
Supplementary Notes for 8070 Review Quiz

These are suppplementary notes that cover a handful of extra topics for the 8070 review quiz
that were not provided elsewhere.

1. Bias and Variance of ̂𝛽
We will consider the following assumptions throughout this part of the course:

1. Linear CEF: 𝑌 = 𝑋′𝛽 + 𝑒 and 𝔼[𝑒|𝑋] = 0

2. Finite Moments: 𝔼[𝑌 2] < ∞ and 𝔼||𝑋||2 < ∞

3. Positive definite design matrix: 𝔼[𝑋𝑋′] is positive definite.

For some of the results below, we will also use the additional homoskedasticity condition:
𝔼[𝑒2|𝑋] = 𝜎2 (that is, the variance of the error term does not depend on 𝑋)

We’ll continue to suppose that we have access to an i.i.d. sample. The main two properties that
we’ll consider are the bias of ̂𝛽 and the sampling variance of ̂𝛽. Before we consider those, let’s
start by defining what they are. Let ̂𝜃 generically denote some estimator of a population parameter
of interest 𝜃. Then,

Bias( ̂𝜃) = 𝔼[ ̂𝜃] − 𝜃

̂𝜃 is said to be unbiased if Bias( ̂𝜃) = 0, or, equivalently, if 𝔼[ ̂𝜃] = 𝜃. It is worth pausing a moment
to think conceptually about what is happening here. First, estimators are random — this point
may not be immediately obvious though. In particular, given once you have access to a particular
dataset, this typically pins down a value of ̂𝜃. What it means that ̂𝜃 is random is that we can carry
out the thought experiment of repeatedly collecting 𝑛 new observations from the same population
and re-calculating ̂𝜃 for the new data. In our thought experiment, given that we have new samples,
the value of ̂𝜃 would generally change with each new sample. If you were to carry this procedure out
an extremely large number of times, this would give rise to a distribution of ̂𝜃 in repeated samples;
this distribution is called the sampling distribution of ̂𝜃.
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In practice, however, we only have one dataset and, therefore, only one value of ̂𝜃. Given
the above discussion, it is natural to consider the ̂𝜃 that we have as a draw from the sampling
distribution discussed above. Therefore, if an estimator is unbiased, what this means is that, on
average (with respect to the sampling distribution), our estimator ̂𝜃 is equal to the population
parameter 𝜃. Importantly, unbiasedness is generally a good property for an estimator to have, but,
given that we only have one draw from the sampling distribution, even if our estimator is unbiased,
it is still possible that our particular value of ̂𝜃 could be far away from 𝜃.

Practice: Show that ̄𝑌 ∶= 1
𝑛 ∑𝑛

𝑖=1 𝑌𝑖 is unbiased for 𝔼[𝑌 ].

Next, the sampling variance of ̂𝜃 is given by var( ̂𝜃). You should think of this as the variance of
̂𝜃 in the repeated sampling thought experiment mentioned above. All else equal, we would prefer

estimators that have lower sampling variance.

Expectation of least squares estimator

H: 4.5, 4.7
Now, let’s consider the bias of ̂𝛽. To start with let’s calculate 𝔼[ ̂𝛽|X] (this sort of conditional

expectation may feel a bit unusual as we are conditioning on the data matrix, but it is totally
reasonable to do this)

𝔼[ ̂𝛽|X] = 𝔼[(X′X)−1X′Y|X]
= (X′X)−1X′𝔼[Y|X]
= (X′X)−1X′X𝛽
= 𝛽

To see the step that uses 𝔼[Y|X] = X𝛽, let’s point out a few things. First,

𝔼[𝑌𝑖|X] = 𝔼[𝑌𝑖|𝑋1, 𝑋2, … , 𝑋𝑛] = 𝔼[𝑌𝑖|𝑋𝑖] = 𝑋′
𝑖𝛽

where the first equality holds immediately, the second equality holds by the independence in i.i.d.
sampling, and the last equality holds by the linear CEF. Thus,

𝔼[Y|X] = ⎛⎜⎜⎜
⎝

⋮
𝔼[𝑌𝑖|X]

⋮

⎞⎟⎟⎟
⎠

= ⎛⎜⎜⎜
⎝

⋮
𝑋′

𝑖𝛽
⋮

⎞⎟⎟⎟
⎠

= X𝛽

which is what we used above.
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The book provides an alternative derivation for the same result which I think is also useful for
quickly covering. Notice that we can alternatively write

̂𝛽 = (X′X)−1(X′(X𝛽 + e))
= (X′X)−1X′X𝛽 + (X′X)−1Xe
= 𝛽 + (X′X)−1Xe (1)

The expression in Equation 1 is one that we will use a number of times throughout this semester,
so I think it is worth highlighting.

Now, using this expression, notice that

𝔼[ ̂𝛽|X] = 𝛽 + (X′X)−1X𝔼[e|X]
= 𝛽

where the last equality holds because 𝔼[e|X] = 0 which holds because 𝔼[𝑒|𝑋] = 0 and by using
similar arguments as for 𝔼[Y|X] above.

Given the result above, it then follows by the law of iterated expectations that

𝔼[ ̂𝛽] = 𝔼[𝔼[ ̂𝛽|X]] = 𝛽

and that, therefore, ̂𝛽 is unbiased for 𝛽.

Variance of least squares estimator

H: 4.6, 4.7
Next, we’ll calculate the sampling variance of ̂𝛽. To this end, let’s start by defining

D ∶= var(e|X) = 𝔼[ee′|X]

where the last equality holds because 𝔼[e|X] = 0. It’s worth momentarily thinking about some
of the properties of D. First, it is an 𝑛 × 𝑛 matrix. Second, it’s diagonal elements are given by
𝔼[𝑒2

𝑖 |X] = 𝔼[𝑒2
𝑖 |𝑋𝑖] =∶ 𝜎2

𝑖 . The off-diagonal elements are given by 𝔼[𝑒𝑖𝑒𝑗|X] = 𝔼[𝑒𝑖|𝑋𝑖]𝔼[𝑒𝑗|𝑋𝑗] = 0
(here, the second equality holds by independence across observations). Thus, D is a diagonal
matrix. If we are willing to introduce the assumption of homoskedasticity, then 𝔼[𝑒2

𝑖 |𝑋𝑖] = 𝜎2 (and
is therefore constant across 𝑖). In this case, D = I𝑛𝜎2.

As a first step towards calculating var( ̂𝛽), notice that

var(Y|X) = var(X𝛽 + e|X)
= var(e|X) = D
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where the first equality holds by plugging in for Y, the second equality holds because we are
conditioning on X, and the last equality by the definition of D.

Now, consider

V ̂𝛽 ∶= var( ̂𝛽|X)
= var((X′X)−1X′Y|X)
= (X′X)−1X′var(Y|X)X(X′X)−1

= (X′X)−1X′DX(X′X)−1

where the second equality holds by plugging in for ̂𝛽, the third equality by the matrix version of
var(𝑎𝑍) = 𝑎2var(𝑍) when 𝑎 is a constant and 𝑍 is a scalar random variable (and because X′X
is symmetric), and the last equality holds because var(Y|X) = D which we showed above. If we
additionally invoke homoskedasticity, then this will simplify; in particular, in this case X′DX =
X′I𝑛𝜎2X = X′X𝜎2. This implies that

V0
̂𝛽 = 𝜎2(X′X)−1

where I include the 0 superscript to indicate that this expression holds only under the additional
condition of homoskedasticity.

If we want to calculate the unconditional variance of ̂𝛽, then we can use the law of total variance.
This is given in Theorem 2.8 in the textbook; in particular, as along as 𝔼[𝑌 2] < ∞, then var(𝑌 ) =
𝔼[var(𝑌 |𝑋)] + var(𝔼[𝑌 |𝑋]). Applying this to the present context, we have that

var( ̂𝛽) = 𝔼[var( ̂𝛽|X)] + var(𝔼[ ̂𝛽|X])
= 𝔼[var( ̂𝛽|X)] + 0
= 𝔼[(X′X)−1X′DX(X′X)−1]

as above, this can simplify under homoskedasticity.
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Side-comment: It is worth briefly comparing the above results to similar results in the
very simple case where we estimate 𝜇 ∶= 𝔼[𝑌 ] by ̄𝑌 (the sample average of 𝑌𝑖). In this case,
recall that 𝔼[ ̄𝑌 ] = 𝜇, so that ̄𝑌 is unbiased for 𝜇, just like ̂𝛽 is for 𝛽.

Further, recall that var( ̄𝑌 ) = var(𝑌 )
𝑛 , which says that the sampling variance of ̄𝑌 depends on

the variance of 𝑌 , and it also tends to decrease for larger values of 𝑛. From the above discus-
sion, it may not be immediately obvious whether or not the sampling variance of ̂𝛽 decreases
with 𝑛 — it turns out that it does. To see this, recall that (X′X) = ∑𝑛

𝑖=1 𝑋𝑖𝑋′
𝑖 which grows

with 𝑛. Now, for simplicity, suppose that homoskedasticity holds (similar arguments will
hold for the case without homoskedasticity), notice that we can rewrite

V0
̂𝛽 = 𝜎2

𝑛 ( 1
𝑛X′X)

−1

which just multiplies and divides by 𝑛. Notice that, here, 1
𝑛X′X = 1

𝑛
𝑛

∑
𝑖=1

𝑋𝑖𝑋′
𝑖 is now an

average that does not systematically grow with 𝑛. On the other hand, there is now an 𝑛 in
the denominator so that it is easier to see that the sampling variance of ̂𝛽 does decrease with
the sample size, just like for ̄𝑌 .

Gauss-Markov Theorem

H: 4.8
The Gauss-Markov theorem says that, given the linear regression assumptions + homoskedas-

ticity, ̂𝛽 is efficient (has the smallest variance) among all possible linear, unbiased estimators
(side-comment: Bruce Hansen has a recent paper showing that ̂𝛽 is efficient among unbiased es-
timators; I am not sure that I fully understand his arguments, so I’m just going to teach the
“classical’ ’ version of the Gauss-Markov theorem).

More specifically, the Gauss-Markov theorem says: Given the linear regression assumptions
and homoskedasticity, for any possible linear, unbiased estimator of 𝛽, which we’ll denote as ̃𝛽,
var( ̃𝛽|X) ≥ 𝜎2(X′X)−1

Efficiency is a very good property for an estimator to have, and, therefore, this kind of result
provides a strong justification for using ̂𝛽 as an estimate of 𝛽.

To prove this result, let’s first see what linearity and unbiasedness “buys us”.

1. A linear estimator is one that we can write as ̃𝛽 = A′Y where A is an 𝑛 × 𝑘 matrix that is a
function of X

2. Unbiasedness means that 𝔼[ ̃𝛽|X] = 𝛽. If ̃𝛽 is also linear, notice that 𝔼[A′Y|X] = A′𝔼[Y|X] =
A′X𝛽; then, unbiasedness therefore implies that A′X = I𝑘.
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Now, let’s calculate the conditional variance of some generic linear, unbiased estimator of 𝛽

var( ̃𝛽|X) = var(A′Y|X)
= var(A′(X𝛽 + e)|X)
= var(A′e|X)
= A′var(e|X)A
= A′A𝜎2

where the first equality holds by linearity, the second equality substitutes for Y, the third equality
holds because the variance of the term involving X𝛽 is equal to 0 conditional on X, the fourth
equality holds by the property of variance that we used above (and because A is a function of X),
and the last equality holds because var(e|X) = I𝑛𝜎2 under homoskedasticity.

Since, from earlier, we know that var( ̂𝛽|X) = 𝜎2(X′X)−1, to complete the proof, we need to
show that A′A ≥ (X′X)−1. Towards this end, notice that

A′A − (X′X)−1 = A′A − A′X(X′X)−1X′A
= A′(I𝑛 − X(X′X)−1X′)A
= A′MA
= A′MMA
= A′M′MA
= (MA)′MA
≥ 0

where the first equality uses A′X = I𝑘, the second equality factors out A, the third equality holds
by the definition of M, the fourth and fifth equalities hold because M is idempotent and symmetric,
the term in the last equality is positive semi-definite because it is a quadratic form.

Generalized least squares

H: 4.9
The Gauss-Markov theorem relied on the homoskedasticity condition. This begs the question of

whether or not these efficiency results for ̂𝛽 go through without this condition. Section 4.9 of the
book considers this case. In fact, it considers a more general case than we have been considering
so far where var(e|X) = Σ𝜎2 where Σ is an 𝑛 × 𝑛 symmetric and positive semi-definite matrix
(what’s more general here is that this allows for relaxing the independence condition so that Σ can
be non-diagonal).

Using similar arguments as above, we can show that, in this case

var( ̂𝛽|X) = 𝜎2(X′X)−1(X′ΣX)(X′X)−1
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However, Theorem 4.5 in the textbook shows that, under the linear regression assumptions (but
not requiring homoskedasticity), for any possible linear, unbiased estimator of 𝛽 (again, we’ll denote
it ̃𝛽),

var( ̃𝛽|X) ≥ 𝜎2(X′Σ−1X)−1

Since var( ̂𝛽|X) ≠ 𝜎2(X′Σ−1X)−1, this suggests that we might ought to consider alternative
estimators in this case. In particular, when Σ is known, consider pre-multiplying the regression by
Σ−1/2 to get

Ỹ = X̃𝛽 + ẽ

where Ỹ ∶= Σ−1/2Y, X̃ ∶= Σ−1/2X, and ẽ ∶= Σ−1/2e, and consider estimating this by OLS, so that

̃𝛽𝑔𝑙𝑠 = (X̃′X̃)−1X̃′Ỹ

= ((Σ−1/2X)′Σ−1/2X)−1(Σ−1/2X)′Σ−1/2Y
= (X′Σ−1X)−1X′Σ−1Y

Using the same sorts of arguments as we have been making above, you can show the following
two results

𝔼[ ̃𝛽𝑔𝑙𝑠|X] = 𝛽
var( ̃𝛽𝑔𝑙𝑠|X) = 𝜎2(X′Σ−1X)−1

This suggests that ̃𝛽𝑔𝑙𝑠 is both unbiased and more efficient that ̂𝛽 under heteroskedasticity.
One issue, however, is that this estimator is generally infeasible because Σ is not typically known.

Instead, in practice, you can replace Σ with a suitable estimate Σ̂. This is called feasible GLS. My
sense is that GLS/FGLS is not very common in applied work, especially relative to OLS combined
with “heteroskedasticity robust” standard errors. I think there are several reasons for this. First,
estimating Σ may be hard to do in practice. For example, if we return to the simpler case where
var(e|X) = D and recalling that D is diagonal with diagonal elements equal to 𝔼[𝑒2

𝑖 |𝑋𝑖]. To
estimate D then would require estimating 𝔼[𝑒2|𝑋]. In practice, you could write down a parametric
model for 𝔼[𝑒2|𝑋], but this might be difficult in practice. If the model is not correctly specified,
then the efficiency arguments above may not hold anymore. Second, the arguments that rationalize
FGLS typically require 𝑛 → ∞ and amount to showing that FGLS and GLS are equivalent in this
case (I think the finite sample arguments that we have been considering above for OLS/GLS are not
straightforward when var(e|X) has to be estimated). This somewhat weakens the positive results
for GLS mentioned above. Finally, the arguments in this section have been for the case where the
CEF is actually linear, so it is less clear if there is a gain to using FGLS when we view ̂𝛽 as the
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linear projection coefficient instead of the coefficient from a linear CEF model.

2. Omitted variable bias

H: 2.24
Partition 𝑋 as follows 𝑋 = (𝑋′

1, 𝑋′
2)′ where 𝑋1 is a 𝑘1 dimensional vector, 𝑋2 is a 𝑘2 dimensional

vector, and 𝑘 = 𝑘1 + 𝑘2. Likewise partition 𝛽 into 𝛽 = (𝛽′
1, 𝛽′

2)′. Suppose that we are interested in
𝛽1 from the linear projection of 𝑌 onto 𝑋1 and 𝑋2:

𝑌 = 𝑋′
1𝛽1 + 𝑋′

2𝛽2 + 𝑒 (2)

Since this is a linear projection, it implies that 𝔼[𝑋𝑒] = 0.
However, let’s suppose that 𝑋2 is not observed, so that it is infeasible to run a regression of 𝑌

on 𝑋1 and 𝑋2. In this section, we consider properties of the following short regression

𝑌 = 𝑋′
1𝛾1 + 𝑢

which is the linear projection of 𝑌 on 𝑋1 only. Since this is a linear projection, we also have that
𝔼[𝑋1𝑢] = 0 and that

𝛾1 = 𝔼[𝑋1𝑋′
1]−1𝔼[𝑋1𝑌 ]

= 𝔼[𝑋1𝑋′
1]−1𝔼[𝑋1(𝑋′

1𝛽1 + 𝑋′
2𝛽2 + 𝑒)]

= 𝛽1 + 𝔼[𝑋1𝑋′
1]−1𝔼[𝑋1𝑋′

2]𝛽2

= 𝛽1 + Γ21𝛽2

where the first equality holds by the definition of linear projection of 𝑌 on 𝑋1, the second equal-
ity holds by substituting for 𝑌 , the third equality combines and cancels terms and also holds
because 𝔼[𝑋1𝑒] = 0 (since 𝔼[𝑋𝑒] = 0), and the last equality holds because we define Γ21 =
𝔼[𝑋1𝑋′

1]−1𝔼[𝑋1𝑋′
2], which is a 𝑘1 × 𝑘2 matrix of coefficients from the projection of all 𝑘2 elements

of 𝑋2 on 𝑋1.
Importantly, the previous expression implies that 𝛾1 is not generally equal to 𝛽1; that is, in

general, we are not able to recover the parameter of interest 𝛽1 from the feasible regression of 𝑌 on
𝑋1. This is probably not surprising — otherwise, our lives would be much easier! The difference
between 𝛾1 and 𝛽1 is called omitted variable bias and is a very important concern in many
applications.

The only case where 𝛾1 = 𝛽1 is when Γ21𝛽2 = 0. The main cases where this can happen are
when either Γ21 = 0 or 𝛽2 = 0. Γ21 = 0 if 𝔼[𝑋1𝑋′

2] = 0 which would be the case if 𝑋1 and 𝑋2 are
uncorrelated. 𝛽2 = 0 occurs when the coefficient on 𝑋2 in Equation 2 is equal to 0. In words, the
cases where you can recover 𝛽1 while only using the short regression are (i) if the omitted variables
are uncorrelated with the included variables or (ii) if the omitted variables have no effect on the
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outcome.

Side-Comment: There are a number of cases where you might be able to figure out the
sign of the omitted variable bias. The textbook gives the following simple example. Consider
the case where 𝑌 is a person’s earnings, 𝑋1 is a person’s years of education, and 𝑋2 is a
person’s ”ability”, and where you are interested in 𝛽1 (the coefficient on years of education).
However, suppose that ability is not observed. In this case, it might be reasonable to suppose
that 𝛽2 > 0 (i.e., that, conditional on years of education, individuals with higher ability tend
to have higher earnings) and that Γ21 > 0 (i.e., that higher ability is positively correlated
with more education). Under these conditions, it would be the case that 𝛾1 > 𝛽1.
This discussion suggests that a regression that only includes years of education would over-
estimate the effect of years of education relative to a model that included both education
and ability. This sort of argument is quite common in applied work — something like: ”even
though we are not able to control for some important variable, it’s correlation with the
observed variable of interest and likely sign in the long regression indicate that the estimate
of our coefficient of interest is likely a lower (or upper) bound.”

3. Frisch-Waugh-Lovell Theorem

H: 3.16
I will start with the classical discussion of FWL in terms of estimated regression coefficients, and

then turn to the population version that is emphasized in the review. There are a large number of
cases where we may be more interested in some of the regression parameters than others (e.g., the
treatment effects discussion that we had earlier this semester), so it’s useful to have some specific
expressions for subsets of the parameters. For this, let’s partition X = [X1 X2] and, likewise,
𝛽 = (𝛽′

1, 𝛽′
2)′. Using this notation, we can immediately write

Y = X ̂𝛽 + ê

= [X1 X2] (
̂𝛽1
̂𝛽2
)

= X1 ̂𝛽1 + X2 ̂𝛽2 + ê

Recall that, ̂𝛽1 and ̂𝛽2 minimize the sum of squared residuals

( ̂𝛽′
1, ̂𝛽′

2)′ = argmin
𝑏1,𝑏2

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑋′
𝑖1𝑏1 − 𝑋′

𝑖2𝑏2)2

= argmin
𝑏1,𝑏2

(Y − X1𝑏1 − X2𝑏2)′(Y − X1𝑏1 − X2𝑏2)
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If we are just focused on ̂𝛽1, we can alternatively express this as

̂𝛽1 = argmin
𝑏1

{min
𝑏2

(Y − X𝑏1 − X𝑏2)′(Y − X𝑏1 − X𝑏2)} (3)

This sort of nested minimization is often referred to as “concentrating out” 𝑏2 and is a fairly
common estimation strategy (it doesn’t really apply here, but there are some cases where this sort
of step may lead to estimators that are notably less computationally complex). The idea here is
roughly that we can minimize the overall function by first minimizing it with respect to 𝑏2 (treating
𝑏1 as fixed). This results in our recovering ̂𝛽2(𝑏1) (that is the value of 𝑏2 that minimizes the objective
function for a given value of 𝑏1). Then, we can fully minimize the function by taking ̂𝛽1 to be the
value of 𝑏1 that minimizes the objective function taking into account ̂𝛽2(𝑏1). [Also, notice that the
inside minimization uses “min” rather than “argmin” because we are still interested in minimizing
the objective function itself which is (obviously) quite different from minimizing ̂𝛽2(𝑏1).]

Let’s focus on the inside minimization first. For the inside minimization, we treat 𝑏1 as being
fixed and the value of 𝑏2 that minimizes this expression will be a function of 𝑏1; I’ll call the value of
𝑏2 that minimizes ̂𝛽2(𝑏1). The inside minimization just amounts to just a regression of Y − X1𝛽1
on X2 which implies that

̂𝛽2(𝑏1) = (X′
2X2)−1X2

′(Y − X1𝛽1)

Notice that, from the inside minimization problem, we are not directly interested in ̂𝛽2(𝑏1), but
rather the value of the function at ̂𝛽2(𝑏1) (this is because of of the “min” rather than “argmin”).
This means that the term inside the large curly braces in Equation 3 comes from plugging in this
value of ̂𝛽2(𝑏1), i.e.,

min
𝑏2

(Y − X𝑏1 − X𝑏2)′(Y − X𝑏1 − X𝑏2) = (Y − X𝑏1 − X𝛽2(𝑏1))′(Y − X𝑏1 − X ̂𝛽2(𝑏1))

Moreover, notice that

Y − X1𝛽1 − X2 ̂𝛽2(𝑏1) = Y − X1𝛽1 − X2(X′
2X2)−1X2

′⏟⏟⏟⏟⏟⏟⏟
P2

(Y − X1𝛽1)

= (I𝑛 − P2)(Y − X1𝛽1)
= M2(Y − X1𝛽1)

where P2 ∶= X2(X′
2X2)−1X2

′ and M2 ∶= (I𝑛 − P2). Therefore, the inside term in Equation 3 can
be written as

min
𝛽2

(Y − X𝛽1 − X𝛽2)′(Y − X𝛽1 − X𝛽2) = (M2(Y − X1𝛽1))′(M2(Y − X1𝛽1))

= (Y − X1𝛽1)′M2(Y − X1𝛽1)
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where the first equality uses the expression from above and the last equality uses that M2 is
symmetric and idempotent. Now, let’s plug this into the outside minimization problem.

̂𝛽1 = argmin
𝑏1

(Y − X1𝑏1)′M2(Y − X1𝑏1)

= argmin
𝑏1

Y′M2Y − 2𝑏′
1X′

1M2Y + 𝑏′
1X′

1M2X1𝑏1

Taking the derivative of the right hand side and setting equal to 0, we have that

0 = −2X′
1M2Y + 2X′

1M2X1 ̂𝛽1

which implies that

̂𝛽1 = (X′
1M2X1)−1X′

1M2Y

The arguments above are symmetric, so you could make the same sorts of calculations and derive
a similar result for ̂𝛽2.

Residual Regression

H: 3.18
The previous result is very closely related to a famous result in econometrics called the Frisch,

Waugh, Lovell Theorem. In particular, from the previous expression for ̂𝛽1, we have that

̂𝛽1 = (X′
1M2X1)−1X′

1M2Y
= (X′

1M′
2M2X1)−1X′

1M2
′M2Y

= ((M2X1)′M2X1)−1(M2X1)′M2Y
= (X̃′

1X̃1)−1X̃1 ̃e2

which uses that M2 is symmetric and idempotent and where X̃1 ∶= M2X1 (i.e., the residuals from
a regression of X1 on X2) and ẽ2 ∶= M2Y (i.e., the residuals from the regression of Y on X2).

This implies an algebraic equivalence between ̂𝛽1 from the regression of Y on X1 and X2 and
the following estimation procedure:

1. Regress Y on X2 and recover the residuals ẽ2.

2. Regress X1 on X2 and recover the residuals X̃1.

3. Regress ẽ2 on X̃1.

This procedure delivers exactly the same estimate of ̂𝛽1. That this procedure recovers exactly
the same estimate of ̂𝛽1 is called the Frisch-Waugh-Lovell Theorem.
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This result gives a nice interpretation to the estimates of ̂𝛽1. It is equivalent to a regression of Y
on X1 after “partialling out” (i.e., removing the effect of X2 on both Y and X1). Besides that, the
FWL Theorem is computationally useful in some important cases too such as some of the panel
data approaches that we’ll consider later in the semester.

Population Version of FWL

H: 2.23
A population version of FWL is given in H: 2.23. This is the version of FWL that we will use

several times this semester, and I think the arguments are a little bit easier to follow. For simplicity
(and because it is the leading case), let’s consider the case where 𝑋1 is scalar and write

𝑌 = 𝑋1𝛽1 + 𝑋′
2𝛽2 + 𝑒

where 𝔼[𝑋𝑒] = 0. Now, consider the projection of 𝑋1 on 𝑋2, that is,

𝑋1 = 𝑋′
2𝜆 + 𝑣

where 𝔼[𝑋2𝑣] = 0. Now, notice that

𝔼[𝑣𝑌 ] = 𝔼[𝑣𝑋1]𝛽1 + 𝔼[𝑣𝑋′
2]⏟

=0
𝛽2 + 𝔼[𝑣𝑒]

= 𝔼[𝑣(𝑋′
2𝜆 + 𝑣)]𝛽1 + 𝔼[(𝑋1 − 𝑋′

2𝜆)𝑒]
= 𝔼[𝑣2]𝛽1

where the second equality holds by substituting for 𝑋1 in the first term and for 𝑣 in the last term,
and the last equality holds because 𝔼[𝑋2𝑣] = 0 and because 𝔼[𝑋1𝑒] = 0 and 𝔼[𝑋2𝑒] = 0. This
implies that

𝛽1 = 𝔼[𝑣𝑌 ]
𝔼[𝑣2]

which is one of the results that was emphasized in the 8070 review.
Next, notice that we can write the linear projection of 𝑌 on 𝑋2

𝑌 = 𝑋′
2𝛾 + 𝑢

with 𝔼[𝑋2𝑢] = 0. Substituting this in to the previous expression for 𝛽1, we have that

𝛽1 = 𝔼[𝑣(𝑋′
2𝛾 + 𝑢)]

𝔼[𝑣2] = 𝔼[𝑣𝑢]
𝔼[𝑣2]
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where the second equality holds because 𝔼[𝑋2𝑣] = 0. This is exactly a population version of FWL
as it is the population version of the linear projection of 𝑢 (the projection error from projecting 𝑌
on 𝑋2) on 𝑣 (the projection error from projecting 𝑋1 on 𝑋2).
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