These notes come from Chapters 6 and 7 in the textbook and cover the large-sample properties

of least squares.

Linear Regression Notes 3: Asymptotic theory for least squares

Asymptotic Theory for Least Squares

The asymptotic theory for least squares applies both to linear projection model and to the linear
CEF model. Therefore, in this section, we only use the weaker assumptions of the linear projection

model. That is, we use the following assumptions throughout this section

Assumption 7.1
1. The variables {(Y;, X;)}, are iid
2. E[Y?] < 0
3. E||X]|]? <

4. E[X X'] is positive definite

Consistency of Least Squares Estimator

H: 7.2
Step 1: Weak Law of Large Numbers. Recall that

Next, notice that

which holds by the weak law of large numbers (which requires the iid assumption and that
E[XX'] < oo and E[XY] < oo, both of which hold by Assumption 7.1)

Step 2: Continuous Mapping Theorem. Next, notice that, we can write

b = g(B[X X', E[XY])



where g(A,b) = A~!b. This is a continuous function of A and b at all values of the arguments
such that A~! exists. Assumption 7.1 includes that E[X X'] is positive definite which implies that
E[X X']7! exists. Thus, g(A,b) is continuous at A = E[X X’'] and we can apply the “convergence in
probability” version of the CMT; that is,

A

B % g(E[X X', EXY)
=EXXT'E[XY] =53

Asymptotic Normality

H: 7.3

For this section, we strengthen Assumption 7.1.

Assumption 7.2 In addition to Assumption 7.1
1. E[Y4] < o0
2. E||X||* <

Next, we will establish the limiting distribution of B . Plugging Y; = X/ + e; into Equation 1
implies that

1 n , n
_ <nz:1XX> nz (X[B+e))

=1
1 B
=p+ ( ZXiXi> =) Xiei
n - n -
=1 =1
Multiplying by 1/n and re-arranging implies that

-1

Vi (3 - B) = (jL > Xixg) e 2
i=1 =1

Step 1: Central Limit Theorem. First, notice that

where Q = E[Xe(Xe)'] = E[X X'e?].
Let’s explain carefully why the central limit theorem applies here. First, we have that (Y;, X;)
are iid, which implies that any function of (Y7, X;) is also iid (and this includes e; = Y; — X/ and



Xie;). Also, notice that E[Xe] = 0 which implies that var(Xe) = . Finally, to invoke the central
limit theorem, we need to show that our assumptions imply that all of the elements of ) are finite

(if you are interested in this, see the technical details section below).



Technical Details: As a step in this direction, let’s first show that Assumption 7.2 implies
that E[e?] < cc.

Minkowski’s Inequality: (E||X + Y|[P)}/? < (IEHXHp)l/p + (EHYH”)I/Z)
Schwarz Inequality: |a'b| < ||al| ||b]|

Therefore,

E[64]1/4 _ E[(Y _ X/5)4]1/4
< E[YYY* + E[(X'8)4)/
< E[YY4 4 (E)1X]1YY4) 8]

< 00

where the second line uses Minkowski’s inequality, the third inequality holds by the
Schwarz inequality; to be clear on this part, notice that E[(X’3)41/* = E[|X'B[4]/* <
E((|IX]] 18I = E[IXIMIBIYY* = E[IX]1YY48]] < co. That E[e*]'/* < oo implies
that Ele?] < oo.

Expectation Inequality: For a random vector Y € R™ with E||Y|| < oo, |[E[Y]|| < E||Y]].

Cauchy Schwarz Inequality: E||X'Y]| < (E||X|2)"*(E|Y]2)"?

Next, the (j,1) element of € is given by E[X;X;e?] (we want to show that this is finite).

Therefore, consider

E[X;Xie’]| < E|X;X€”|
— E[|X;] 1Xi]¢?
< E[X2X7)/2E[c]?
< (BLX2ELX)/2) 7 Bt 2
_ E[X;L]l/4E[X;1]1/4E[€4]1/2

< 00

where the first equality holds by the expectation inequality, the second equality holds because
of the absolute value, the third equality holds by the Cauchy-Schwarz inequality, the fourth
equality holds by applying the Cauchy-Schwarz inequality again, the fifth equality holds
immediately, and the last equality holds by Assumption 7.2 and because E[e*] < co (which
we showed right before).




Combining this with Equation 2, we have that
V(B =) % ELX X' N(0,Q) = N(0, V)

where V5 = E[X X']"1QE[X X']7! and which holds by the continuous mapping theorem.

V3 is called the asymptotic variance matrix of 3. E[X X’| 'QE[X X']~! is called a “sandwich
form™. Tt is called this because €2 is sandwiched by E[X X']~! (sometimes  is called the “meat”
and E[X X']7! is called the “bread”). Many asymptotic variance matrices have a similar form.

The previous result is the basis for hypothesis testing/inference, constructing confidence intervals,
etc. To operationalize it, though, we need to construct an estimator of Vg. Before doing that, let’s

introduce one relatively common simplification.

Homoskedasticity Assumption: E[e?|X] = o2

Homoskedasticity says that the second moment of the error term does not vary across different
values of X. This is often constrasted with heteroskedasticity which amounts to just not making
the homoskedasticity assumption. Most applications in economics do not invoke the homoskedasticity
assumption mainly because, often, we do not “need” it. That said, as we will see below, it is useful
for simplifying some expressions and serves as a useful benchmark in many cases.

Notice that, under homoskedasticity, we can simplify the expression for €2 (I use the notation

Q to indicate that this is the expression for € under homoskedasticity):

Q = E[XX'E[¢’|X]| = 0?E[X X']
L

o2

where the first equality holds by the law of iterated expectations, and the second equality holds
by homoskedasticity. Plugging this back in to the expression for Vg, it will also simplify (again, I

switch the notation to indicate the asymptotic variance of \/n(3 — 3) under homoskedasticity):
Vo = ?E[XX']7!
which holds by plugging in €2 into the expression for Vg and cancelling.

Consistency of Error Variance Estimators

H: 75
Next, we consider estimating 02 = E[e?]. Using the analogy principle would suggest estimating
o2 by
1 n
o2
i=1



but this estimator is infeasible since we do not observe e;. Instead, let’s consider the estimator

1 n
oy
1
Lt
where é; is the residual that is defined as
& =Y, — Xij

which is the difference between the actual outcome and X;3 (the fitted value from the regression).
Notice that, é; is something that we can actually recover because it depends on the estimated
B rather than, say, the population parameter 5. Notice that, by plugging in Y; = X/ into the

expression for é;, we have that

& =Y, — X/B
= X|B+e; — X[
—ei— X{(B-B)

which implies that

so that

Then, since,

Heteroskedastic Covariance Matrix Estimation

H: 7.7



Next, we consider estimating V. The natural estimator is

1

1 & e -
Ve=(-S"Xxx/] Q=Y Xx,x/
= () e Gy )

where € is an estimate of £ given by

which holds by adding and subtracting terms. Then, notice that
1 n
=Y XiX[el BLE[XX'e’] = Q
iz
It remains to show be shown that
IS Y/ (52 2\ P
= XiX{(é] —¢f) >0
iz
Given our earlier result on 62 being consistent for o2, it is perhaps not surprising that this term

converges to 0 though the arguments are more challenging (if you are interested, see the technical
details below).



Technical Details: To start with, let me briefly introduce some useful concepts related to matrix

norms and useful inequalities for matrix norms. Below, A and B are notation for matrices.

Frobenius/Matrix Norm ||A|| = ||vec(A)]

Schwarz Inequality ||AB|| < ||A][|||B]|

Triangle Inequality: ||A + B|| < ||A|| + |/B]|

Holder’s Inequality: For any p > 1 and ¢ > 1 such that %—}—% = 1, E||IXY| <
1/ 1/

(BIXI7) " (Bl II9)

The Frobenius norm is a matrix norm (there are others) that “converts” the matrix into a vector and

then applies the Euclidean norm to that vector. The next two inequalities say that versions of the

Schwarz and triangle inequalities apply to matrices. Next, notice that

1 < ~2 2 = / _
n;XX(e —e)‘g ZHXXe ol
SEZ||X¢||2|é?—e?| (3)
i=1

where the first inequality holds by the triangle inequality and the second inequality holds by applying

the Schwarz inequality twice. Now consider

&f = el = | - 2e:X[(B ~ B) + (B — B X: X{(5 — B)|
< 20eX[(5 = B)| + (5 = BY X X{(B - B)
= 2le;| |X{(8 = B)| + (B - B) Xl
< 2eil 1X]] 118 = BIl+ 11X 118 - Bl
where the first equality holds by plugging in from above the difference between é7 and e?, the second
inequality holds by the triangle inequality (the second term is positive because 1t is quadratic), the

third equality holds by properties of absolute value, the fourth inequality holds by the Schwarz

inequality. Using this expression back in Equation 3 implies that

1 & . I 5
ZXX &~ 2<n2||Xi||3 |ez-|> 18 =811+ — > IXill* 115 - BI*
i=1 i=1

The second term converges to 0 because n~ " 37", || X;]|* & E[X?] and because || — 8|| £ 0. For
the first term ||3 — 8|| £ 0, and then consider

1 n
=S UIXP Jed 2 ENXIP Jel]
=1
3/4
E[(1X11%)*%]

= E[||X||*]*/*E[e"]"/*

]E[64]1/4

< 0

where the first equality holds by the weak law of large numbers, the second equality holds using
Holder’s inequality (using || X||> and |e| and setting p = 4/3 and q = 4), the third equality by canceling
the inside exponents, and the last inequality by Assumption 7.2 and that we showed that E[e?] < oco.




Thus, we have shown that 2 Q. It immediately follows from the weak law of large numbers
and the continuous mapping theorem that V5 2 E[X X']"'QE[X X']~! = V4. This implies that
\75 is consistent for V.
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