

over time (like θt). However, the parallel trends assumption also relies heavily on the additive separabil-

ity between the time and individual effects; this additive separability is often not explicitly implied by

economic theory. And, in many cases, it seems like it would be hard for researchers to ex ante evaluate

its validity. Therefore, the chapter also emphasizes recent contributions from Manski and Pepper (2018)

and Rambachan and Roth (2021a) related to bounding treatment effects in a DID setup. Roughly, the

idea of these papers is to consider how large violations of parallel trends assumptions can be before the

results in post-treatment periods break down. One general challenge in the sensitivity analysis literature

is that it is often not clear what constitutes a “large” amount of robustness to violations of underlying

assumptions. However, DID applications, particularly those with additional pre-treatment time periods,

are particularly attractive in this context because the magnitude of treatment effects in post-treatment

time periods can be compared to the size of violations of parallel trends in pre-treatment time periods.

To conclude, the chapter provides an application on the minimum wage and employment as a way

to illustrate the methodological points. This application comes from (and expands) the application in

Callaway and Sant’Anna (2021). The application focuses on a period from 2001-2007 where the federal

minimum wage was constant over time and uses changes in state-level minimum wage policies over time

to identify effects of minimum wage increases on employment among teenagers. This example is merely

intended to be illustrative of the methodological issues discussed in this chapter, and there are some

notable weaknesses (discussed in more detail below). That said, the point of the application is to illustrate

the empirical relevance of new approaches to DID in a relatively realistic application. Broadly, there

are three main takeaways from the application. First, while the results from using traditional TWFE

and event study regressions are not radically different from the results using new approaches, they are

different enough to suggest that researchers should prefer using the new methods. Second, the new

7To conserve on notation, the current chapter uses θt, ηi, and vit as generic notation for time fixed effects, unit fixed effects,
and idiosyncratic time-varying unobservables, respectively. Therefore, although the notation is similar here as for the TWFE
regression in Equation (1), these should not be interpreted as being the same across the two equations.
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approaches all impose that the researcher make a number of good choices in the context of DID (such as

not including units that are already treated in the first period or including time periods after all units

become treated). While TWFE regressions can still suffer from negative weights and weights undesirably

driven the estimation in this case, making these same sorts of “good choices” tends to notably improve

the performance of regression-based estimation strategies. Finally, it is important to emphasize that the

new approaches all still rely on the validity of the parallel trends assumption. Combining the Rambachan

and Roth (2021a) sensitivity analysis with new approaches to DID turns out to be very useful in this

application as there appear to be moderately-sized violations of parallel trends in pre-treatment periods.

2 Baseline Case: Two Periods and Two Groups

This section considers the simplest, “textbook” version of DID — the case where there are exactly

two time periods, where no units are treated in the first time periods, and where some units (the treated

group) become treated in the second time period while other units (the untreated group) remain untreated

in the second time period.

Notation: This section uses the following notation. Denote the two time periods by t∗ and t∗ − 1 and

define a treatment indicator Di, so that Di = 1 for units that participate in the treatment and Di = 0

for units that do not participate in the treatment. Next, for t ∈ {t∗ − 1, t∗}, define Yit(1) to be unit

i’s treated potential outcome in time period t (this is the outcome that it would experience if it were in

the treated group), and define Yit(0) to be unit i’s untreated potential outcome in time period t (this

is the outcome that it would experience if it were in the untreated group).8 The next condition is that

Yit∗−1(1) = Yit∗−1(0) for all units. This is a no-anticipation condition (which is discussed more carefully

in the next section) which rules out the treatment affecting outcomes in periods before the treatment

takes place. Under these conditions, the observed outcomes in each time period are Yit∗−1 = Yit∗−1(0)

and Yit∗ = DiYit∗(1) + (1 −Di)Yit∗(0). In other words, in the first time period, one observes untreated

potential outcomes for all units; and in the second time period, one observes treated potential outcomes

for treated units and untreated potential outcomes for untreated units.

Target Parameters: Most commonly, DID identification strategies target the average treatment

effect on the treated (ATT), which is defined as:

ATT = E[Yt∗(1)− Yt∗(0)|D = 1]

The ATT is the mean difference between treated and untreated potential outcomes among the treated

group. Perhaps a main reason that the DID literature most often considers identifying the ATT rather

than, say, the ATE is that, for the treated group, the researcher observes untreated potential outcomes (in

pre-treatment time periods) and treated potential outcomes (in post-treatment time periods). DID identi-

fication strategies exploit this framework, and, therefore, it is natural to identify causal effect parameters

that are local to the treated group.

Identification: The main identifying assumption underlying the DID approach is the parallel trends

assumption, which in the case with two time periods, is given by

8For simplicity, this chapter focuses on the case where the researcher has access to balanced panel data. Most of the
arguments in the chapter essentially immediately apply to the case with repeated cross sections and can be extended to cases
with unbalanced panel data (under standard assumptions). See Table 4 for additional, related references.
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Assumption 1 (Parallel Trends).

E[∆Yt∗(0)|D = 1] = E[∆Yt∗(0)|D = 0]

As discussed in the introduction, Assumption 1 says that the path of untreated potential outcomes is,

on average, the same between the treated group and the untreated group. This seems immediately useful

from an identification standpoint because the path of untreated potential outcomes is not observed for the

treated group, but the path of untreated potential outcomes is observed for units in the untreated group.

In fact, this assumption is strong enough to identify ATT . To see this, notice that

ATT = E[Yt∗(1)− Yt∗(0)|D = 1]

= E[Yt∗(1)− Yt∗−1(0)|D = 1]− E[Yt∗(0)− Yt∗−1(0)|D = 1]

= E[∆Yt∗ |D = 1]− E[∆Yt∗(0)|D = 1]

= E[∆Yt∗ |D = 1]− E[∆Yt∗(0)|D = 0]

= E[∆Yt∗ |D = 1]− E[∆Yt∗ |D = 0] (3)

where the first equality comes from the definition of ATT , the second equality holds by adding and

subtracting E[Yt∗−1(0)|D = 1], the third equality holds because Yt∗(1) and Yt∗−1(0) are observed outcomes

for the treated group, the fourth equality uses the parallel trends assumption, and the last equality holds

because ∆Yt∗(0) corresponds to the observed path of outcomes for units in the untreated group.

The expression in Equation (3) implies that ATT is identified under Assumption 1, and the particular

expression on the right hand side of Equation (3) is where difference-in-differences gets its name. Under

parallel trends, ATT is equal to the average difference in outcomes over time for the treated group adjusted

by the average difference in outcomes over time for the untreated group. An alternative intuition for the

expression in Equation (3) is the following: The researcher observes the path of outcomes over time for

the treated group. The parallel trends assumption says that one can obtain the path of outcomes that the

treated group would have experienced if they had not participated in the treatment from the untreated

group. Therefore, the ATT is equal to the actual path of outcomes experienced by the treated group

adjusted by the path of outcomes of the untreated group. As an additional remark, notice that the above

arguments have not imposed any assumptions restricting treatment effect heterogeneity.

Estimation: The expression in Equation (3) immediately suggests an estimator for ATT by replacing

population means with sample averages given by

ÂTT =
1

n1

n∑
i=1

Di∆Yit∗ −
1

n0

n∑
i=1

(1−Di)∆Yit∗ (4)

where n1 is the number of treated observations and n0 is the number of untreated observations. Rather

than taking this approach, most often ATT is estimated using the TWFE regression in Equation (1). In

the case considered in this section with exactly two periods, this regression is exactly equivalent to the

simple linear regression of ∆Yit∗ on Di given by

∆Yit∗ = θ∗t∗ + αDi + ∆vit∗ (5)

where θ∗t∗ := (θt∗ − θt∗−1).

Interestingly, although the regression above appears to have restricted the effect of participating in the
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treatment to be constant (and given by α) across all units, it is straightforward to show that in this case

α = E[∆Yt∗ |D = 1]− E[∆Yt∗ |D = 0] = ATT

and, likewise, that

α̂ = ÂTT

In other words, in the case with exactly two time periods, the TWFE regression is robust to treatment

effect heterogeneity.9 The regression in Equation (5) is as straightforward to estimate as the averages

in Equation (4). Moreover, this regression provides a convenient way to recover standard errors and to

conduct inference using standard statistical software. The combination of robustness and simplicity of the

TWFE regression in this case provides an explanation for its popularity.

Finally, and at the risk of belaboring the point, it is also worth mentioning how to estimate ATT

using an imputation approach in this relatively simple setting (this is instructive for the more complicated

cases considered in the next section). Imputation estimators work by estimating the model for untreated

potential outcomes in Equation (2) using all available untreated observations. Because the researcher does

not observe untreated potential outcomes for the treated group, after taking first differences (or making

a within transformation — which are equivalent in this case), this amounts to the regression

∆Yit∗(0) = θt∗ + ∆vit∗

using observations from the untreated group and which, for simplicity, imposes the normalization that

θt∗−1 = 0. In this case, θ̂t∗ = 1
n0

∑n
i=1(1 − Di)∆Yit∗ . Furthermore, Yit∗(0) can be “imputed” for the

treated group using

Ŷit∗(0) = Yit∗−1 + θ̂t∗

and, therefore,

ÂTT imp =
1

n1

n∑
i=1

Di(Yit∗ − Ŷit∗(0))

=
1

n1

n∑
i=1

Di

(
Yit∗ − (Yit∗−1 − θ̂t∗)

)
=

1

n1

n∑
i=1

Di∆Yit∗ −
1

n0

n∑
i=1

(1−Di)∆Yit∗

= ÂTT

This discussion suggests that, estimating ATT by (i) the sample analogue of Equation (3), (ii) TWFE

regression, or (iii) imputation, all result in numerically identical estimates in the textbook case for DID

with exactly two time periods. The next section shows that this equivalence is lost when one considers

more complicated cases with more periods and variation in treatment timing.

3 Multiple Periods and Variation in Treatment Timing

Much of the recent difference-in-differences literature has been interested in questions surrounding how

well DID identification and estimation strategies scale to settings where there are more than two time

9The argument for this is not complicated and follows because Equation (5) is saturated and by standard regression algebra.
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periods and there is variation in treatment timing. These sorts of cases are often encountered in applied

work. This section primarily covers (i) several recent results on the limitations of TWFE regressions

to implement DID identification strategies and (ii) a number of recently suggested approaches that can

circumvent the limitations that TWFE regressions suffer from. To fix ideas, this section primarily focuses

on the staggered treatment adoption case as in the following assumption.

Assumption 2 (Staggered Treatment Adoption). For all units and for all t = 2, . . . , T , Dit−1 = 1 =⇒
Dit = 1.

Staggered treatment adoption means that once a unit becomes treated, that unit remains treated in

future time periods. Staggered treatment adoption occurs in applications where different locations imple-

ment policies at different points in time (and then those policies remain in place). Staggered treatment

adoption also applies in many applications where the unit is not literally treated over and over across

periods, but rather that treatment is “scarring”. For example, researchers studying the effects of job

training programs typically categorize individuals as being treated at the first time they participate in

job training and in all subsequent periods (see, Sun and Abraham (2021) for more discussion along these

lines).10

Notation: This section extends the notation from the previous section. Now consider a case with T
time periods and with staggered treatment adoption. Towards this end, define groups by the time period

when a unit first becomes treated; for a particular unit, let Gi indicate its group and denote the set of all

groups by G ⊆ {2, . . . , T , T + 1}.11 Further, define Ḡ = G \ {T + 1} which is the set of groups excluding

the never-treated group. Under staggered treatment adoption, knowing a unit’s group implies that the

researcher knows its entire path of participating in the treatment across all time periods. For units that

do not participate in the treatment, arbitrarily set their group to be T + 1 (which somewhat lessens the

notational burden for a few lines of algebra in the next section but is otherwise inconsequential). It is

also convenient to define the variable Ui that is equal to 1 for units in the “never-treated” group and is

otherwise equal to 0 for units that ever participate in the treatment.12 Next, define potential outcomes

by a unit’s group; in particular, Yit(g) is the outcome that unit i would experience in time period t if it

became treated in period g. Also, continue to denote Yit(0) as the potential outcome that unit i would

experience in time period t if it did not participate in the treatment in any time period.

Assumption 3 (No Anticipation). For all units i and time period t < Gi (pre-treatment time periods),

Yit = Yit(0).

Assumption 3 says that participating in the treatment does not have an effect on a unit’s outcomes in

time periods before the treatment actually occurs. In some applications, it could be the case that some

10Staggered treatment adoption is not actually fundamentally important for most of the results below, but rather (for iden-
tification) it greatly decreases the number of “groups” to keep track of and therefore notably simplifies some of the arguments
below and (for estimation) it avoids a curse of dimensionality related to the number of observations per “group” potentially
becoming very small. Some work (for example, Callaway, Goodman-Bacon, and Sant’Anna (2021) and de Chaisemartin and
D’Haultfœuille (2021b)) has also considered more complicated treatment regimes such as cases where units can move into and
out of the treatment or cases where the treatment can be multi-valued or continuous. For simplicity, this chapter mostly focuses
on the staggered adoption case though many of the insights in this case can apply to more complicated treatment regimes.

11If there is a group that is already treated at t = 1, the setup in this section implies that this group is omitted. The reasons
to omit this group are (i) untreated potential outcomes are never observed for this group so they are not useful as a comparison
group, and (ii) because no pre-treatment period is observed for this group, it is not possible to use a parallel trends assumption
to identify treatment effect parameters for this group either.

12This chapter considers the case where the researcher has access to a never-treated group. This is essentially without loss
of generality, as in cases where all units eventually become treated, one would limit the analysis to time periods where the
researcher has access to a group that is not yet treated. After subsetting the available time periods, there is a never-treated
group (at least over the periods being considered). Even though this procedure results in a loss of data in some time periods,
these are time periods where DID identification strategies would not be useful for identifying treatment effect parameters as
there is no available comparison group in these periods.
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units anticipate being treated and “make adjustments” that affect their outcomes in periods before the

treatment takes place. It is relatively straightforward to accommodate anticipation in a DID framework;

in particular, one can essentially “back up” the analysis far enough in time and only include as pre-

treatment periods those periods that are “far enough” before the treatment actually begins (see, for

example, Callaway and Sant’Anna (2021) and Sun and Abraham (2021)). For simplicity, this chapter

mostly ignores issues related to violations of the anticipation condition above.

Under Assumption 3, observed outcomes are given by Yit = Yit(0) when t < Gi and Yit = Yit(Gi) when

t ≥ Gi. In other words, in pre-treatment periods, the researcher observes untreated potential outcomes,

and, in post-treatment periods, the researcher observes potential outcomes corresponding to the unit’s

actual group.

The next assumption provides an extended version of the parallel trends assumption to accommodate

multiple time periods and variation in treatment timing.

Assumption 4 (Parallel Trends for Multiple Periods and Variation in Treatment Timing). For all t =

2, . . . , T , and for all g ∈ G,

E[∆Yt(0)|G = g] = E[∆Yt(0)]

Assumption 4 says that average paths of untreated potential outcomes are the same for all groups and

all time periods. This is a natural generalization of the parallel trends assumption in Assumption 1 to the

case with multiple periods and variation in treatment timing. Like that assumption, Assumption 4 allows

for heterogeneous treatment effects (both across units and with respect to time and/or length of exposure

to the treatment). It also does not place any restriction on treated potential outcomes at all, and it is

compatible with a fixed effects model for untreated potential outcomes like the one in Equation (2) across

all time periods while allowing for the distribution of the individual fixed effect, η, to arbitrarily vary

across groups. That said, there are alternative versions of parallel trends assumptions that researchers

could invoke here. One example that is discussed in the next section, is when parallel trends only holds

among those with similar observed characteristics. Another similar (and weaker) assumption would be

to assume that parallel trends only holds relative to the never treated group and only for certain time

periods. See Marcus and Sant’Anna (2021) for a detailed discussion and comparison of several different

possible parallel trends assumptions. To give one more example, another interesting assumption is that

parallel trends holds only among groups that ever participate in the treatment. This chapter focuses on

the version of parallel trends in Assumption 4, but many of the approaches considered below could be

implemented under alternative parallel trends assumptions with only slight modification.

Target Parameters: There are a large number of parameters that a researcher could potentially be

interested in when there are multiple periods and variation in treatment timing. This section considers

three main parameters of interest: group-time average treatment effects, overall average treatment effects,

and event studies; several additional parameters are considered in Callaway and Sant’Anna (2021).

To start with, define group-time average treatment effects which are given by

ATT (g, t) = E[Yt(g)− Yt(0)|G = g]

These are the average treatment effect for group g in time period t. ATT (g, t) is an important parameter

in the DID literature. First, from an identification standpoint, the next section shows that ATT (g, t)

can be identified using essentially the same arguments as in the case with exactly two periods considered

above. Second, under Assumption 4, recent work shows that α in the TWFE regression can be related

to “underlying” ATT (g, t)’s. Third, ATT (g, t) can be used to highlight treatment effect heterogeneity

with respect to group, time period, and/or length of exposure to the treatment. In some applications,
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the number of group-time average treatment effects may be large (e.g., this happens when the number of

groups and time periods is relatively large) and, therefore, may be challenging to report and/or interpret.

ATT (g, t)’s can also serve as the building block for more aggregated treatment effect parameters.

Towards this end, among units that ever participate in the treatment, define TEi := 1
T −Gi+1

T∑
t=Gi

(
Yit−

Yit(0)
)
, which is the average treatment effect for unit i across all of its post-treatment time periods. One

version of an overall treatment effect parameter is

ATTO = E
[
TE|G ≤ T

]
where conditioning on G ≤ T amounts to conditioning on becoming treated in any period from t =

2, . . . , T . This is a natural analogue for ATT in the case with multiple periods and variation in treatment

timing. It is the average effect of participating in the treatment among those that participate in the

treatment across all their post-treatment time periods. Like the coefficient on Dit in a TWFE regression,

ATTO is a single number; it can be used to summarize the causal effect of participating in the treatment

among those that ever participated. Callaway and Sant’Anna (2021) show that

ATTO =
∑
g∈G

T∑
t=2

wO(g, t)ATT (g, t)

where

wO(g, t) = P(G = g|G ≤ T )
1{t ≥ g}
T − g + 1

That is, ATTO can be recovered as a weighted average of ATT (g, t) where the weights depend on (i)

the relative size of the group among all groups that ever participate in the treatment (from the term

P(G = g|G ≤ T )), and (ii) the number of post-treatment time periods for a particular group (from the

second term) which arises due to ATTO applying equal weight across all treated units.

Another common target parameter in DID applications are event study parameters that summarize

the effect of participating in the treatment at different lengths of exposure to the treatment. In particular,

among units such that Gi+e ∈ {2, . . . , T }, define TEi(e) =
(
YiGi+e−YiGi+e(0)

)
; this is the causal effect of

the treatment e periods after exposure to the treatment (this notation uses the convention in the literature

of having e = 0 in the period where the treatment occurs). One can summarize treatment effects across

different lengths of exposure using the following parameter

ATTES(e) = E
[
TE(e)|G+ e ∈ [2, T ], G ≤ T

]
That is, ATTES(e) is the average treatment effect among those that have been exposed for exactly e

periods conditional on being observed having participated in the treatment for that number of periods

(the condition that G + e ∈ [2, T ]) and ever-participating in the treatment (G ≤ T ).13 Callaway and

Sant’Anna (2021) show that ATTES(e) can be recovered from underlying group-time average treatment

13Notice that the set of groups that contribute to ATTES(e) can change across different values of e. This can make ATTES(e)
difficult to interpret across different values of e especially in cases where, for example, earlier treated or later treated groups
experience systematically different effects of participating in the treatment. To be clear here, ATTES(e) is the average treatment
effect at different lengths of exposure to the treatment (among those groups that ever experience e periods of the treatment);
but differences across different values of e may not necessarily indicate dynamic effects across different lengths of exposure due
to the composition of groups also potentially changing across different values of e. There are strategies to deal with these sorts
of issues; particularly, related to computing event study parameters while keeping the composition of groups constant across
different values of e; see, for example, Callaway and Sant’Anna (2021) and Sun and Abraham (2021).
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effects; in particular,

ATTES(e) =
∑
g∈G

wES(g, e)ATT (g, g + e)

where

wES(g, e) = 1{g + e ≤ T }P(G = g|G+ e ≤ T )

Thus, ATTES(e) can be recovered as a weighted average of underlying ATT (g, t)’s. This average is given

by collecting ATT (g, t)’s that satisfy t = g+ e (i.e., finding the period for a particular group where it has

been exposed to the treatment for exactly e periods) and then by weighting by the relative size of the

group (among those groups that are ever observed to participate in the treatment for exactly e periods).

Remark 1. Given that ATTO and ATTES(e) can be recovered from underlying ATT (g, t)’s, the identi-

fication arguments below focus on ATT (g, t).

Remark 2. Another notable feature of the discussion in this section is that these arguments apply quite

generally for identifying causal effect parameters in applications with multiple time periods. In particular,

the identification arguments below focus on identifying ATT (g, t) in a DID context. However, in cases

where a researcher wanted to use some other identification strategy besides DID, given that ATT (g, t)

is somehow identified, then the aggregations to overall treatment effect parameters, event studies, etc.

continue to apply. See Callaway and Li (2021) and Callaway and Karami (2022) for examples along these

lines in the context of unconfoundedness (conditional on lagged outcomes) and interactive fixed effects

models, respectively.

3.1 Problems with TWFE Regressions

As discussed in the introduction, the dominant approach to implementing DID identification strategies

has been to use the TWFE regression in Equation (1). In this context, researchers are primarily inter-

ested in α which has typically (though often loosely) been interpreted as an overall average treatment

effect among those that ever participate in the treatment; i.e., along the lines of the definition of ATTO

above. Recent research, particularly Meer and West (2016), de Chaisemartin and D’Haultfœuille (2020),

Borusyak, Jaravel, and Spiess (2021), Goodman-Bacon (2021), and Athey and Imbens (2022), has pointed

out a number of weaknesses of this estimation strategy in cases where (i) there are more than two time

periods, (ii) there is variation in treatment timing, and (iii) there is treatment effect heterogeneity — all

of which are very common in applications in economics.

TWFE Regressions under Treatment Effect Homogeneity

To start with, it is worth considering where this specification comes from, and, additionally, why this

approach would work well under treatment effect homogeneity. A natural starting point is the model for

untreated potential outcomes in Equation (2). Next, notice that, in the setup with multiple time periods

and variation in treatment timing (and under a no-anticipation condition), observed outcomes can be

expressed in terms of potential outcomes by

Yit = Yit(0) + 1{t ≥ Gi}
(
Yit(Gi)− Yit(0)

)
(6)

Next, a mathematical expression for treatment effect homogeneity is the condition that Yit(g)−Yit(0) = α

for all units in all post-treatment time periods (i.e., periods where t ≥ g). This condition implies that

the effect of being treated does not vary across units; moreover, within units, the effect of the treatment
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does not vary across time periods, length of exposure, or depend on the time period when a unit becomes

treated. It implies that, in post-treatment time periods, Yit(Gi)− Yit(0) = α. Plugging in the model for

untreated potential outcomes in Equation (2) into Equation (6), using the treatment effect homogeneity

condition, and noticing that Dit = 1{t ≥ Gi} implies that

Yit = θt + ηi + αDit + vit

thus giving rise to the TWFE regression above. Under treatment effect homogeneity, the estimate of α

from this regression can be interpreted as an estimate of the causal effect of participating in the treatment.

TWFE Regressions under Treatment Effect Heterogeneity

This section considers the same TWFE regression but relaxes the treatment effect homogeneity con-

dition. Section 2 showed that, in the textbook case with two periods, α from the TWFE regression was

generally robust to treatment effect heterogeneity. In contrast, this section shows that α is not gener-

ally robust to treatment effect heterogeneity when there are multiple periods and variation in treatment

timing.14

Notation: The discussion in this section requires some extensions to the notation used so far. First,

define

D̈it := (Dit − D̄i)− E[Dt] +
1

T

T∑
s=1

E[Ds]

which is the double de-meaned version of Dit. Next, for any groups g and k, define

Ḡg :=
T − g + 1

T
, pg := P(G = g), pg|{g,k} := P(G = g|G ∈ {g, k})

which are the fraction of periods for which group g participates in the treatment, the overall probability

of being in group g, and the probability of being in group g conditional on either being in group g or

group k, respectively. For t1 < t2, let

Ȳ
(t1,t2)
i :=

1

t2 − t1 + 1

t2∑
t=t1

Yit, ATT
(t1,t2)

(g) :=
1

t2 − t1 + 1

t2∑
t=t1

ATT (g, t)

which are the average outcome for unit i between periods t1 and t2 and the average group-time average

treatment effect for group g from period t1 to t2, respectively. For two groups g and k with g < k (i.e.,

group g becomes treated before group k), it is also helpful to define the short-hand notation

Ȳ
PRE(g)
i := Ȳ

(1,g−1)
i , Ȳ

MID(g,k)
i := Ȳ

(g,k−1)
i , Ȳ

POST (k)
i := Ȳ

(k,T )
i

which are the average outcome for unit i in periods before either group becomes treated, the average

outcome for unit i in periods after group g becomes treated but before group k becomes treated, and the

average outcome for unit i after both group g and group k have become treated, respectively. Similarly,

define

ATT
MID(g,k)

(g) := ATT
(g,k−1)

(g), ATT
POST (k)

(g) := ATT
(k,T )

(g), ATT
POST (k)

(k) := ATT
(k,T )

(k)

14It is worth pointing out that there are multiple ways to estimate α in Equation (1). The discussion in this section focuses on
estimating α after taking a within transformation. See de Chaisemartin and D’Haultfœuille (2020) for an additional discussion
of the alternative approach of estimation in first differences; in that case, the arguments need to be slightly modified but the
same sort of issues continue to apply.
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which are the average group-time average treatment effect for group g in “MID” periods, the average

group-time average treatment effect for group g in “POST” periods, and the average group-time average

treatment effect for group k in “POST” periods, respectively.

There are several different variations of the following sort of result on interpreting α from the TWFE re-

gression in Equation (1); the one provided below is the “Bacon Decomposition” (Goodman-Bacon (2021)).

It provides a decomposition of α from the TWFE regression into a number of underlying comparisons. It

is a decomposition in the sense that it does not invoke a parallel trends assumption, but rather relates α

to underlying components that are themselves related to DID types of arguments. This sort of result is

extremely helpful for understanding the mechanics of the TWFE regression.

Proposition 1 (Bacon Decomposition, Goodman-Bacon (2021)). Under the setup considered in this

section,

α =
∑
g∈G

∑
k∈G,k>g

w1(g, k)
(
E[ȲMID(g,k) − Ȳ PRE(g)|G = g]− E[ȲMID(g,k) − Ȳ PRE(g)|G = k]

)
+ w2(g, k)

(
E[Ȳ POST (k) − ȲMID(g,k)|G = k]− E[Ȳ POST (k) − ȲMID(g,k)|G = g]

)
where

w1(g, k) := (1− Ḡg)(Ḡg − Ḡk)︸ ︷︷ ︸
timing

(pg + pk)2︸ ︷︷ ︸
size

pg|{g,k}(1− pg|{g,k})︸ ︷︷ ︸
relative size

/ 1

T

T∑
t=1

E[D̈2
it]

w2(g, k) := Ḡk(Ḡg − Ḡk)︸ ︷︷ ︸
timing

(pg + pk)2︸ ︷︷ ︸
size

pg|{g,k}(1− pg|{g,k})︸ ︷︷ ︸
relative sizes

/ 1

T

T∑
t=1

E[D̈2
it]

where w1(g, k) ≥ 0 and w2(g, k) ≥ 0 for all g and k such that k > g; in addition,
∑
g∈G

∑
k∈G,k>g w1(g, k)+

w2(g, k) = 1.

The proof of Proposition 1 is provided in Appendix A. It mimics the proof in Goodman-Bacon (2021)

with minor adjustments mainly related to notation. It is worth explaining this result in some more detail.

First, the double sum in the expression for α is first over all groups (the summation involving g) and

then over all groups that are “later-treated” than group g (the summation involving k).15 Then, α is a

weighted average of

(1) comparisons of paths of outcomes from “PRE” periods (where neither group g nor group k is treated)

to “MID” periods (where group g is treated but group k is not treated) between an early-treated

group (group g) and a later-treated group (group k).

(2) comparisons of paths of outcomes from “MID” periods to “POST” periods (where both group g and

group k are treated) for the later treated group (group k) relative to an early-treated group (group

g).

The comparisons in (1) are “good comparisons” in the sense that, under Assumption 4,

E[ȲMID(g,k) − Ȳ PRE(g)|G = g]− E[ȲMID(g,k) − Ȳ PRE(g)|G = k] = ATT
(g,k−1)

(g)

An informal intuition here is that parallel trends assumptions rationalize comparing paths of outcomes

for early-treated groups to not-yet-treated groups and interpreting differences in these paths as being due

to the effect of participating in the treatment.

15In Goodman-Bacon (2021), the never-treated group is treated separately; in the expression for α in Proposition 1, it is
included alongside “later-treated” groups.
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However, a key limitation of the TWFE regression is due to the “bad comparisons” in (2). This is

a comparison between a late-treated group to an already treated group. That is, the first main issue

being pointed out in Proposition 1 is that already-treated units sometimes serve as the comparison group.

Assumption 4 alone, however, does not justify using already treated units in the comparison group (instead,

it rationalizes using never treated or not-yet-treated units in the comparison group). It is interesting to

further expand the terms that show up in (2). Under Assumption 4, this second term can be expressed as

E[Ȳ POST (k) − ȲMID(g,k)|G = k]− E[Ȳ POST (k) − ȲMID(g,k)|G = g]

= E[Ȳ POST (k) − ȲMID(g,k)|G = k]− E[Ȳ POST (k) − ȲMID(g,k)|G = T + 1]

−
{(

E[Ȳ POST (k) − Ȳ PRE(g)|G = g]− E[Ȳ POST (k) − Ȳ PRE(g)|G = T + 1]
)

−
(
E[ȲMID(g,k) − Ȳ PRE(g)|G = g]− E[ȲMID(g,k) − Ȳ PRE(g)|G = T + 1]

)}
= ATT

POST (k)
(k)−

(
ATT

POST (k)
(g)−ATTMID(g,k)

(g)
)

︸ ︷︷ ︸
treatment effect dynamics

where the first equality holds by adding and subtracting terms, and the second equality uses Assumption 4.

This means that, comparisons of paths of outcomes for a later-treated group (here, group k) to paths of

outcomes for an already treated group (here, group g) deliver an ATT parameter for group k (the first

term above) but that is confounded by treatment effect dynamics (the second term above) for the already

treated group. This expression is also the source of the “negative weighting” issue emphasized in de

Chaisemartin and D’Haultfœuille (2020). Negative weights imply that it is, at least in principle, possible

for TWFE regression to deliver very poor estimates of causal effects. For example, in extreme cases, it

would be possible for all ATT (g, t)’s to be positive, but due to negative weighting, for α to be negative.

Furthermore, notice that the additional condition of treatment effect homogeneity does justify using

already treated units as the comparison group because, under treatment effect homogeneity, there are no

treatment effect dynamics. Moreover, a more limited form of treatment effect homogeneity — ruling out

treatment effect dynamics but allowing for heterogeneous effects across groups — is sufficient to eliminate

the negative weighting issue.

Avoiding the negative weighting issue implies that some of the worst-cases for TWFE regressions will

be avoided. However, even without treatment effect dynamics, this is still not strong enough to guarantee

that α = ATTO; in particular, define ATT (g) to be the average treatment effect for group g and note

that without treatment effect dynamics, ATT (g) = ATT (g, t) for any value of t. In this case, under

parallel trends, α delivers a weighted average of ATT (g) across groups, but, in general, the weights are

not equal to the relative size of the group. This implies that the TWFE estimates of α can still deliver a

poor estimate of ATTO when treatment effects vary across groups. To give an example where this would

be undesirable, notice that the weights depend on the timing of particular groups becoming treated; in

an application where parallel trends holds across all time periods, the weights on underlying ATT (g)’s

would change depending on how many pre-treatment periods a researcher includes in the estimation. In

the presence of heterogeneous treatment effects across groups, this would lead to the value of α changing

even though parallel trends holds across all periods and with underlying ATT (g)’s fixed.

To summarize the results in this section, unlike the two period case, using TWFE regressions to

implement DID identification strategies with multiple periods and variation in treatment timing is not

robust to treatment effect heterogeneity. In order for α to generally be equal to ATTO, it would require

that ATT (g, t) is constant across groups and time periods. This does allow for some limited forms of

treatment effect heterogeneity (e.g., it is weaker than requiring exact treatment effect heterogeneity across

all units and time periods), but it is not generally robust to treatment effect heterogeneity with respect to

group or time/length of exposure to the treatment. In some sense, this is a major theme of recent work
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critiquing TWFE regressions for implementing DID identification strategies — that they implicitly impose

stronger requirements on the data generating process than the DID identification strategy would suggest,

and that the failure of these additional requirements to holds (particularly various forms of treatment effect

homogeneity) can lead to poor estimates of treatment effect parameters of interest. The next section shows

that a number of alternative approaches can be used to directly target particular parameters of interest

while (i) being robust to general forms of treatment effect heterogeneity and (ii) not being much more

complicated to implement than a TWFE regression.

3.2 Alternative Approaches

The previous section suggested notable limitations of TWFE regressions for implementing difference-

in-differences identification strategies, particularly in the presence of treatment effect heterogeneity. This

section considers alternative approaches that are robust to treatment effect heterogeneity. One of the

themes of this section is to more clearly separate identification from estimation, and then to develop

estimation strategies that directly target identified parameters of interest. The first part shows that group-

time average treatment effects (and hence ATTO, ATTES(e), as well as other aggregations of group-time

average treatment effects) are nonparametrically identified under Assumption 4 and without requiring

additional assumptions restricting treatment effect heterogeneity. The second part considers alternative

estimation strategies to TWFE regressions mainly focusing on the approach suggested in Callaway and

Sant’Anna (2021), the “imputation” approaches suggested in Liu, Wang, and Xu (2021), Gardner (2021),

and Borusyak, Jaravel, and Spiess (2021), and the “regression” approaches suggested in Sun and Abraham

(2021) and Wooldridge (2021).

Identification

To start with, consider identifying ATT (g, t). The following result shows that ATT (g, t) is identified

in a DID setup without imposing assumptions limiting treatment effect heterogeneity.

Proposition 2 (Callaway and Sant’Anna (2021)). In the setup considered in this section and under

Assumptions 3 and 4, g ∈ Ḡ, and for all t ≥ g (i.e., post-treatment time periods for group g),

ATT (g, t) = E[Yt − Yg−1|G = g]− E[Yt − Yg−1|G = T + 1]

The proof of Proposition 2 is provided in Appendix A. The result is quite similar to the one provided

in Section 2 in the two period case. In particular, ATT (g, t) can be recovered by taking the actual path

of outcomes experienced by group g from its “base period” (this is period g − 1 which is the period

right before group g becomes treated) to period t and comparing it to the path of outcomes that group

g would have experienced over these time periods if it had not become treated. Under parallel trends,

this counterfactual path of outcomes can be recovered by the path of outcomes that the never-treated

group experienced over the same time periods.16 Given that ATT (g, t) is identified for all g ∈ Ḡ and

post-treatment time periods, this further implies that other treatment effect parameters such as ATTO

and ATTES(e) can be recovered as well.

16It is worth pointing out that the result in Proposition 2 can hold under weaker versions of the parallel trends assumption
than the one that is provided in Assumption 4. In particular, this result does not require parallel trends to hold in all time
periods and for all groups. This can be important particularly in applications where the number of time periods (especially
pre-treatment time periods) is relatively large. See Callaway and Sant’Anna (2021) and Marcus and Sant’Anna (2021) for more
discussions along these lines.
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Estimation

This section introduces and compares several recently proposed estimation strategies that are able to

circumvent the problems with TWFE regressions discussed above. In particular, this section discusses

Callaway and Sant’Anna (2021), the imputation approaches proposed in Liu, Wang, and Xu (2021),

Gardner (2021), and Borusyak, Jaravel, and Spiess (2021) and regression approaches proposed in Sun and

Abraham (2021) and Wooldridge (2021). In the presence of treatment effect heterogeneity, all of these

approaches are notably more robust than conventional TWFE regressions in applications with multiple

time periods and variation in treatment timing. Compared to each other, these approaches differ in

terms of (i) how they have been implemented in software, (ii) how they handle covariates, and (iii) some

differences related to trading off robustness and efficiency.

Moreover, all of these approaches follow roughly the same strategy. Each of them involves a two-step

procedure where the first step targets underlying treatment effect parameters (e.g., ATT (g, t)’s) without

imposing restrictions on treatment effect heterogeneity and involving only the “good comparisons” that

show up in the TWFE regression above while explicitly omitting the “bad comparisons” that also show

up there. In a second step, these approaches aggregate the underlying treatment effect parameters back

into target parameters of interest such as an overall ATT or into an event study.

To start with, consider the case where Assumption 4 holds and consider estimating ATT (g, t).

Callaway and Sant’Anna (2021): Callaway and Sant’Anna (2021) propose several estimators of

group-time average treatment effects. The simplest approach, based on the constructive identification

result in Proposition 2, is to simply replace population moments with their sample counterpart; that is,

ÂTT
CS

never−treated(g, t) =
1

n

n∑
i=1

1{Gi = g}
p̂g

(Yit − Yg−1)− 1

n

n∑
i=1

1{Gi = T + 1}
p̂T+1

(Yit − Yig−1)

In other words, take the average path of outcomes experienced by group g from their “base period” g− 1

to the current period and adjust it by the path of outcomes taken by the never-treated group over the

same time periods. There are alternative related estimators that can be rationalized under Assumption 4.

For example, using not-yet-treated units as the comparison group results in

ÂTT
CS

not−yet−treated(g, t) =
1

n

n∑
i=1

1{Gi = g}
p̂g

(Yit − Yig−1)− 1

n

n∑
i=1

1{Dit = 0}
P̂(Dt = 0)

(Yit − Yig−1)

Under the full version of Assumption 4, both of these estimators leave some information on the table.

First, neither uses information in periods before period (g− 1). Second, neither uses information on units

that become treated after period g but before period t. Along these lines, further consider

ÂTT
CS

build−the−trend(g, t) =
1

g − 1

g−1∑
s=1

(
1

n

n∑
i=1

1{Gi = g}
p̂g

(Yit − Yis)

)

− 1

g − 1

t∑
s=2

(
1

n

n∑
i=1

wbtt(g, l)
1{Dis = 0, Gi 6= g}
P̂(Ds = 0, G 6= g)

(Yis − Yis−1)

)

where wbtt(g, l) := min (g − 1, l − 1). This is a variation of the build-the-trend estimator proposed in

Marcus and Sant’Anna (2021) which uses all available untreated units in each period to “build” the

trend between periods g − 1 and t. Relative to Marcus and Sant’Anna (2021), the difference is that this

approach uses all available pre-treatment periods as the “base period” and averages over all of them (see

Appendix A.1 for a more detailed explanation of where this estimator comes from). At any rate, this

estimator addresses both of pieces of information that were not used above.
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Imputation Approaches: Imputation estimators for DID are proposed in Liu, Wang, and Xu (2021),

Gardner (2021), and Borusyak, Jaravel, and Spiess (2021). The intuition for the imputation approach is

to exploit the close connection between parallel trends assumptions and the model for untreated potential

outcomes given in Equation (2). To more deeply understand this approach, it is helpful to define U as the

set of observations where Dit = 0 (in particular, this includes all observations for the never-treated group

as well as pre-treatment observations for units that eventually become treated) and to define D as the set

of observations where Dit = 1 (which includes post-treatment observations for units that ever participate

in the treatment). The imputation algorithm proceeds as follows.

Step 1: Using the set of observations U , estimate the model for untreated potential outcomes

in Equation (2). Note that, even in the case where the data itself is a balanced panel, this

regression uses the data in U which is an unbalanced panel. This results in estimates of both

the time fixed effects and the unit fixed effects, θ̂t and η̂i, for all time periods and all units.17

Step 2: For each observation in D, impute its untreated potential outcome by

Ŷit(0) = θ̂t + η̂i

Given this step, for observations in D, both Yit(1) and Ŷit(0) are now available.

Given the imputation procedure above, one can compute estimates of treatment effect parameters of

interest by calculating particular averages of differences between observed outcomes and imputed outcomes

among observations in D. For example, an estimate of ATT (g, t) is given by

ÂTT
imp

(g, t) =
1

n

n∑
i=1

1{Gi = g}
p̂g

(
Yit − Ŷit(0)

)
There are also interesting connections between the imputation approach and the Callaway and Sant’Anna

(2021) approach. For example, notice that ÂTT
CS

(g, t) can be expressed as an imputation.

ÂTT
CS

(g, t) =
1

n

n∑
i=1

1{Gi = g}
p̂g

(
Yit − Ŷ CSit,never−treated(0)

)
where

Ŷ CSit,never−treated(0) = Yig−1 +
1

n

n∑
i=1

1{Gi = T + 1}
p̂T+1

(Yit − Yig−1)

In other words, the imputed value of the untreated potential outcome using Callaway and Sant’Anna

(2021) is whatever the outcome was in the “base period” plus the average path of outcomes experienced

by the treated group. Alternatively, if one were to estimate the model in Equation (2) using only the

never treated group and set η̂i = Yig−1, then the imputation estimator here would be numerically equal

to ÂTT
CS

never−treated(g, t).

Regression Approaches: To conclude this section, consider the approaches proposed in Sun and

Abraham (2021) and Wooldridge (2021). These approaches both estimate group-time average treatment

effects using regressions, and, additionally provide further interesting connections between the various

17Note that this step enforces the requirements that (i) there are no units already treated in the first period, and (ii) there
can be no time periods after which all units become treated. For (i), any units that are already treated by the first period will
not have any observations in U , and, therefore, their unit fixed effects cannot be estimated. For (ii), if there are time periods
after all units have become treated, there will be no observations from those time periods in U , and no time period fixed effects
can be estimated in those periods.
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different alternative approaches to TWFE regressions that have been discussed above. Sun and Abraham

(2021) propose a fully interacted regression to recover estimates of group-specific ATTs that avoid the

issues related to TWFE regressions18

Yit = θt + ηi +
∑
g∈Ḡ

∑
e 6=−1

δSAge 1{Gi = g}1{g + e = t}+ vit (7)

Interestingly, one can show that δ̂SAge = ÂTT
CS

never−treated(g, g + e).19 This suggests a close connection

between the Callaway and Sant’Anna (2021) approach of directly calculating averages and regression-based

approaches. However, this equality should not be surprising as the fully interacted regression proposed

in Sun and Abraham (2021) can be seen as a way to use a regression to calculate a large number of

averages. In fact, this also provides an explanation for why TWFE regressions work well in the case with

only two time periods — in that case, like the Sun and Abraham (2021) regression with multiple periods

and variation in treatment timing, the model is fully saturated in terms of interactions between groups

and time periods.

Next, consider the approach suggested in Wooldridge (2021) which involves estimating group-time

average treatment effects using the following regression20

Yit = θt + ηi +
∑
g∈Ḡ

T∑
s=g

αWgt 1{Gi = g, t = s}+ vit (8)

This regression is very similar to the one suggested in Sun and Abraham (2021) (the differences about

being written in terms of event time or calendar time are unimportant because one can easily switch

between the two). Relative to the regression in Equation (7), the more important difference is that this

regression only includes post-treatment interaction terms. There is tradeoff between these two approaches.

Sun and Abraham (2021) delivers estimates of treatment effect parameters in pre-treatment time periods,

which can be used for pre-testing the parallel trends assumption, while the regression in Equation (8) does

not. On the other hand, the regression in Equation (8) can be shown to be more efficient (under some

conditions) where the intuition for this sort of result is that this regression exploits the extra information

coming from parallel trends holding in all pre-treatment periods. That said, the regression in Equation (7)

tends to be more robust in the sense that violations of parallel trends in pre-treatment periods do not lead

to biased estimates of treatment effect parameters in post-treatment periods (as long as parallel trends

holds in the post-treatment periods).

Another interesting feature of the regression in Equation (8) is that α̂Wgt = ÂTT
imp

(g, t); that is, the

18Sun and Abraham (2021) use the terminology cohort-specific ATTs. “Cohort” has the same meaning as “group” in the
terminology of the current chapter. Sun and Abraham (2021) also write their target parameters in terms of event-time rather than
calendar time; and, in particular, that paper targets estimating the closely related parameter cohort-specific ATT, CATT (g, e)
(which is the average treatment effect for group g when they have been exposed to the treatment for exactly e periods). In
terms of group-time average treatment effects CATT (g, e) = ATT (g, g + e).

19This expression holds for post-treatment time periods (that is, for e ≥ 0). In pre-treatment periods, the default imple-
mentation of Callaway and Sant’Anna (2021) varies the “base period” across different pre-treatment periods while the default
implementation of Sun and Abraham (2021) fixes the “base period” to be the period right before treatment (i.e., when e = −1)
for both pre- and post-treatment periods. This leads to different estimates (and different interpretations) in pre-treatment
periods between the two approaches. However, if one uses the approach in Callaway and Sant’Anna (2021) and fixes the base
period to be the period right before treatment, then both approaches deliver identical estimates in pre-treatment periods as
well.

20Wooldridge (2021) primarily discusses an alternative pooled OLS regression that includes group indicators rather than the
unit fixed effect ηi in Equation (8); however, Wooldridge (2021) points out the equivalence of these regressions and this chapter
emphasizes the TWFE version of the regression only because it is more straightforward to compare it to the other approaches
discussed in this chapter.
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regression in Equation (8) delivers numerically identical estimates as the imputation approach discussed

above. This suggests a high degree of similarity between all the approaches that have been discussed so far:

one version of Callaway and Sant’Anna (2021) gives numerically identical estimates as the fully-interacted

regression of Sun and Abraham (2021); the fully interacted regression of Sun and Abraham (2021) only

differs from the regression proposed in Wooldridge (2021) in terms of whether or not it includes interactions

in pre-treatment periods (trading off robustness and efficiency); and the regression in Wooldridge (2021)

delivers numerically identical results to the imputation procedure discussed above.

One final comment is that the regression approaches in Sun and Abraham (2021) and Wooldridge (2021)

may be particularly appealing in applications where the researcher is primarily interested in estimating

and conducting inference on the group-time average treatment effects themselves — in this case, these

approaches can be implemented using standard software for panel data regressions. In cases where the

researcher is interested in aggregated treatment effect parameters such as ATTO or ATTES(e), then all

of the procedures that have been discussed involve two-step estimation procedures where inference is

complicated by needing to account for first-step estimation effects, and, therefore, one would typically

need to use specialized software implementations of different approaches.

3.3 Event Studies and Pre-Testing

The TWFE regressions that have been discussed so far target estimating a single overall treatment

effect parameter. The next most common target parameter in applied work is the event study; that

is ATTES(e). Event studies are useful to understand treatment effect dynamics (i.e., how the effect of

participating in the treatment varies with length of exposure to the treatment) as well as to implement

“pre-tests” of the parallel trends assumption by computing ATTES(e) for values of e less than 0. If the

parallel trends assumption holds, then these pre-treatment versions of ATTES(e) should be equal to 0.

Similar to the TWFE regression in Equation (1) above, event studies have often been implemented

with the following event study regression:

Yit = θt + ηi +

−2∑
e=−(T −1)

βeD
e
it +

T −1∑
e=0

βeD
e
it + vit (9)

where De
it is a binary variable that is equal to 1 for unit i in period t if unit i has been treated for exactly

e periods in period t and is equal to 0 otherwise. For example, D0
it is equal to one for units that become

treated in period t and is equal to zero for all other units; D2
it is equal to one for units that became treated

in period t− 2 and is equal to zero for all other units; and D−2
it is equal to all units that become treated

in period t+ 2 and is equal to 0 for all other units. For units that do not participate in the treatment in

any time period, De
it = 0 for all values of e.21

21While the event study regression in Equation (9) — sometimes called the “fully dynamic” event study regression — is
probably the most common in applications, there are alternative versions of event study regressions that show up in applications.
For example, a number of papers “bin” the endpoints; i.e., group all event times far enough before or after the treatment takes
place. To keep the arguments from becoming too complicated, the current chapter focuses here on a main case for the event
study regression but Borusyak, Jaravel, and Spiess (2021) and Sun and Abraham (2021) include substantially more details and
cover more general cases than those considered here.
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Notation: To provide a decomposition result for the event study regression in Equation (9) requires

introducing some more notation. First, define

Dit :=



D
−(T −1)
it

...

D−2
it

D0
it

...

DT −1
it


, D̄i :=

1

T

T∑
t=1

Dit, D̈it := Dit − D̄i − E[Dt] +
1

T

T∑
s=1

E[Ds]

where Dit collects De
it across all possible values of e, D̄i averages Dit across time periods, and D̈it is the

double de-meaned version of Dit (with respect to unit and time fixed effects). These are all 2(T − 1)

dimensional vectors. Further, recall that knowing a unit’s group pins down its entire path of participating

in the treatment; the decomposition below provides group-specific weights and it is therefore helpful to

have an expression converting between D̈it and group. Along these lines, define h̃e(g, t) :=
(
1{t − g =

e}− 1{(g+e)∈[1,T ]}
T

)
1{g < T +1}. One can show that D̈e

it = h̃e(Gi, t)−E[h̃e(G, t)]. Defining h(g, t) to be the

2(T − 1) dimensional vector that collects (h̃e(g, t)−E[h̃e(G, t)]) for e ∈ {−(T − 1), . . . ,−2, 0, . . . , T − 1},
this implies that D̈it = h(Gi, t) (see discussion around Equation (20) in Appendix A for additional

explanation).

The next result considers interpreting event study regressions in the presence of heterogeneous treat-

ment effects. It is a simplified version of the main result in Sun and Abraham (2021). In particular, it

is specialized to the case where (i) there are no units that are already treated in the first time period

(or those units are dropped), (ii) all leads and lags of participating in the treatment except e = −1 are

included in the event study regression (which is the most common practice in applications), and (iii) there

is a never treated group (or, alternatively, post-treatment periods after all units have become treated are

excluded).22

Proposition 3 (Sun and Abraham (2021)). Under the setup considered in this section,

βe =

T +1∑
l=−(T −1)

∑
g∈Ḡ

wESe (g, l) (E[Yg+l − Yg−1|G = g + l]− E[Yg+l − Yg−1|G = T + 1])

where wESe (g, l) = e′e

(∑T
t=1 E[D̈itD̈

′
it]
)−1

h(g, g + l)1{g + l ∈ [1, T ]} pg which satisfies the following

properties:

(i)
∑
g∈Ḡ

wESe (g, e) = 1

(ii) for l 6= e,
∑
g∈Ḡ

wESe (g, l) = 0

The result in Proposition 3 is interesting along several dimensions. First, notice that, under Assump-

22One other difference is that the next result as stated is a decomposition in the sense that it does not use the parallel trends
assumption or involve potential outcomes; this is a minor difference though and is done here mainly to make this result more
comparable to the Bacon decomposition in Proposition 1.
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tion 4,

E[Yg+l − Yg−1|G = g + l]− E[Yg+l − Yg−1|G = T + 1] =

ATT (g, g + l) for l ≥ 0

0 for l < −1

As expected, this suggests a relationship between the event study regression and group-time average

treatment effects at the corresponding length of exposure.

The main negative implication of Proposition 3 is that βe includes differences in paths of outcomes

at other lengths of exposure to the treatment besides e. As for the TWFE regression considered above,

this means that, for certain patterns of group-time average treatment effects, βe could be much different

from ATTES(e). Second, at the “correct” length of exposure to the treatment (as in property (i) of the

weights in Proposition 3), the weights sum to 1 across groups; this is a good property though, unlike

ATTES(e), the weights on underlying group-time average treatment effects are not equal to the relative

size of a particular group (i.e., in general, wESe (g, e) 6= P(G = g|G+ e ≤ T )). Third, as in property (ii) of

the weights, the weights at “incorrect” lengths of exposure sum to 0. An interesting implication of these

properties of the weights is that a sufficient condition for βe to be equal to ATTES(e) is that ATT (g, g+e)

be constant across groups for all e.23 Relative to the approaches in Callaway and Sant’Anna (2021) and

Sun and Abraham (2021), this suggests that for βe to equal ATTES(e) requires the additional condition

limiting treatment effect heterogeneity that ATT (g, g + e) does not vary across groups. Relative to the

TWFE regression considered earlier though, the event study regression does not require the additional

condition that ATT (g, t) is constant across t in order to recover its target parameter.

That being said, this discussion still suggests important advantages of the new DID approaches relative

to running an event study regression — they can directly target the natural target parameter without

requiring additional conditions limiting treatment effect heterogeneity. Furthermore, the setup in Propo-

sition 3 is favorable for an event study regression; like the TWFE regression, it is very easy to introduce

conceptual mistakes such as including units that are already treated in the first period or to estimate

event studies in periods where no untreated comparison group is available. The event study regression

can still “run” in these cases though the problems with it are likely to be more severe in these sorts of

setups (see Borusyak, Jaravel, and Spiess (2021) and Sun and Abraham (2021) for more details about

more complicated setups). This suggests further advantages of using new approaches in this context.

Finally, event study regressions are also commonly used to “pre-test” the parallel trends assumption

— that is, to attempt to check if the parallel trends assumption held in periods before the treatment was

implemented as a way to validate the parallel trends assumption. Proposition 3 suggests a major limitation

of using the event study regression for this purpose because group-time average treatment effects at other

lengths of exposure (including post-treatment group-time average treatment effects) show up in βe for

values of e < −1. By way of contrast, for values of e < 0, ATTES(e) can be used to pre-test the parallel

trends assumption and does not contain group-time average treatment effects from any incorrect lengths

of exposure. Although pre-testing the parallel trends assumption is very useful in most applications, there

are some important limitations that researchers should be aware of. First, pre-tests can have low power.

That is, there can be meaningful violations of parallel trends that pre-tests may fail to detect. Second,

conditioning on passing a pre-test (i.e., only reporting results that pass a pre-test) can lead to distorted

inferences. Roth (2020) discusses both of these issues extensively; see also Roth, Sant’Anna, Bilinski, and

Poe (2022) for more details as well.

23In this case, property (ii) implies that βe does not include ATT (g, g+ l) for any any l 6= e; property (i) further implies that
βe will be equal to the “weighted average” of ATT (g, g + e) across groups but these are all equal to each other in this case so
that βe = ATTES(e).
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4 Extensions

There are a number of useful extensions to the results from the previous section. This section covers

what are arguably two of the most useful extensions: (i) cases where the parallel trends assumption only

holds after conditioning on some observed covariates, and (ii) how to use a sensitivity analysis in the case

where the researcher is worried that parallel trends assumptions may be violated. Table 4 below provides

additional references for more extensions.

4.1 Conditional Parallel Trends Assumptions

Parallel trends assumptions can often be substantially more plausible if they involve conditioning on

observed covariates. The idea here is to compare the paths of outcomes among treated and untreated

units conditional on having the same characteristics. This section separately considers cases where the

covariates are time-invariant and time-varying which are, to some degree, conceptually different.

Time Invariant Covariates To start with, consider the case where a researcher wants to make the

parallel trends assumptions conditional on time-invariant covariates. This is a leading case in a number

of applications. For example, in industrial organization applications using firm-level data, a researcher

may wish to condition on a firm’s industry (which is time-invariant) in the parallel trends assumption.

Similarly, in applications in labor economics with individual level data, the most important covariates are

often variables like a person’s background/demographic characteristics or other variables like a person’s

education that either do not vary over time at all or vary so little (e.g., years of education for adults)

that they are effectively time-invariant. A version of the parallel trends assumption that conditions on

time-invariant covariates is given by

Assumption 5. For all t = 2, . . . , T , and for all g ∈ G,

E[∆Yt(0)|X,G = g] = E[∆Yt(0)|X] a.s.

This assumption says that, conditional on covariates X, paths of untreated potential outcomes are the

same for all groups. As in Section 3, there are multiple possible identification arguments and estimation

strategies that are available under this assumption. The next result provides a doubly robust expression

for ATT (g, t) under Assumption 5.

Proposition 4. Under Assumption 5 and additional regularity conditions (see Callaway and Sant’Anna

(2021, Theorem 1)),

ATT (g, t) = E

1{G = g}
pg

−
pg(X)U

pg(1−pg(X))

E
[

pg(X)U
pg(1−pg(X))

]
(Yt − Yg−1 −mnt

gt (X)
)

where pg := P(G = g), pg(X) := P(G = g|X,1{G = g} + U = 1) (which is the probability of being in

group g conditional on covariates and either being in group g or being in the never-treated group), and

mnt
gt (X) := E[Yt − Yg−1|X,U = 1].

Moreover, this expression for ATT (g, t) is doubly robust in the sense that, given parametric working

models pg(X;π) and mnt
gt (X;β) for the propensity score and outcome regression, respectively, the sample

analogue of this expression is consistent for ATT (g, t) if either model is correctly specified.

The proof of Proposition 4 is provided in Appendix A and comes from Sant’Anna and Zhao (2020) and

Callaway and Sant’Anna (2021). It is alternatively possible to develop “regression adjustment” (Heckman,

Ichimura, and Todd (1997)) or propensity score weighting (Abadie (2005)) estimands for ATT (g, t). The
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main attractive property of the doubly robust estimand given above is that it gives the researcher two

chances to correctly specify a model — either for mny
gt (X) or pg(X) — and delivers consistent estimates

of ATT (g, t) if either model is correctly specified. Moreover, this sort of estimand is also closely related

to the literature on double/de-biased machine learning, and Chang (2020) uses this sort of doubly robust

expression in order to be able to use modern machine learning techniques to estimate mny
gt (X) and pg(X).

The expression in Proposition 4 appears rather complicated, and it is therefore useful to take it apart

to some extent. Towards this end, it is useful to re-write the expression for ATT (g, t) as

ATT (g, t) = E
[

1{G = g}
pg

(
Yt − Yg−1 −mnt

gt (X;β∗)
)]
− E

 pg(X;π∗)U
pg(1−pg(X;π∗))

E
[

pg(X;π∗)U
pg(1−pg(X;π∗))

](Yt − Yg−1 −mnt
gt (X;β∗)

)
where, in order to illustrate the double robustness property, the expression has replaced the population

quantities mny
gt (X) and pg(X) with the parametric working models mny

gt (X;β) and pg(X;π), respectively

(and where β∗ and π∗ are the pseudo-true values of the parametric working models); to make the arguments

concrete, it is reasonable to think of these as being a linear regression model and logit model, respectively.

If mnt
gt (X;β) is correctly specified, then the first term above is equal to ATT (g, t) and is closely related to

regression adjustment DID strategies; moreover, the second term is equal to 0 in this case. If mnt
gt (X;β)

is incorrectly specified, then the first term is generally biased for ATT (g, t). However, if the pg(X;π) is

correctly specified, then the second term effectively de-biases the first term; notice that it amounts to

re-weighting the residuals from the regression of (Yt − Yg−1) on X among the never treated group. See

S loczyński and Wooldridge (2018) for additional discussion along these lines.24 Other work on double

robustness includes Robins, Rotnitzky, and Zhao (1994), Scharfstein, Rotnitzky, and Robins (1999), and

Kang and Schafer (2007).

Alternatively, imputation estimation strategies can also be used in the context of the conditional

parallel trends assumption in Assumption 5. In particular, similar to the imputation estimator discussed

in Section 3, one can estimate the model

Yit(0) = θt + ηi +X ′iβt + vit

using all available untreated observations, and then impute untreated potential outcomes for treated

observations by

Ŷit(0) = θ̂t + η̂i +X ′iβ̂t

Given this imputation, one can compute treatment effect parameters of interest as in the previous sec-

tion. This is conceptually similar to the regression adjustment strategy discussed above, but it provides

a convenient way to globally estimate a model for untreated potential outcomes which is both relatively

simple and can be more efficient than running separate group by time regressions. As a final comment, the

Callaway and Sant’Anna (2021) and imputation are quite similar; the Callaway and Sant’Anna (2021) ap-

proach is able to more flexibly deal with covariates while the imputation tends to be simpler to implement

as it only involves running regressions, computing predicted values, and averaging.

24It is also worth pointing out that the “weights” in Proposition 4 are very similar to those that show up in the propensity
score weighting literature (e.g., Abadie (2005)). These weights balance the distribution of covariates to be the same in the

untreated group as it is for group g. The term in the denominator of the weights, E
[

pg(X)U

pg(1−pg(X))

]
, turns out to be equal to one

(see Appendix A for details), but in estimation ensures that the second part of the weights have mean one in finite samples (this
type of adjustment often leads to improved finite sample performance; see, for example, Busso, DiNardo, and McCrary (2014)).
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Time Varying Covariates The previous discussion focused on the case where covariates were time

invariant. However, in many applications, a researcher may like to condition on covariates that vary over

time in the parallel trends assumption. A leading example is when the unit of observation is aggregated

up to, say, a county or a state (which is common in DID applications); in this case, it is more common to

have covariates that change over time such as a particular location’s population or its median income.

Interestingly, there has been a notable difference between how the econometrics literature has treated

time varying covariates relative to how covariates are included in most empirical work. In the econo-

metrics literature, most papers (see, for example, Abadie (2005) and Sant’Anna and Zhao (2020)) use

pre-treatment values of time-varying covariates. This effectively treats the value of time-varying covari-

ates in the period before the treatment takes place as a time-invariant covariate, and then applies the

framework for dealing with time-invariant covariates discussed above. On the other hand, empirical work

in economics typically estimates the following sort of TWFE regression:

Yit = θt + ηi + αDit +X ′itβ + vit (10)

This regression only includes time-varying covariates. This specification, however, suffers from a number

of weaknesses. First, it is important to point out that all of the issues with TWFE regressions under

unconditional parallel trends that were pointed out in the previous section continue to apply when the

TWFE regression includes covariates even under relatively strong functional form assumptions (see, for

example, the discussion in Goodman-Bacon (2021), de Chaisemartin and D’Haultfœuille (2020), and

Ishimaru (2022)). For example Goodman-Bacon (2021) decomposes α in Equation (10) into a “between”

component and a “within” component. The between component suffers from all the same issues as in

the unconditional case — for example, already treated units can serve as the comparison group for newly

treated units which can lead to negative weights.

Caetano, Callaway, Payne, and Rodrigues (2022) study the within component and show that, even in

the case with only two time periods (a case where TWFE regressions would work well under unconditional

parallel trends), the TWFE regression with covariates in Equation (10) can still perform poorly for any of

a number of reasons: (i) time-varying covariates themselves being affected by the treatment, (ii) treatment

effects or parallel trends assumptions that depend on the level of time-varying covariates rather than only

depending on the change in covariates over time, (iii) treatment effects or parallel trends assumptions

that depend on time-invariant covariates, (iv) relatively strong functional form assumptions on models

for untreated potential outcomes over time, treatment effect parameters, and the propensity score. All of

these issues are common in DID applications. Moreover, even if none of these issues apply in a particular

application, α from the TWFE regression in Equation (10) delivers a weighted average of conditional

ATTs but where the weights have an undesirable “weight reversal” property similar to the one pointed

out in S loczyński (2020) in the context of cross-sectional linear regressions under an unconfoundedness

assumption; that is, conditional ATTs for values of the covariates that are uncommon in the treated

group relative to the untreated group get a large amount of weight while conditional ATTs for values of

the covariates that are relatively common among the treated group get a small amount of weight.

Despite the limitations of TWFE regressions pointed out above, it is relatively straightforward to adapt

the new DID approaches to cases where the parallel trends assumption includes time-varying covariates

while side-stepping the limitations of the TWFE regression in Equation (10). For example, in cases

where the researcher is confident that the treatment does not directly affect the time-varying covariates

(i.e., that time-varying covariates evolve exogenously with respect to the treatment), Caetano, Callaway,

Payne, and Rodrigues (2022) provide a doubly robust expression for the ATT analogous to the one in

Proposition 4 except that it includes covariates at different points in time. This sort of doubly robust

expression is particularly attractive in this context as, in many applications, covariates at different points

in time are likely to be highly correlated with each other, and this expression provides a connection to the
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double/de-biased machine learning literature (e.g., Chernozhukov et al. (2018) and Chang (2020)) which

may be better suited to estimate first-step, high-dimensional nuisance parameters in this context relative

to imposing finite dimensional linear models.

In cases where the covariates themselves may be affected by participating in the treatment (this issue

is often referred to as a “bad control” problem), Caetano, Callaway, Payne, and Rodrigues (2022) define

treated and untreated potential covariates, Xit(1) and Xit(0). In this context, the potential covariates play

a dual role: because they can be affected by the treatment, they have the flavor of an outcome; but given

some identification strategy for the covariates, they also play a second role as a covariate in the parallel

trends assumption. Caetano, Callaway, Payne, and Rodrigues (2022) provide sufficient conditions under

which the idea in the econometrics literature of conditioning on pre-treatment covariates and time-invariant

covariates is justified (namely, an unconfoundedness assumption on untreated potential covariates) and

propose other approaches under alternative conditions on the time-varying covariates. These ideas can be

implemented using strategies similar to either Callaway and Sant’Anna (2021) or imputation approaches.

4.2 Violations of Parallel Trends

This chapter has emphasized limitations of TWFE regressions for implementing DID identification

strategies and argued in favor of alternative estimation strategies. However, a more fundamental issue in

any kind of DID application is the validity of the parallel trends assumption itself. Although DID is often

grouped with quasi-experimental methods, it should be emphasized that parallel trends assumptions do

not hold automatically in cases where some units participate in a treatment while others do not.

One helpful way to think about possible violations of parallel trends assumptions comes from thinking

about models for untreated potential outcomes. In particular, when parallel trends is violated, it indicates

that the model in Equation (2) is misspecified. Perhaps the leading source of this misspecification is that

the additive separability between the time fixed effects and unit fixed effects is not justified. For example,

many economic theories would involve models for untreated potential outcomes that depend on time

and unobserved heterogeneity that could be distributed differently between the treated and untreated

group; however, most economic theories do not imply additive separability except as an assumption for

convenience/tractability. An alternative (and more general) model for untreated potential outcomes is

Yit(0) = ht(ηi) + vit

where ht is a nonparametric, time-varying function of the unit fixed effect η. Without further restrictions,

it is hard to make progress with this sort of model because ht can vary in unrestricted ways over time

(and in particular, note that parallel trends would not generally hold in this sort of model for untreated

potential outcomes). An interesting intermediate case is an interactive fixed effects model for untreated

potential outcomes

Yit(0) = θt + ηi + λiFt + vit (11)

where λi is an unobserved time invariant variables (for simplicity, suppose that λi is a scalar) and Ft is a

time varying effect of λi (see, for example, Gobillon and Magnac (2016) and Xu (2017)). Sometimes Ft

and λi are referred to as a “factor” and “factor loading”, respectively. A special case of this interactive

fixed effects model is the linear trends model which occurs when Ft = t (see, for example, Heckman

and Hotz (1989), Wooldridge (2005), and Mora and Reggio (2019)). The more general interactive fixed

effects model in Equation (11) is often challenging to identify in the case with a small number of time

periods. It is possible to make some progress but typically requires some extra assumptions (see Callaway

and Karami (2022) and Imbens, Kallus, and Mao (2021); see also Freyaldenhoven, Hansen, and Shapiro

(2019) for another example of a model where parallel trends could be violated).
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Manski and Pepper (2018) and Rambachan and Roth (2021a) consider bounds on ATT that come

from relaxing the parallel trends assumption. These ideas are conceptually similar to a vast literature on

sensitivity analysis. However, one of the most useful features of many DID applications is the availability

of pre-treatment periods where violations of parallel trends can be observed by the researcher. The idea of

Manski and Pepper (2018) and Rambachan and Roth (2021a) is to relate the magnitudes of violations of

parallel trends in pre-treatment periods to the “robustness” of treatment effect estimates in post-treatment

periods.25 To provide some details (and returning back to the case where there is a single treated group),

notice that, in general, one can write

E[Yt∗ − Yt∗−1|D = 1]− E[Yt∗ − Yt∗−1|D = 0] = ATTt∗ +
(
E[Yt∗(0)− Yt∗−1(0)|D = 1]− E[Yt∗(0)− Yt∗−1(0)|D = 0]

)
(12)

Under the parallel trends assumption, the second term in Equation (12) is equal to 0 (and, therefore, the

ATT is equal to the average path of outcomes experienced by the treated group relative to the average

path of outcomes experienced by the untreated group). But in many applications, a researcher may have

doubts about the parallel trends assumption. Although in post treatment periods (i.e., t > t∗), the term

on the right hand side of Equation (12) is not identified, it is identified in pre-treatment time periods.

Then, a natural way to think about relaxing the parallel trends assumption is to relate it to the observed

magnitudes of violations of parallel trends in pre-treatment periods. One way to do this is to assume, for

some M̄ ≥ 0,∣∣∣E[∆Yt∗(0)|D = 1]− E[∆Yt∗(0)|D = 0]
∣∣∣ ≤ M̄ max

t=2,...,t∗−1

∣∣∣E[∆Yt(0)|D = 1]− E[∆Yt(0)|D = 0]
∣∣∣ (13)

which implies that

ATTt∗ ∈
[
E[∆Yt∗ |D = 1]− E[∆Yt∗ |D = 0]± M̄ max

t=2,...,t∗−1

∣∣∣E[∆Yt(0)|D = 1]− E[∆Yt(0)|D = 0]
∣∣∣]

Here, M̄ is a sensitivity analysis parameter. When M̄ = 0, it implies that the parallel trends assumption

holds exactly in post-treatment periods regardless of what happened in pre-treatment periods. Another

natural choice is to set M̄ = 1; this case allows for violations as large as the largest violation of parallel

trends observed in pre-treatment periods.

Manski and Pepper (2018) and Rambachan and Roth (2021a) additionally discuss other kinds of

sensitivity analyses in the context of DID. Combining new approaches to DID with this sort of sensitivity

analysis seems to be a very promising way forward for many applications in economics. Even in cases

where parallel trends is not rejected in pre-treatment periods, this sort of framework can still be useful

especially in cases where pre-tests may be under-powered.

5 Application

This section implements the methods discussed in previous sections in an application on the effect of

minimum wage changes on teen employment. The main goal is to illustrate differences between traditional

regression methods and the new approaches discussed above. All of the code used in this section is open-

25This setup is also broadly related to the idea of pre-testing discussed in Section 3.3. One drawback of pre-testing is that, in
cases where parallel trends assumptions appear to be violated in pre-treatment periods, it does not provide the researcher with
a viable path on which to proceed. This can be particularly troubling in applications where the violations of parallel trends
appear to be small relative to the size of the estimates of treatment effect parameters — a case where, intuitively, it seems as
though one should be able to learn something about the treatment effects; this framework is relatively common (for example,
the application below on the minimum wage broadly fits into this category).
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source.26 The complete code can be found at https://www.github.com/bcallaway11/did chapter.

Data: This application uses essentially the same data as in Callaway and Sant’Anna (2021) (there are

slight differences with respect to the states that are included and covariates, but these differences are just

to illustrate different approaches discussed in the current chapter). The unit of observation is the county,

and the main outcome is county-level teen employment. Data about teen employment comes from the

Quarterly Workforce Indicators (QWI) as was used in Dube, Lester, and Reich (2016). The application

focuses on a time period from 2001-2007 where the federal minimum wage was constant at $5.15 per hour.

This is important as it means that the identification strategy is not complicated by federal minimum

wage changes. Counties that have minimum wages above the federal minimum wage are classified as

being treated. This is a potential weakness of the application as it ignores variation in the amount of

the minimum wage change across states.27 Additional county characteristics come from IPUMS National

Historical GIS (county population) and QCEW County Employment and Wages (county average annual

pay). Due to some missing data, the data ultimately includes a balanced panel of counties from 42 states

from 2001-2007. See Callaway and Sant’Anna (2021) for additional details on the data.

In order to more fully illustrate the different strategies discussed in this chapter, this section uses five

subsets of data:

� Data 1: Full data - uses all available states/counties and time periods (2001-2007)

� Data 2: No already treated - drops states/counties that are already treated at the beginning of

the period

� Data 3: No never treated - drops states/counties that do not participate in the treatment in any

time period

� Data 4: No never treated and no already treated - drops states/counties that are never-treated

or that are already treated at the beginning of the period (i.e., this only includes observations that

show up in both Data 2 and Data 3)

� Data 5: No early periods - drops states/counties that are never-treated or that are already

treated at the beginning of the period and also only includes years from 2004-2007 (i.e., the subset

of Data 4 that only includes years from 2004-2007).

Considering different samples seems like an interesting exercise for several reasons. First, between

Data 1 and Data 2, Data 2 drops units that are already treated in the first period. This is generally a

good choice because, under parallel trends, already treated units are not useful for identifying/estimating

treatment effect parameters; however, TWFE regressions and event study regressions will still “run” in

this case and including these observations can result in additional “bad comparisons”. Data 3, Data 4,

and Data 5 are probably not how any researchers would organize their data in this application, but these

are meant to be representative of applications where, particularly, there is no group of units that does not

participate in the treatment in any time period. TWFE regressions and event study regressions can be

immediately applied to these data as well.

Summary statistics for Data 2 in 2001 are provided in Table 1. It is immediately evident that there

are large differences between counties where the minimum wage increased relative to counties where the

minimum wage did not change. First, notice that teen employment is substantially higher in treated

counties in 2001 than in untreated counties (where “treated” refers to counties that had a minimum

wage higher than the federal minimum wage in any period from 2002-2007 and “untreated” refers to

26In particular, the code relies primarily on the R packages bacondecomp (Flack and Jee (2022)), did (Callaway and Sant’Anna
(2022)), did2s (Butts (2021a)), didimputation (Butts (2021b)), fixest (Bergé (2018)), HonestDiD (Rambachan and Roth
(2021b)), modelsummary (Arel-Bundock (2022)), and pte (Callaway (2022)).

27That being said, there is a relatively small amount of variation in the size of minimum wage changes across states. The
smallest minimum wage increase was to $5.85 in West Virginia, and the largest minimum wage increase was to $7.15 in Michigan.
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Table 1: Summary Statistics

Untreated (N=1417) Treated (N=1074)

Mean Std. Dev. Mean Std. Dev. Diff. Std. Err.

County Characteristics:
Teen Emp. (100s) 9.0 28.8 20.1 48.1 11.2 1.6
Population (1000s) 52.9 154.1 119.5 291.2 66.6 9.7
Avg. Yrly Pay (1000s) 24.8 5.2 26.9 5.9 2.1 0.2

N Pct. N Pct.

Region:
Northeast 0 0.0 166 15.2
Midwest 496 35.0 547 50.2
South 819 57.8 245 22.5
West 102 7.2 132 12.1

Notes: The table provides summary statistics for the data used in the application. The data used for these summary

statistics is Data 2 which, relative to the full data, does not include states/counties which already had a minimum

wage above the federal minimum wage in 2001. The unit of observation is the county, and the summary statistics

use county-level data from 2001. Counties are classified as being treated if they are in a state that ever increased its

minimum wage above the federal minimum wage in any year from 2002 to 2007.

counties that did not). This suggests that comparisons of the level of teen employment between treated

and untreated counties are likely to perform poorly in evaluating the effects of minimum wage increases.

Second, treated counties and untreated counties have much different overall populations and somewhat

different average yearly pay. Finally, there is a notable amount of variation in the location of treated and

untreated locations; all counties in the Northeast in the data eventually have a minimum wage above the

federal minimum wage while counties in the South are much less likely to experience a minimum wage

increase (with Midwest and West counties in between).

Overall Treatment Effect: This section reports results for overall treatment effect parameters using

different methods and data. Before presenting those results, Figure 1 provides estimates of group-time

average treatment effects, which are the building blocks for the aggregated parameters considered in this

section, using the Callaway and Sant’Anna (2021) approach with the never-treated comparison group. To

be clear, estimates of group-time average treatment effects can change using alternative approaches (e.g.,

the build-the-trend estimator, the imputation estimator, or estimates under conditional parallel trends);

that said it is helpful to see some disaggregated results. The most notable features of the ATT (g, t)

estimates are (i) notable treatment effect heterogeneity across groups, time, and particularly with length

of exposure to the treatment (with most groups tending to experience larger negative effects at longer

lengths of exposure), and (ii) some apparent violations of the parallel trends assumption in some pre-

treatment periods for some groups.

Next, the first set of overall treatment effect estimates are reported in Table 2. These results come

from TWFE regressions using the five different datasets above. The results vary notably across different

datasets with estimates ranging from minimum wage changes decreasing teen employment by 3.7% on

average (relative to teen employment in the absence of the minimum wage change) to minimum wage

changes increasing teen employment by 1.1% (which is marginally statistically significant). Interestingly,

these estimates essentially run the gamut of estimates of minimum wage effects in the literature.

There are several explanations for why the estimates change across specifications. First, the fraction
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Figure 1: Callaway and Sant’Anna (2021) estimates of group-time average treatment effects
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Notes: The figure contains estimates of group-time average treatment effects for all available groups and time periods

using the approach in Callaway and Sant’Anna (2021) using the never-treated group as the comparison group and

under unconditional parallel trends.
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Table 2: TWFE estimates of overall effects

Data 1 Data 2 Data 3 Data 4 Data 5

TWFE Est.
treated −0.037* −0.035* −0.026* −0.009 0.011

(0.005) (0.006) (0.006) (0.007) (0.006)

Bacon Decomp.
Earlier v. Later 0.861 0.952 0.474 0.745 0.250
Later v. Earlier 0.139 0.048 0.526 0.255 0.750

% Weight pg

g = 2002 0.015 0.014 0.014 0.021 0.027 0.000
g = 2004 0.094 0.168 0.170 0.234 0.286 0.000
g = 2005 0.057 0.098 0.099 0.128 0.151 0.000
g = 2006 0.227 0.301 0.302 0.331 0.355 0.386
g = 2007 0.608 0.419 0.414 0.284 0.181 0.614

Num.Obs. 18 851 17 437 8932 7518 3222

Notes: The top panel of the table (“TWFE Est.”) contains estimates of the coefficient of a binary treatment indicator

in a TWFE regression as in Equation (1). The middle panel (“Bacon Decomp.”) contains results from a Bacon

decomposition. The rows labeled “Earlier v. Later” contain the fraction of weight that the TWFE regression puts on

comparisons involving units that become treated relative to not-yet-treated units (which are the sort of comparisons

justified by the parallel trends assumption). The rows labeled “Later v. Earlier” contain the fraction of weight that

the TWFE regression puts on comparisons involving units that become treated relative to already-treated units (which

are the sort of “bad comparisons” that show up in TWFE regressions). The bottom panel (“% Weight”) contains (i)

in the column labeled “pg”, the actual fraction of observations in each group among all units that become treated, and

(ii) the fraction of weight on each group coming from the TWFE regression. The columns report estimates separately

by which data was used.

of weight on “bad comparisons” varies tremendously across the data that is used. For Data 2 (that

does not include already treated units), only about 5% of the weight in the TWFE regression goes to

bad comparisons. Including already treated units (as in Data 1) increases the amount of weight on bad

comparisons to 14%. Removing the never-treated group from the data (as in Data 3, 4, and 5) results in

substantially more weight being put on bad comparisons (ranging from 26% to 75%) as well as notable

changes in the estimated effect of the minimum wage.

Another more subtle issue is that, even in the absence of the treatment effect dynamics (which would

rationalize using already treated groups as comparison groups), the weights on underlying treatment

effect parameters is still driven by the estimation method and varies across which data is used. To give

an example, about 9% of counties that are ever treated become treated in 2004. However, the amount

of total weight on the 2004 group of counties in the TWFE regression ranges from 0 to 29% across

datasets. Further, there is notable variation in the effect of the treatment across groups (see, Figure 4

in Appendix B). This implies that variation in weights on group-time average treatment effects across

regressions can cause changes in the TWFE estimates.28

Finally, Table 3 provides treatment effect estimates using the new approaches discussed above. The first

five columns provide estimates using Data 2. In the case where the researcher does not include additional

28Because the weights on group-time average treatment effects also vary across time, there is not an adding up property for
the weights in Table 2 and the average treatment effects by group in Figure 4, but it is still representative of the role that
weights combined with treatment effect heterogeneity plays in interpreting TWFE estimates.
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Table 3: Alternative estimates of overall effects

TWFE CS (NT) CS (NYT) CS (BTT) Imp. TWFE (D4) CS (D4) Imp (D4)
No Covariates −0.035∗ −0.040∗ −0.039∗ −0.033∗ −0.040∗ −0.009 −0.019∗ 0.002

(0.006) (0.005) (0.005) (0.005) (0.008) (0.007) (0.007) (0.009)

Covariates −0.020∗ −0.030∗ −0.028∗ −0.047∗ 0.008 0.011 0.020∗

(0.006) (0.005) (0.006) (0.006) (0.007) (0.009) (0.009)

Notes: The table provides estimates of an overall ATT using different approaches discussed in the main text. The

rows labeled “No Covariates” do not include any covariates; the rows labeled “Covariates” include the log of county

population, the log of county average annual pay, and region fixed effects (with time varying coefficients). Columns

labeled “TWFE” report estimates from a TWFE regression; columns labeled “CS (NT)”, “CS (NYT)”, and “CS

(BTT)” report Callaway and Sant’Anna (2021) estimates using the never-treated comparison group, the not-yet-

treated comparison group, and the build-the-trend estimator discussed in the text, respectively; columns labeled

“Imp.” report estimates from the imputation procedure discussed in the text. Estimates in the first five columns

use Data 2; estimates in the last three columns use Data 4. CS and imputation estimates that include covariates

drop states from the Northeast census region as all states eventually become treated in the Northeast which creates

violations of underlying support assumptions for some time periods.

covariates, the estimates are broadly similar to the TWFE estimates; however, it is still important to

remember that none of the new approaches put any weight on “bad comparisons” and all of the weights

are directly targeted at recovering the overall ATT. The second part of the table provides results when

additional covariates are included; the additional covariates are the log of county population, the log of

county average annual pay, and region (which is typically thought to be an important covariate in the

minimum wage literature). There are larger differences between the TWFE results and new approaches

in this case; for example, the TWFE estimate is about 30% smaller in magnitude than the CS estimates,

and over 50% smaller than the imputation estimate. As discussed in Section 4.1, including covariates

is the case with the biggest conceptual difference between CS and imputation — here, the CS approach

effectively conditions on the pre-treatment level of the time varying covariates (and also enjoys the double

robustness property) while the imputation approach effectively conditions on the change in the covariates

over time in a linear model. The last three columns use Data 4 (which drops both always treated and

never treated observations). These results are notably different. In this case, the CS estimates decrease

in magnitude, and one of the imputation estimates is positive and statistically significant. The main

explanation for this result is that the definition of “overall” average treatment effect changes in this case;

in particular, when there is no available never-treated group, group-time average treatment effects are

only identified up to 2006 (i.e., they are not available in 2007 anymore). However, notice that in Figure 1,

the largest group-time average treatment effects tend to be in 2007. This suggests that, at least in the

present context, changing the definition of overall ATT can lead to notably different estimates.

Event Study: Next, Figure 2 compares the results from an event study regression using Data 1 and

Data 2 to the the results using Callaway and Sant’Anna (2021). The results are fairly similar across

methods/data though it is worth pointing out some interesting patterns. First, using Data 1, notice that

the event study is estimated out until 6 periods after the treatment while it is only estimated out until

5 periods out using Callaway and Sant’Anna (2021) and Data 2. At e = 6, the event study regression

estimates are essentially fully spurious and come from the group of counties already treated in 2001. This

group also affects estimates at earlier lengths of exposure and explains the relatively large differences

between the event study regressions using Data 1 and Data 2.

Next, it is interesting to compare the results from Callaway and Sant’Anna (2021) to the estimates
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Figure 2: Event Study Comparison
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Notes: The figure provides event study estimates of dynamic effects of participating in the treatment coming from

using an event study regression with Data 2, and event study regression with Data 4, and an event study using the

approach of Callaway and Sant’Anna (2021).

from the event study regression using Data 2. The CS estimates are numerically equal to a weighted

average of paths of outcomes from period g − 1 to period g + e among groups that participated in the

treatment for e periods relative to the path of outcomes of the never-treated group over the same time

periods (and where the weights are given by the relative sizes of each available group). Take, for example,

the estimate at e = 5. There is only one group, g = 2002, that is exposed to the treatment for 5 periods.

The CS estimate is exactly equal to the average path of outcomes for g = 2002 between 2001 and 2007

relative to the average path of outcomes for the never-treated group over the same periods. Exactly the

same term shows up in β5 in the event study regression with weight equal to 1 (which holds by additional

property (ii) in Proposition 3). However, other terms also show up in the event study regression. For

example, ATT (g = 2002, t = 2002) gets a weight of -0.21 (which is the largest other weight in absolute

value), and there are nine total group-time average treatment effects that get a weight of 0.1 or higher in

absolute value (though it is undesirable that these have non-zero weight as they are all for event times

other than e = 5). Due to heterogeneous effects across groups and time periods, this moves the estimate

from the event study regression away, at least to some extent, from the CS estimate; moreover, it is

apparent that under a large amount of treatment effect heterogeneity, this event study regression could

perform quite poorly.

Another thing that is interesting about the CS results in Figure 2 is that there appear to be some

violations of parallel trends in pre-treatment periods (particularly, at e = −2, the point estimate is 0.015

and statistically different from 0). This suggests some limitations of the DID identification strategy.

However, the “effects” in post-treatment periods are also statistically significant and seem large relative

to the apparent violations of parallel trends. This sort of issue is likely to be fairly common in applications,
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Figure 3: Rambachan and Roth (2021a) Sensitivity Analysis
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Notes: The figure provides a sensitivity analysis using the approach from Rambachan and Roth (2021a) for the “on

impact” ATT (i.e., for the CS event study in Figure 2 when e = 0). The blue line contains the 95% confidence interval

coming from the original estimate. The red lines provide 95% confidence sets allowing for violations of the parallel

trends assumption up to M̄ times as large as the maximum that occurred in pre-treatment periods.

and the sensitivity analysis discussed in Section 4.2 above is very well-suited for this setup. Results for

the sensitivity analysis are reported in Figure 3 for e = 0. The results indicate that the earlier conclusions

are robust (in the sense of being statistically different from 0) to violations of parallel trends only up to

half as large as were observed in pre-treatment periods. Allowing for violations of parallel trends as large

as were observed in pre-treatment periods, the confidence set ranges from -0.073 to 0.023. This suggests a

relatively wide range of possible effects of minimum wage increases on teen employment under violations

of parallel trends similar to the ones that were observed in pre-treatment periods.

Discussion: This section has considered several different approaches to estimating treatment effect

parameters in a DID application with treatment effect heterogeneity and variation in treatment timing.

There are several important takeaways from this application (and, arguably, these are generally repre-

sentative of how using new approaches to DID can matter). First, as in any DID application, the most

important concern is whether or not the parallel trends assumption actually holds. In this application,

there is some evidence of moderately sized violations of the parallel trends assumption in pre-treatment

periods. The Rambachan and Roth (2021a) sensitivity analysis is particularly useful in this context and

can be combined with any new DID approach. Second, treatment effect heterogeneity can matter a great

deal. Under treatment effect heterogeneity, the definitions of target parameters can change due to data

availability; for example, the results above were sensitive to whether or not treatment effects could be re-

covered in 2007 (where there tended to be the largest effects of participating in the treatment). Likewise,

in the presence of treatment effect heterogeneity, the issue of having weights driven by the estimation
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method (as are the TWFE and event study regression weights) becomes more severe. Finally, in some

cases there was a non-negligible amount of weight put on “bad comparisons” that use already treated

units as the comparison group. The amount of weight on bad comparisons can be substantially mitigated

by the researcher making good choices such as not including units that were already treated in the first

period or by not including periods after all units have become treated. In general, the TWFE and event

study regression estimates were not radically different from the estimates coming from new approaches;

however, at least in some cases, there were differences that were large enough to suggest that researchers

ought to use the new approaches.

6 Conclusion

This chapter has reviewed a number of recent, important advances in the econometrics literature

on difference-in-differences. This literature has (i) pointed out a number of limitations of traditional

regression-based approaches for implementing DID identification strategies in the presence of treatment

effect heterogeneity, and (ii) proposed a set of alternative approaches that do not suffer from the same set

of limitations. The new approaches are typically only slightly more complicated to implement, and there

currently exist several well-developed software packages implementing the new approaches.

To conclude, there are a number of additional topics and extensions that this chapter did not cover.

Table 4 lists some additional topics that may be of interest for particular applications where the goal is to

study the causal effect of some economic policy/treatment and when a researcher has access to repeated

observations over time. This is certainly an incomplete list but is meant to provide readers with a helpful

springboard into related work.
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Table 4: Further Reading on Related Topics

Additional Topic References

More complicated treatment regimes (e.g., mov-
ing into and out of treatment, multi-valued or
continuous treatments)

de Chaisemartin and D’Haultfœuille (2021b)
and Callaway, Goodman-Bacon, and Sant’Anna
(2021)

Non-standard inference (e.g., small number of
treated units or design-based inference)

Conley and Taber (2011), Ferman (2019), Hage-
mann (2019), Athey and Imbens (2022), and
Rambachan and Roth (2020)

Large-T panels (e.g., interactive fixed effects
models, synthetic controls, matrix completion)

Abadie, Diamond, and Hainmueller (2010),
Hsiao, Ching, and Wan (2012), Gobillon and
Magnac (2016), Xu (2017), Arkhangelsky et al.
(2021), Ferman and Pinto (2021), Athey et al.
(2021), and Bai and Ng (2021)

Distributional effects (e.g., quantile treatment ef-
fects)

Athey and Imbens (2006), Bonhomme and
Sauder (2011), Chernozhukov, Fernandez-Val,
Hahn, and Newey (2013), Callaway and Li
(2019), Callaway, Li, and Oka (2018), and Call-
away (2021)

Limited dependent variables (e.g., DID with a
binary outcome)

Botosaru and Muris (2017), Wooldridge (2021),
and Lee and Lee (2021)

Fuzzy DID (e.g., DID with aggregated data) de Chaisemartin and D’Haultfœuille (2018)

Sensitivity to functional form assumptions Roth and Sant’Anna (2021)

Repeated cross sections and unbalanced panels Abadie (2005), Hong (2013), Botosaru and
Gutierrez (2018), and Sant’Anna and Zhao
(2020)

DID surveys Baker, Larcker, and Wang (2021), Chaise-
martin and D’Haultfœuille (2021a), and Roth,
Sant’Anna, Bilinski, and Poe (2022)
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A Proofs

Proof of Proposition 1

Proof. To start with, well known Frisch-Waugh-Lovell type arguments imply that

α =

1

T

T∑
t=1

E[D̈itYit]

1

T

T∑
t=1

E[D̈2
it]

where, below (and unlike the main text), the notation sometimes indexes random variables by i in places

where it makes the arguments more clear. Next, notice that

E[D̈it] = 0 (14)

Further, define v(g, t) = 1{t ≥ g} − Ḡg. Notice that, since treatment status is fully determined by group,

one can re-write

Dit = 1{t ≥ Gi}, D̄i =
1

T

T∑
t=1

Dit =
T −Gi + 1

T
, E[Dt] = P(Dt = 1) =

∑
g∈G

1{t ≥ g}pg

and similarly that

E[Dt]−
1

T

T∑
s=1

E[Ds] =
∑
g∈G

1{t ≥ g}pg −
1

T

T∑
s=1

∑
g∈G

1{s ≥ g}pg

=
∑
g∈G

1

T

T∑
s=1

(1{t ≥ g} − 1{s ≥ g}) pg

=
∑
g∈G

(
1{t ≥ g} − Ḡg

)
pg

=
∑
g∈G

v(g, t)pg

so that, in terms of Gi and t,

D̈it = 1{t ≥ Gi} −
T −Gi + 1

T
−
∑
g∈G

v(g, t)pg

= v(Gi, t)−
∑
g∈G

v(g, t)pg (15)
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Now consider the numerator in the expression for α

1

T

T∑
t=1

E[D̈itYit] =
1

T

T∑
t=1

E[D̈it(Yit − E[Yt])]

=
1

T

T∑
t=1

E[v(Gi, t)(Yit − E[Yt])]−
1

T

T∑
t=1

∑
g∈G

v(g, t) pg E
[
Yit − E[Yt]

]︸ ︷︷ ︸
=0

=
1

T

T∑
t=1

∑
g∈G

v(g, t)(E[Yt|G = g]− E[Yt]) pg

=
1

T

T∑
t=1

∑
g∈G

v(g, t)

(
E[Yt|G = g]−

∑
k∈G

E[Yt|G = k] pk

)
pg

=
1

T

T∑
t=1

∑
g∈G

∑
k∈G

v(g, t)
(
E[Yt|G = g]− E[Yt|G = k]

)
pk pg

=
1

T

T∑
t=1

∑
g∈G

∑
k∈G,k>g

(v(g, t)− v(k, t))
(
E[Yt|G = g]− E[Yt|G = k]

)
pk pg

where the first equality holds by Equation (14), the second equality holds by Equation (15), the third

and fourth equalities hold by the law of iterated expectation, the fifth equality holds by re-arranging

the summations, and the last equality holds because the summations are symmetric but with different

“weights” v(g, t).

Next, notice that

v(g, t)− v(k, t) =


Ḡk − Ḡg for t < g < k

(1− Ḡg) + Ḡk for g ≤ t < k

Ḡk − Ḡg for g < k ≤ t

(16)
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Now, notice that

1

T

T∑
t=1

∑
g∈G

∑
k∈G,k>g

(v(g, t)− v(k, t))
(
E[Yt|G = g]− E[Yt|G = k]

)
pk pg

=
∑
g∈G

∑
k∈G,k>g

1

T

T∑
t=1

(v(g, t)− v(k, t))
(
E[Yt|G = g]− E[Yt|G = k]

)
pk pg

=
∑
g∈G

∑
k∈G,k>g

{
1

T

g−1∑
t=1

(v(g, t)− v(k, t))
(
E[Yt|G = g]− E[Yt|G = k]

)

+
1

T

k−1∑
t=g

(v(g, t)− v(k, t))
(
E[Yt|G = g]− E[Yt|G = k]

)

+
1

T

T∑
t=k

(v(g, t)− v(k, t))
(
E[Yt|G = g]− E[Yt|G = k]

)}
pk pg

=
∑
g∈G

∑
k∈G,k>g

{
g − 1

T
(Ḡk − Ḡg)

(
E[Ȳ PRE(g)|G = g]− E[Ȳ PRE(g)|G = k]

)
+
k − g
T

((1− Ḡg) + Ḡk)
(
E[ȲMID(g,k)|G = g]− E[ȲMID(g,k)|G = k]

)
+
T − k + 1

T
(Ḡk − Ḡg)

(
E[Ȳ POST (k)|G = g]− E[Ȳ POST (k)|G = k]

)}
pk pg

=
∑
g∈G

∑
k∈G,k>g

{
(1− Ḡg)(Ḡk − Ḡg)

(
E[Ȳ PRE(g)|G = g]− E[Ȳ PRE(g)|G = k]

)
+ (Ḡg − Ḡk)((1− Ḡg) + Ḡk)

(
E[ȲMID(g,k)|G = g]− E[ȲMID(g,k)|G = k]

)
+ Ḡk(Ḡk − Ḡg)

(
E[Ȳ POST (k)|G = g]− E[Ȳ POST (k)|G = k]

)}
pk pg

=
∑
g∈G

∑
k∈G,k>g

{
(1− Ḡg)(Ḡg − Ḡk)

(
E[ȲMID(g,k) − Ȳ PRE(g)|G = g]− E[ȲMID(g,k) − Ȳ PRE(g)|G = k]

)
+ Ḡk(Ḡg − Ḡk)

(
E[Ȳ POST (k) − ȲMID(g,k)|G = k]− E[Ȳ POST (k) − ȲMID(g,k)|G = g]

)}
pk pg

where the first equality changes the order of the summations, the second equality splits the summations by

“PRE”, “MID”, and “POST” periods, the third equality holds from Equation (16) and by the definitions

of Ȳ PRE(g), ȲMID(g,k), and Ȳ POST (k), the fourth equality holds by the definition of Ḡg, and the last

equality holds by rearranging and combining terms. Finally, notice that pg = pg|{g,k}(pg + pk); plugging

this expression in and the analogous expression for pk completes the proof.
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Proof of Proposition 2

Proof.

ATT (g, t) = E[Yt(g)− Yt(0)|G = g]

= E[Yt(g)− Yg−1(0)|G = g]− E[Yt(0)− Yg−1(0)|G = g]

= E[Yt(g)− Yg−1(0)|G = g]−
t∑

s=g

E[Ys(0)− Ys−1(0)|G = g]

= E[Yt(g)− Yg−1(0)|G = g]−
t∑

s=g

E[Ys(0)− Ys−1(0)|G = T + 1]

= E[Yt(g)− Yg−1(0)|G = g]− E[Yt(0)− Yg−1(0)|G = T + 1]

= E[Yt − Yg−1|G = g]− E[Yt − Yg−1|G = T + 1]

where the first equality holds from the definition of ATT (g, t), the second equality holds by adding and

subtracting E[Yg−1(0)|G = g], the third equality holds by adding and subtracting E[Ys(0)|G = g] for

all s = g, . . . , t − 1, the fourth equality holds by Assumption 4, the fifth equality cancels all the terms

involving E[Ys(0)|G = T + 1] for s = g, . . . , t − 1, and the last equality re-writes potential outcomes in

terms of their observed counterparts.

Proof of Proposition 3

Proof. To start with, notice that the event study regression in Equation (9) can be re-written as

Yit = θt + ηi + D′itβ + vit

where β is the 2(T − 1) dimensional vector that collects all of the βe in Equation (9). Standard Frisch-

Waugh types of arguments then imply that

βe = e′e

( T∑
t=1

E[D̈itD̈
′
it]

)−1 T∑
t=1

E[D̈itYit] (17)

where, with a slight abuse of notation, ee is the 2(T −1) column vector with 1 in the position corresponding

to e and all other elements equal to 0.

The results below use the following properties of double-demeaned variables: (i) E[D̈it] = 0; (ii)

for some random variable, Zi, that does not depend on the time period
∑T
t=1 E[D̈itZi] = 0; and (iii)

E[D̈itD̈
′
it] = E[D̈itD

′
it]. These are all well-known properties of double-demeaning (see, for example, Sun

and Abraham (2021)). Property (ii) implies that

T∑
t=1

E[D̈itYiGi−1] = 0 (18)

and property (i) implies that

E[D̈it]
∑
g∈G

E[Yit − Yig−1|G = T + 1]pg = 0 (19)

Further, recall that a typical element of Dit is given by De
it = 1{t − Gi = e}1{Gi < T + 1}. This
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implies that

D̄e
i =

1

T

T∑
t=1

1{t−Gi = e}1{Gi < T + 1}

=
1{(Gi + e) ∈ [1, T ]}

T
1{Gi < T + 1}

where the second equality holds because t can, at most, equal Gi + e for only one value of t = 1, . . . , T ,

and that

E[De
t ] =

∑
g∈G

1{t− g = e}1{g < T + 1} pg

and

1

T

T∑
s=1

E[De
s] =

1

T

T∑
s=1

∑
g∈G

1{t = g + e}1{g < T + 1} pg

=
∑
g∈G

1{g + e ∈ [1, T ]}
T

1{g < T + 1} pg

Next, recall that h̃e(g, t) =
(
1{t− g = e} − 1{(g+e)∈[1,T ]}

T

)
1{g < T + 1}. Thus, a typical element of D̈it

is given by

D̈e
it = h̃e(Gi, t)−

∑
g∈G

h̃e(g, t) pg (20)

and that D̈it = h(Gi, t) where h(g, t) is a 2(T − 1) vector with typical element given by h̃e(g, t) −∑
k∈G h̃e(k, t) pk

There are several properties of h(g, t) that are used below. First, for any g and e,

T∑
t=1

h̃e(g, t) =

T∑
t=1

(
1{t− g = e} − 1{(g + e) ∈ [1, T ]}

T

)
1{g < T + 1}

= 1{g < T + 1}

(
1{(g + e) ∈ [1, T ]} −

T∑
t=1

1{(g + e) ∈ [1, T ]}
T

)
= 0

which immediately implies that

T∑
t=1

h(g, t) = 0 (21)
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Another useful property is that

T∑
t=1

∑
g∈G

h(g, t)E[Yt|G = T + 1]pg =

T∑
t=1

E[Yt|G = T + 1]
∑
g∈G

h(g, t)pg

=

T∑
t=1

E[Yt|G = T + 1]E[h(Gi, t)]

=

T∑
t=1

E[Yt|G = T + 1]E[D̈it]

= 0 (22)

where the third equality holds by the definition of h(Gi, t), and the last equality holds because E[D̈it] = 0.

Additionally, notice that

T∑
t=1

∑
g∈G

h(g, t)E[Yg−1|G = T + 1]pg =
∑
g∈G

E[Yg−1|G = T + 1]pg

T∑
t=1

h(g, t)

= 0 (23)

where the last equality holds because
∑T
t=1 h(g, t) = 0. Therefore, it follows from Equations (22) and (23)

that

T∑
t=1

∑
g∈G

h(g, t)E[Yit − Yig−1|G = T + 1]pg =

T∑
t=1

∑
g∈G

h(g, t)E[Yt|G = T + 1]pg −
T∑
t=1

∑
g∈G

h(g, t)E[Yg−1|G = T + 1]pg

= 0 (24)

Now, consider the “numerator” in Equation (17).

T∑
t=1

E[D̈itYit] =

T∑
t=1

E[D̈itYit]−
T∑

t=1

E[D̈itYiGi−1]

=

T∑
t=1

E[h(Gi, t)(Yit − YiGi−1)]

=
T∑

t=1

∑
g∈G

h(g, t)E[Yit − Yig−1|Gi = g] pg

=

T∑
t=1

∑
g∈G

h(g, t)E[Yit − Yig−1|Gi = g] pg −
T∑

t=1

∑
g∈G

h(g, t)E[Yit − Yig−1|G = T + 1]pg

=

T∑
t=1

∑
g∈G

h(g, t)
(
E[Yit − Yig−1|Gi = g]− E[Yit − Yig−1|G = T + 1]

)
pg

=

T∑
t=1

∑
g∈G

h(g, t)

T −1∑
l=−(T −1)

(
E[Yig+l − Yig−1|Gi = g]− E[Yig+l − Yig−1|G = T + 1]

)
1{g + l = t}1{g < T + 1} pg

=

T −1∑
l=−(T −1)

∑
g∈Ḡ

h(g, g + l) pg
(
E[Yig+l − Yig−1|Gi = g]− E[Yig+l − Yig−1|G = T + 1]

) T∑
t=1

1{g + l = t}︸ ︷︷ ︸
=1{g+l∈[1,T ]}

where the first equality holds by Equation (18), the second equality holds by the definition of h(Gi, t),

the third equality holds by the law of iterated expectations, the fourth equality holds by Equation (24),

the fifth equality holds by combining terms, the sixth equality holds because the indicator inside the new

summation only picks up the original term (and the inside term is equal to 0 when g = T + 1), and the
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last equality holds by rearranging summations and by summing over only groups that are ever treated

(i.e., where g < T + 1).

This implies that

βe =

T +1∑
l=−(T −1)

∑
g∈Ḡ

wESe (g, l)
(
E[Yig+l − Yg−1|G = g]− E[Yig+l − Yig−1|G = T + 1]

)
where

wESe (g, l) = e′e

( T∑
t=1

E[D̈itD̈
′
it]

)−1

h(g, g + l)1{g + l ∈ [1, T ]} pg

This completes the first part of the proof. The next part shows the additional properties of the weights

provided in the proposition. Towards this end, notice that

∑
g∈Ḡ

h(g, g + l)1{g + l ∈ [1, T ]} pg =
∑
g∈Ḡ

T∑
t=1

h(g, t)1{t = g + l} pg

=

T∑
t=1

∑
g∈G

h(g, t)1{t = g + l}1{g < T + 1} pg

=

T∑
t=1

E [h(Gi, t)1{t = Gi + l}1{Gi < T + 1}]

=

T∑
t=1

E[D̈itD
l
it]

=

T∑
t=1

E[D̈itD̈
l
it] (25)

where the first equality holds because 1{t = g + l} holds at most once from t = 1, . . . , T , the second

equality changes the order of summations and sums across all groups, the third equality holds by the

definition of expectation, the fourth equality holds by the definitions of h(G, t) and Dl
it, and the last

equality holds by the properties of double de-meaned random variables. Thus,

∑
g∈Ḡ

( T∑
t=1

E[D̈itD̈
′
it]

)−1

h(g, g + l)1{g + l ∈ [1, T ]} pg =

( T∑
t=1

E[D̈itD̈
′
it]

)−1 T∑
t=1

E[D̈itD̈
l
it]

= el

where the first equality holds by Equation (25), and the last equality holds because the previous line

amounts to a regression of D̈l
it on D̈it (of with D̈l

it is an element and, therefore, the coefficients from this

regression are all equal to 0 except the one on D̈l
it which is equal to 1). This further implies that,∑

g∈Ḡ

wESe (g, l) = e′eel

which is equal to 1 when l = e and equal to 0 when l 6= e. This implies the additional properties of the

weights.
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Proof of Proposition 4

Proof. Start by rewriting the expression for ATT (g, t) as

ATT (g, t) = E
[

1{G = g}
pg

(
Yt − Yg−1 −mnt

gt (X)
)]
− E

 pg(X)U
pg(1−pg(X))

E
[

pg(X)U
pg(1−pg(X))

](Yt − Yg−1 −mnt
gt (X)

)
:= A−B

For Term A, notice that

A = E [Yt − Yg−1|G = g]− E
[
E[Yt − Yg−1|X,U = 1]

∣∣∣G = g
]

= E [Yt(1)− Yg−1(0)|G = g]− E
[
E[Yt(0)− Yg−1(0)|X,U = 1

∣∣∣G = g
]

= E [Yt(1)− Yg−1(0)|G = g]− E
[
E[Yt(0)− Yg−1(0)|X,G = g

∣∣∣G = g
]

= E [Yt(1)− Yg−1(0)|G = g]− E [Yt(0)− Yg−1(0)|G = g]

= E [Yt(1)− Yt(0)|G = g]

= ATT (g, t)

where the first equality holds by the law of iterated expectations and by the definition of mnt
gt (X), the

second equality holds by writing observed outcomes in terms of their corresponding potential outcomes,

the third equality holds by Assumption 5, the fourth equality holds by the law of iterated expectations,

the sixth equality cancels E[Yg−1(0)|G = g] from each term, and the last equality holds by the definition

of ATT (g, t).

For term B, first notice for the denominator in the “weights” that

E
[

pg(X)U

pg(1− pg(X))

]
= E

[
pg(X)U

pg(1− pg(X))

∣∣∣1{G = g}+ U = 1

]
(pg + pU )

= E
[

pg(X)

pg(1− pg(X))
E[U |X,1{G = g}+ U = 1]

∣∣∣1{G = g}+ U = 1

]
(pg + pU )

=
E[pg(X)|1{G = g}+ U = 1]

pg
(pg + pU )

=
pg|{g,U}

pg
(pg + pU )

= 1 (26)

where the first and second equalities hold by the law of iterated expectations, the third equality holds

because E[U |X,1{G = g}+U = 1] = 1− pg(X), the fourth equality holds by the definition of pg(X) and

the law of iterated expectations, and the last equality because pg|{g,U} = pg/(pg + pU ). Thus,

B = E
[

pg(X)U

pg(1− pg(X))

(
(Yt − Yg−1)− E[Yt − Yg−1|X,U = 1]

)]
= E

[
pg(X)

pg(1− pg(X))

(
(Yt − Yg−1)− E[Yt − Yg−1|X,U = 1]

)∣∣∣U = 1

]
pU

= E

 pg(X)

pg(1− pg(X))

(
E[Yt − Yg−1|X,U = 1]− E[Yt − Yg−1|X,U = 1]

)
︸ ︷︷ ︸

=0

∣∣∣U = 1

 pU
= 0
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where the first equality holds by Equation (26), and the second and third equalities hold by the law of

iterated expectations. This implies the first part of the result.

To show the double robustness property, let pg(X;π) denote a parametric working model for pg(X) and

mnt
gt (X,β) denote a parametric working model for mnt

gt (X); let π∗ and β∗ denote the pseudo-true values

of the parameters. First, consider the case where mnt
gt (X,β

∗) = mnt
gt (X) so that the outcome regression

model is correctly specified but allow for the possibility that the propensity score model is not correctly

specified. In this case, the arguments are analogous to above: the arguments for term A did not rely on

the propensity score model, and the arguments for term B also go through with pg(X,π
∗) replacing pg(X)

and without requiring this model to be correctly specified (given that mnt
gt (X,β

∗) is correctly specified).

Finally, consider the case where the propensity score model is correctly specified, but the outcome

regression may not be correctly specified. In this case,

A = E[Yt(1)− Yg−1(0)|G = g]− E[mnt
gt (X;β∗)|G = g]

and

B = E
[

pg(X)U

pg(1− pg(X))

(
(Yt − Yg−1)−mnt

gt (X;β∗)
)]

:= B1 −B2

Next,

B1 = E
[

pg(X)U

pg(1− pg(X))
(Yt − Yg−1)

]
= E

[
pg(X)

pg(1− pg(X))

(
Yt(0)− Yg−1(0)

)∣∣∣U = 1

]
pU

= E
[

pg(X)

pg(1− pg(X))
E[Yt(0)− Yg−1(0)|X,U = 1]

∣∣∣U = 1

]
pU

= E
[
E[Yt(0)− Yg−1(0)|X,U = 1]

∣∣∣G = g
]

= E
[
E[Yt(0)− Yg−1(0)|X,G = g]

∣∣∣G = g
]

= E [Yt(0)− Yg−1(0)|G = g]

where the second equality holds by the law of iterated expectations and writing observed outcomes in terms

of their corresponding potential outcomes, the third equality holds by the law of iterated expectations,

the fourth equality holds by integrating with respect to group g rather than the untreated group and

re-weighting, the fifth equality holds by Assumption 5, and the last equality holds by the law of iterated

expectations. Finally,

B2 = E
[

pg(X)

pg(1− pg(X))
mnt
gt (X;β∗)

)∣∣∣U = 1

]
pU

= E
[
mnt
gt (X;β∗)

∣∣∣G = g
]

This implies that, in this case, A−B = ATT (g, t) which implies the double robustness property.

A.1 Explanation for Build-the-Trend Estimator

This section provides the corresponding estimand for ÂTT
CS

build-the-trend(g, t) stated as a proposition.

Proposition 5. In the setup considered in Section 3 and under Assumptions 3 and 4, g ∈ Ḡ, and for all
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t ≥ g (i.e., post-treatment time periods for group g),

ATT (g, t) = E[Yt(g)− Ȳ PRE(g)|G = g]−
t∑
l=2

w̃btt(g, l)E[Yl − Yl−1|Dl = 0, G 6= g]

where w̃btt(g, l) = min
(

1, l−1
g−1

)
.

Proof.

ATT (g, t) = E[Yt(g)− Yt(0)|G = g]

=
1

g − 1

g−1∑
s=1

E[Yt(g)− Ys(0)|G = g]− 1

g − 1

g−1∑
s=1

E[Yt(0)− Ys(0)|G = g]

= E[Yt − Ȳ PRE(g)|G = g]− 1

g − 1

g−1∑
s=1

t∑
l=s+1

E[Yl(0)− Yl−1(0)|G = g]

= E[Yt − Ȳ PRE(g)|G = g]− 1

g − 1

g−1∑
s=1

t∑
l=2

1{l ≥ s+ 1}E[Yl(0)− Yl−1(0)|G = g]

= E[Yt − Ȳ PRE(g)|G = g]−
t∑
l=2

E[Yl(0)− Yl−1(0)|G = g]
1

g − 1

g−1∑
s=1

1{s ≤ l − 1}

= E[Yt − Ȳ PRE(g)|G = g]−
t∑
l=2

w̃btt(g, l)E[Yl(0)− Yl−1(0)|G = g]

= E[Yt − Ȳ PRE(g)|G = g]−
t∑
l=2

w̃btt(g, l)E[Yl(0)− Yl−1(0)|Dl = 0, G 6= g]

where the first equality uses the definition of ATT (g, t), the second equality amounts to using all pre-

treatment periods as the “base period” and averaging over these, the third equality holds by replacing

potential outcomes with their observed counterparts and because all the intermediate terms in the second

part cancel with each other, the fourth equality changes the limits of the inside summation, the fifth

equality holds by changing the order of the summation and then rearranging terms, the sixth equality

holds by the definition of w̃btt, and the last equality holds under Assumption 4.
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B Additional Figures

Figure 4: Callaway and Sant’Anna (2021) group-specific average treatment effects
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Notes: The figure contains estimates of group-specific average treatment effects (average across all available post-

treatment time periods for a particular group) for all available groups using the approach in Callaway and Sant’Anna

(2021) using the never-treated group as the comparison group and under unconditional parallel trends.
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