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Material for 8070 Review Quiz

Properties of Estimators
Sampling Distribution The distribution of an estimator with respect
to a repeated sampling thought experiment where we imagine repeat-
edly drawing new samples of size n from the underlying population and
re-computing the estimator for each new sample.

Bias The difference between the expected value of an estimator and

its actual value, i.e., Bias(θ̂) = E[θ̂]− θ, where the expectation is with
respect to the sampling distribution of the estimator. An estimator is

said to be unbiased if Bias(θ̂) = 0.

Sampling Variance The variance of an estimator with respect to its

sampling distribution, i.e., Var(θ̂).

In general, we prefer estimators with low (or 0) bias and low sampling
variance.

Consistency In large samples, if θ̂ is consistent, then it is guaranteed

to be close to θ if we have enough data, i.e., θ̂
p−→ θ.

Asymptotic Normality In large samples, a centered and scaled
version of our estimator will follow a normal distribution, typically,
√
n(θ̂ − θ)

d−→ N (0, V ). Alternatively, θ̂
a∼ N (θ, V/n) (i.e., θ̂ approxi-

mately follows a normal distribution with mean θ and variance V/n).

Inference
Null Hypothesis The hypothesis to be tested, e.g., H0 : θ = θ0, where
θ0 is a researcher-specified specific value.

Alternative Hypothesis Competing hypothesis to the null, most com-
monly, H1 : θ ̸= θ0 (two-sided)

Type I Error To reject H0 when it is true.

Type II Error To Fail to reject H0 when H1 is true.

Significance Level Researcher-specified willingness to make Type I
errors, usually denoted by α, where the most common value is α = 0.05

Size The rate at which a particular test makes Type I errors (ideally,
size = significance level).

Power The probability of correctly rejecting H0 when H1 is true.

Standard Error An estimate of the standard deviation of an estimator
with respect to its sampling distribution. If θ̂ is asymptotically normal

with asymptotic variance V , then the standard error is se(θ̂) =

√
V̂ /n,

where V̂ is an estimate of V .

Common test-statistics:

• t-statistic If θ is scalar, then t =
θ̂ − θ0

se(θ̂)
.

• Wald statistic - If θ is a k-dimensional vector, then W = n(θ̂ −
θ0)′V̂ −1(θ̂ − θ0), where V̂ is an estimate of the asymptotic variance

matrix of θ̂.

Behavior of t-statistic

• Under H0,

t =

√
n(θ̂ − θ0)√

V̂
=

1
√
V

√
n(θ̂ − θ0) + op(1)

d−→
1

√
V

N (0, V ) = N (0, 1)

.
• Under H1,

t =

√
n(θ̂ − θ0)√

V̂
=

1
√
V

√
n(θ̂−θ0)+op(1) diverges because θ̂

p−→ θ1 ̸= θ0.

i.e., under H0, t should behave like a draw from N (0, 1); under H1,
it should diverge. This strongly differing behavior provides the ba-
sis for hypothesis testing, where we typically use the decision rule: if
|t| > c1−α/2 = 1.96, reject H0, otherwise fail to reject.

Behavior of Wald statistic

• Under H0, W =
√
n(θ̂−θ0)′V̂ −1√n(θ̂−θ0) = Z′V −1Z+op(1)

d−→ χ2
k,

where Z ∼ N (0, V ).

• Under H1, W diverges because θ̂
p−→ θ1 ̸= θ0.

Confidence Interval The set of values of θ that are “compatible” with
the observed data. That is, a 100(1−α)% confidence interval is the set of
values of θ that would not be rejected by a two-sided test at significance
level α. If θ is scalar, this CI is given by[

θ̂ − c1−α/2 × se(θ̂), θ̂ + c1−α/2 × se(θ̂)
]

where c1−α/2 is the (1− α/2) quantile of N (0, 1) (e.g., c1−α/2 = 1.96).

p-value The probability of getting an estimate (or, equivalently, a test-
statistic) as extreme as the one we got if the null hypothesis were true.
p = 2 (1− Φ(|t|)) where Φ(·) is the cdf of N (0, 1).

Asymptotic Tools

Law of Large Numbers If {Yi}ni=1 is an iid sample with E
[
|Y |
]
< ∞,

then Ȳ
p−→ E[Y ].

Central Limit Theorem If {Yi}ni=1 is an iid sample with E[Y 2] < ∞,

then
√
n(Ȳ − E[Y ])

d−→ N (0,Var(Y )).

Continuous Mapping Theorem If Xn
p−→ c and g(·) is continuous

at c, then g(Xn)
p−→ g(c). Similarly, if Xn

d−→ X and g(·) is continuous,

then g(Xn)
d−→ g(X).

Slutsky’s Theorem Collects the most common uses of the CMT. If

Xn
d−→ X and Yn

p−→ c, then

• Xn + Yn
d−→ X + c

• XnYn
d−→ cX

• Xn/Yn
d−→ X/c, provided c ̸= 0.

Estimating E[Y]
The natural estimator of E[Y ] is µ̂ :=

1

n

n∑
i=1

Yi.

Assumptions

(1) iid sample: {Yi}ni=1 is independent and identically distributed.

(2a) existence of moments: E[Y 2] < ∞
(2b) existence of moments: E[Y 4] < ∞

Bias

E[µ̂] = E

[
1

n

n∑
i=1

Yi

]
=

1

n

n∑
i=1

E[Yi] = E[Y ]

where the first equality holds by the definition of µ̂, the second equality
holds by the linearity of expectations, and the third equality holds if we
have an iid sample (particularly, identically distributed). This implies
Bias(µ̂) = 0, i.e., µ̂ is unbiased.

Sampling Variance

Var(µ̂) = Var

(
1

n

n∑
i=1

Yi

)
=

1

n2
Var

(
n∑

i=1

Yi

)
=

1

n2

n∑
i=1

Var(Yi) =
Var(Y )

n

Thus, Var(µ̂) depends on Var(Y ) and is shrinking in n.

Consistency

µ̂ =
1

n

n∑
i=1

Yi
p−→ E[Y ]

which holds by the weak law of large numbers. Invoking the weak law of
large numbers requires Assumption 1 and Assumption 2a.

Asymptotic Normality
√
n(µ̂− E[Y ]) =

√
n

(
1

n

n∑
i=1

Yi − E[Y ]

)
d−→ N (0, V )

where V = Var(Y ). This holds by the central limit theorem, which
requires Assumption 1 and Assumption 2b.

The above discussion applied in the case where Y is scalar. If Y is a
k-dimensional vector, all of the results above hold, but now Var(Y ) is a
k × k variance matrix, with diagonal elements equal to the variance of
each component of Y , and off diagonal elements equal to the covariance
between the components of Y .
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Conditional Expectations

Conditional Expectation Function (CEF) m(x) := E[Y | X = x] is
a function of X that gives the expected value of Y given X = x.

Law of Iterated Expectations

E[Y ] = E
[
E[Y |X]

]
or E[Y |X1] = E

[
E[Y |X1, X2]

∣∣X1

]
CEF Error e := Y −m(X). E[e | X] = 0 by construction.

CEF as Best Predictor Among all prediction functions g(X), the CEF
minimizes mean squared error, i.e.,

E
[
(Y − g(X))2

]
is minimized when g(X) = m(X)

This provides a strong justification for using the CEF to make predictions
of Y .

Regression Derivative Often, in economics, we are interested in deriva-
tives of the CEF, such as

∇1m(x) :=


∂m(x)
∂x1

if x1 is continuous

E[Y | X1 = x1 + 1, X−1 = x−1]
− E[Y | X1 = x1, X−1 = x−1]

if x1 is discrete

• ∇1m(x) should be interpreted as how much the average outcome in-
creases for a 1 unit increase in X1, holding other regressors constant.
For example, if X1 is a person’s years of education and Y is earnings,
∇1m(x) is how much higher average earnings are for people with one
more year of education holding other regressors constant. Importantly,
this is not generally equal to how much an extra year of education
causes education to increase; rather, you should think of this descrip-
tively, i.e., as just a statement of fact that, on average, people with
one more year of education earned some amount more than those with
one year less holding other regressors constant.

• Regression derivatives are sometimes called marginal contrasts,
marginal effects, or partial effects

• ∇1m(x) holds other regressors constant, but not “all else” constant
• ∇1m(x) is a function of x and can change for different values of the

regressors. For this reason, it is common to average them into a single
number AMC = E[∇1m(X)]

Interpret Linear CEFs/Regressions Be able to interpret any linear
regression model in terms of predicted values or regression derivatives,
including logarithms and interaction terms. Example:
log(Wage) = β1Educ+β2Educ×Female+β3Female+β4Exper+β5+e

with E[e|Educ, Female, Exper] = 0.

Linear Projection Model
Often, we do not know that the CEF is linear, however, that does not
stop us from running a regression. This idea gives rise to the linear
projection model:

Y = X′β + e, where β := argmin
b

E
[
(Y −X′b)2

]
This amounts to choosing the best prediction function among the class
of linear prediction functions. This problem can be solved to give the
formula β = E[XX′]−1E[XY ]. The projection error e = Y −X′β satisfies
E[Xe] = 0. X′β is called the best linear predictor.

Estimating β
The analogy principle immediately suggests an estimator for β:

β̂ =

(
1

n

n∑
i=1

XiX
′
i

)−1
1

n

n∑
i=1

XiYi =
(
X′X

)−1
X′Y

where X and Y are n× k and n× 1 data matrices.

Assumptions

(1) iid sample: {Xi, Yi}ni=1 are iid

(2a) existence of moments: E[Y 2] < ∞ and E
[
||X||2

]
< ∞

(2b) existence of moments: E[Y 4] < ∞ and E
[
||X||4

]
< ∞

(3) no full multi-collinearity: E[XX′] is invertible

The discussion below about bias and sampling variance holds under
the linear CEF model, the discussion about consistency and asymptotic
normality holds for both the linear CEF and linear projection models.

Bias

E[β̂] = E
[
E[β̂ | X]

]
= E

[
(X′X)−1X′E[Y | X]

]
= E

[
(X′X)−1X′Xβ

]
= β

and, hence, β̂ is unbiased for β.

Sampling Variance

Var(β̂) = Var
(
E[β̂ | X]

)
+ E

[
Var(β̂ | X)

]
= E

[
Var(β̂ | X)

]

and

Var(β̂ | X) =
(
X′X

)−1
X′Var(e | X)X

(
X′X

)−1

Homoskedasticity: Var(e | X) = σ2I, which implies that

Var(β̂ | X) = σ2
(
X′X

)−1

Gauss-Markov Theorem: Under homoskedasticity, Var(β̂ | X) ≤ Var(β̃ |
X) where β̃ is any other linear unbiased estimator of β.

Consistency 1

n

n∑
i=1

XiX
′
i

p−→ E[XX′]

1

n

n∑
i=1

XiYi
p−→ E[XY ]

which holds by the law of large numbers under Assumptions (1) and (2a).

Then, β̂
p−→ β by the continuous mapping theorem, which applies under

Assumption 3.

Asymptotic Normality

√
n(β̂ − β) =

(
1

n

n∑
i=1

XiX
′
i

)−1
1
√
n

n∑
i=1

Xiei

and

1
√
n

n∑
i=1

Xiei
d−→ N (0,Ω) where Ω = E[XX′e2]

which holds by the central limit theorem under Assumptions 1 and 2b,
and

√
n(β̂ − β)

d−→ N (0,V) where V = E[XX′]−1ΩE[XX′]−1

which holds by the continuous mapping theorem, which applies under
Assumption 3.

Omitted Variable Bias
Consider the following two linear projections, a long regression and short
regression

Y = X′
1β1 +X′

2β2 + e and Y = X′
1γ1 + u

We are interested in β1 but suppose the first regression is infeasible (e.g.,
X2 is unobserved) so we run the second regression instead. Then,

γ1 = E[X1X
′
1]

−1E[X1Y ] = E[X1X
′
1]

−1E[X1(X
′
1β1 +X′

2β2 + e)]

= β1 + E[X1X
′
1]

−1E[X1X
′
2]β2 = β1 + Γ′

21β2

where Γ21 is a k2 × k1 matrix that contains the coefficients from running
a regression of each element of X2 on X1. Notice that γ1 = β1 if either
(i) Γ21 = 0 (i.e., if you run a regression of X2 on X1, the coefficients
are all equal to 0) or (ii) β2 = 0 (i.e., the coefficient on X2 in the long
regression is equal to 0).

Frisch-Waugh-Lovell Theorem
Suppose we are interested in β1 from the following long linear projection

Y = X′
1β1 +X′

2β2 + e

and consider the following auxiliary linear projections

Y = X′
2γ2 + u and X1 = Λ12X2 + v

where Λ12 is a k1×k2 matrix of coefficients from projecting each element
of X1 on X2. Then, consider the linear projection of u on v:

E[vv′]−1E[vu] = E[vv′]−1E[v(Y −X′
2γ2)] = E[vv′]−1E[vY ]

= E[vv′]−1E[v(X′
1β1 +X′

2β2 + e)] = β1

This says that β1 from the long linear projection can equivalently be
obtained from the following steps: (i) project Y on X2 and recover the
projection error u, (ii) project X1 on X2 and recover the projection error
v, (iii) run the regression of u on v and recover the coefficients on v.
This three-step procedure provides a rationalization for a “partialling
out” interpretation of β1 (i.e., that it captures the relationship between
Y and X1 after “removing” the relationship between these variables and
X2). This version of FWL holds for the population quantity β1, but
similar arguments can be used for the sample analogue.

Special cases:
(1) k1 = 1 (i.e., X1 includes a single regressor), then β1 =

E[vu]
E[v2]

=
E[vY ]

E[v2]

(2) X2 = 1 (i.e., X2 includes only an intercept), then β1 is equivalent to
running a regression using a de-meaned outcome (Y −E[Y ]) on de-meaned
regressors (X − E[X]).
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