
These notes come from Chapters 6 and 7 in the textbook and cover the large-sample properties
of least squares.

Linear Regression Notes 3: Asymptotic theory for least squares

Asymptotic Theory for Least Squares

The asymptotic theory for least squares applies both to linear projection model and to the linear
CEF model. Therefore, in this section, we only use the weaker assumptions of the linear projection
model. That is, we use the following assumptions throughout this section

Assumption 7.1

1. The variables {(Yi, Xi)}n
i=1 are iid

2. E[Y 2] < ∞

3. E||X||2 < ∞

4. E[XX ′] is positive definite

Consistency of Least Squares Estimator

H: 7.2
Step 1: Weak Law of Large Numbers. Recall that

β̂ =
(

1
n

n∑
i=1

XiX
′
i

)−1 1
n

n∑
i=1

XiYi (1)

Next, notice that

1
n

n∑
i=1

XiX
′
i

p−→ E[XX ′]

1
n

n∑
i=1

XiYi
p−→ E[XY ]

which holds by the weak law of large numbers (which requires the iid assumption and that
E[XX ′] < ∞ and E[XY ] < ∞, both of which hold by Assumption 7.1)

Step 2: Continuous Mapping Theorem. Next, notice that, we can write

β̂ = g(Ê[XX ′], Ê[XY ])
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where g(A, b) = A−1b. This is a continuous function of A and b at all values of the arguments
such that A−1 exists. Assumption 7.1 includes that E[XX ′] is positive definite which implies that
E[XX ′]−1 exists. Thus, g(A, b) is continuous at A = E[XX ′] and we can apply the “convergence in
probability” version of the CMT; that is,

β̂
p−→ g(E[XX ′],EXY )

= E[XX ′]−1E[XY ] = β

Asymptotic Normality

H: 7.3
For this section, we strengthen Assumption 7.1.

Assumption 7.2 In addition to Assumption 7.1

1. E[Y 4] < ∞

2. E||X||4 < ∞

Next, we will establish the limiting distribution of β̂. Plugging Yi = X ′
iβ + ei into Equation 1

implies that

β̂ =
(

1
n

n∑
i=1

XiX
′
i

)−1 1
n

n∑
i=1

(
Xi(X ′

iβ + ei)
)

= β +
(

1
n

n∑
i=1

XiX
′
i

)−1 1
n

n∑
i=1

Xiei

Multiplying by
√

n and re-arranging implies that

√
n
(
β̂ − β

)
=
(

1
n

n∑
i=1

XiX
′
i

)−1 1√
n

n∑
i=1

Xiei (2)

Step 1: Central Limit Theorem. First, notice that

1√
n

n∑
i=1

Xiei
d−→ N(0, Ω)

where Ω = E[Xe(Xe)′] = E[XX ′e2].
Let’s explain carefully why the central limit theorem applies here. First, we have that (Yi, Xi)

are iid, which implies that any function of (Yi, Xi) is also iid (and this includes ei = Yi − X ′
iβ and
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Xiei). Also, notice that E[Xe] = 0 which implies that var(Xe) = Ω. Finally, to invoke the central
limit theorem, we need to show that our assumptions imply that all of the elements of Ω are finite
(if you are interested in this, see the technical details section below).
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Technical Details: As a step in this direction, let’s first show that Assumption 7.2 implies
that E[e4] < ∞.

Minkowski’s Inequality:
(
E||X + Y ||p)1/p ≤

(
E||X||p

)1/p +
(
E||Y ||p

)1/p

Schwarz Inequality: |a′b| ≤ ||a|| ||b||

Therefore,

E[e4]1/4 = E[(Y − X ′β)4]1/4

≤ E[Y 4]1/4 + E[(X ′β)4]1/4

≤ E[Y 4]1/4 +
(
E||X||4)1/4||β||

< ∞

where the second line uses Minkowski’s inequality, the third inequality holds by the
Schwarz inequality; to be clear on this part, notice that E[(X ′β)4]1/4 = E[|X ′β|4]1/4 ≤
E[(||X|| ||β||)4]1/4 = E[||X||4||β||4]1/4 = E[||X||4]1/4||β|| < ∞. That E[e4]1/4 < ∞ implies
that E[e4] < ∞.

Expectation Inequality: For a random vector Y ∈ Rm with E||Y || < ∞, ||E[Y ]|| ≤ E||Y ||.

Cauchy Schwarz Inequality: E||X ′Y || ≤
(
E||X||2

)1/2(E||Y ||2
)1/2

Next, the (j, l) element of Ω is given by E[XjXle
2] (we want to show that this is finite).

Therefore, consider

|E[XjXle
2]| ≤ E|XjXle

2|

= E[|Xj | |Xl|e2]

≤ E[X2
j X2

l ]1/2E[e4]1/2

≤
(
E[X4

j ]1/2E[X4
l ]1/2

)1/2
E[e4]1/2

= E[X4
j ]1/4E[X4

l ]1/4E[e4]1/2

< ∞

where the first equality holds by the expectation inequality, the second equality holds because
of the absolute value, the third equality holds by the Cauchy-Schwarz inequality, the fourth
equality holds by applying the Cauchy-Schwarz inequality again, the fifth equality holds
immediately, and the last equality holds by Assumption 7.2 and because E[e4] < ∞ (which
we showed right before).
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Combining this with Equation 2, we have that

√
n(β̂ − β) d−→ E[XX ′]−1 N(0, Ω) = N(0, Vβ)

where Vβ = E[XX ′]−1ΩE[XX ′]−1 and which holds by the continuous mapping theorem.
Vβ is called the asymptotic variance matrix of β̂. E[XX ′]−1ΩE[XX ′]−1 is called a “sandwich

form”. It is called this because Ω is sandwiched by E[XX ′]−1 (sometimes Ω is called the “meat”
and E[XX ′]−1 is called the “bread”). Many asymptotic variance matrices have a similar form.

The previous result is the basis for hypothesis testing/inference, constructing confidence intervals,
etc. To operationalize it, though, we need to construct an estimator of Vβ . Before doing that, let’s
introduce one relatively common simplification.

Homoskedasticity Assumption: E[e2|X] = σ2.
Homoskedasticity says that the second moment of the error term does not vary across different

values of X. This is often constrasted with heteroskedasticity which amounts to just not making
the homoskedasticity assumption. Most applications in economics do not invoke the homoskedasticity
assumption mainly because, often, we do not “need” it. That said, as we will see below, it is useful
for simplifying some expressions and serves as a useful benchmark in many cases.

Notice that, under homoskedasticity, we can simplify the expression for Ω (I use the notation
Ω0 to indicate that this is the expression for Ω under homoskedasticity):

Ω = E
[
XX ′ E[e2|X]︸ ︷︷ ︸

σ2

]
= σ2E[XX ′]

where the first equality holds by the law of iterated expectations, and the second equality holds
by homoskedasticity. Plugging this back in to the expression for Vβ, it will also simplify (again, I
switch the notation to indicate the asymptotic variance of

√
n(β̂ − β) under homoskedasticity):

V0 = σ2E[XX ′]−1

which holds by plugging in Ω0 into the expression for Vβ and cancelling.

Consistency of Error Variance Estimators

H: 7.5
Next, we consider estimating σ2 = E[e2]. Using the analogy principle would suggest estimating

σ2 by

1
n

n∑
i=1

e2
i
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but this estimator is infeasible since we do not observe ei. Instead, let’s consider the estimator

σ̂2 = 1
n

n∑
i=1

ê2
i

where êi is the residual that is defined as

êi = Yi − X ′
iβ̂

which is the difference between the actual outcome and Xiβ̂ (the fitted value from the regression).
Notice that, êi is something that we can actually recover because it depends on the estimated
β̂ rather than, say, the population parameter β. Notice that, by plugging in Yi = X ′

iβ into the
expression for êi, we have that

êi = Yi − X ′
iβ̂

= X ′
iβ + ei − X ′

iβ̂

= ei − X ′
i(β̂ − β)

which implies that

ê2
i = e2

i − 2eiX
′
i(β̂ − β) + (β̂ − β)′XiX

′
i(β̂ − β)

so that

1
n

n∑
i=1

ê2
i = 1

n

n∑
i=1

e2
i − 2

(
1
n

n∑
i=1

eiX
′
i

)
(β̂ − β) + (β̂ − β)

(
1
n

n∑
i=1

XiX
′
i

)
(β̂ − β)

Then, since,

1
n

n∑
i=1

e2
i

p−→ E[e2] = σ2

β̂ − β
p−→ 0

1
n

n∑
i=1

XiX
′
i

p−→ E[XX ′]

it follows by the continuous mapping theorem that

σ̂2 p−→ σ2

Heteroskedastic Covariance Matrix Estimation

H: 7.7
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Next, we consider estimating Vβ. The natural estimator is

V̂β =
(

1
n

n∑
i=1

XiX
′
i

)−1

Ω̂
(

1
n

n∑
i=1

XiX
′
i

)−1

where Ω̂ is an estimate of Ω given by

Ω̂ = 1
n

n∑
i=1

XiX
′
i ê

2
i

We aim to show that Ω̂ is consistent for Ω. To this end, notice that

Ω̂ = 1
n

n∑
i=1

XiX
′
ie

2
i + 1

n

n∑
i=1

XiX
′
i(ê2

i − e2
i )

which holds by adding and subtracting terms. Then, notice that

1
n

n∑
i=1

XiX
′
ie

2
i

p−→ E[XX ′e2] = Ω

It remains to show be shown that

1
n

n∑
i=1

XiX
′
i(ê2

i − e2
i ) p−→ 0

Given our earlier result on σ̂2 being consistent for σ2, it is perhaps not surprising that this term
converges to 0 though the arguments are more challenging (if you are interested, see the technical
details below).
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Technical Details: To start with, let me briefly introduce some useful concepts related to matrix
norms and useful inequalities for matrix norms. Below, A and B are notation for matrices.

Frobenius/Matrix Norm ||A|| = ||vec(A)||
Schwarz Inequality ||AB|| ≤ ||A|| ||B||
Triangle Inequality: ||A + B|| ≤ ||A|| + ||B||
Holder’s Inequality: For any p > 1 and q > 1 such that 1

p + 1
q = 1, E||X ′Y || ≤(

E||X||p
)1/p(E||Y ||q

)1/q

The Frobenius norm is a matrix norm (there are others) that “converts” the matrix into a vector and
then applies the Euclidean norm to that vector. The next two inequalities say that versions of the
Schwarz and triangle inequalities apply to matrices. Next, notice that∣∣∣∣∣

∣∣∣∣∣ 1n
n∑

i=1
XiX

′
i(ê2

i − e2
i )

∣∣∣∣∣
∣∣∣∣∣ ≤ 1

n

n∑
i=1

∣∣∣∣XiX
′
i(ê2

i − e2
i )
∣∣∣∣

≤ 1
n

n∑
i=1

||Xi||2|ê2
i − e2

i | (3)

where the first inequality holds by the triangle inequality and the second inequality holds by applying
the Schwarz inequality twice. Now consider

|ê2
i − e2

i | = | − 2eiX
′
i(β̂ − β) + (β̂ − β)′XiX

′
i(β̂ − β)|

≤ 2|eiX
′
i(β̂ − β)| + (β̂ − β)′XiX

′
i(β̂ − β)

= 2|ei| |X ′
i(β̂ − β)| + |(β̂ − β)′Xi|2

≤ 2|ei| ||Xi|| ||β̂ − β|| + ||Xi||2 ||β̂ − β||2

where the first equality holds by plugging in from above the difference between ê2
i and e2

i , the second
inequality holds by the triangle inequality (the second term is positive because it is quadratic), the
third equality holds by properties of absolute value, the fourth inequality holds by the Schwarz
inequality. Using this expression back in Equation 3 implies that∣∣∣∣∣

∣∣∣∣∣ 1n
n∑

i=1
XiX

′
i(ê2

i − e2
i )

∣∣∣∣∣
∣∣∣∣∣ ≤ 2

(
1
n

n∑
i=1

||Xi||3 |ei|

)
||β̂ − β|| + 1

n

n∑
i=1

||Xi||4 ||β̂ − β||2

The second term converges to 0 because n−1∑n
i=1 ||Xi||4

p−→ E[X4] and because ||β̂ − β|| p−→ 0. For
the first term ||β̂ − β|| p−→ 0, and then consider

1
n

n∑
i=1

||Xi||3 |ei|
p−→ E[||X||3 |e|]

≤ E
[
(||X||3)4/3

]3/4
E[e4]1/4

= E[||X||4]3/4E[e4]1/4

< ∞

where the first equality holds by the weak law of large numbers, the second equality holds using
Holder’s inequality (using ||X||3 and |e| and setting p = 4/3 and q = 4), the third equality by canceling
the inside exponents, and the last inequality by Assumption 7.2 and that we showed that E[e4] < ∞.
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Thus, we have shown that Ω̂ p−→ Ω. It immediately follows from the weak law of large numbers
and the continuous mapping theorem that V̂β

p−→ E[XX ′]−1ΩE[XX ′]−1 = Vβ. This implies that
V̂β is consistent for Vβ.
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