
This material comes from Hansen Chapter 2.

Linear Regression Notes 2: Conditional Expectation and Projection

Conditional expectation and projection

H: 2.5
We will spend much time this semester thinking about conditional expectations, that is,

E[Y |X = x]. This is the mean of Y conditional on X taking the particular value x. The book
sometimes uses the short-hand notation m(x) := E[Y |X = x]. You can think of E[Y |X = x] as a
function — that is, when you plug in a new value of x, the value of the conditional expectation
function can change. For example, if Y is a person’s earnings and X is their years of education,
the E[Y |X = 12] could differ (perhaps substantially) from, say, E[Y |X = 16]. Sometimes it will be
useful to view E[Y |X] as a function of the random variable X; in this case, E[Y |X] is itself random
(because X is random). This is different from when you plug in a particular value of x, E[Y |X = x]
is no longer random; it is equal to some number (though, in most cases, it is unlikely that we know
the value of this sort of population quantity).

Law of iterated expectations

H: 2.7
One of the most useful tools (that you likely will be familiar with already) is the law of iterated

expectations. We’ll provide a simple version and a general version (both require the regularity
condition that E|Y | < ∞). The simple version is

E[Y ] = E
[
E[Y |X]

]
In words, this says that the expectation of the conditional expectation is equal to the unconditional

expectation. Here is an example. Continue to suppose that Y is a person’s earnings and X is their
years of education. E[Y |X = x] can vary arbitrarily for different values of x. But if you know
E[Y |X = x] for all possible values of x, this will pin down the value of E[Y ] (i.e., if you know mean
earnings for all years of education, then you also should be able to recover the overall mean value of
earnings). And, in particular, the law of iterated expectations says that the overall mean is equal to
the mean of the conditional expectations (i.e., it puts more “weight’ ’ on conditional expectations of
relatively common values of X).

A more general version of the law of iterated expectations is the following: for any two random
vectors X1 and X2,

E[Y |X1] = E
[
E[Y |X1, X2]|X1

]
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The inside expectation is an expectation of Y conditional on X1 and X2, the outside expectation
is over the distribution of X2 conditional on X1.

CEF Error

H: 2.8
We define the CEF error as the difference between Y and E[Y |X]. That is,

e := Y − m(X)

Rearranging terms also implies the following expression that we will use often

Y = m(X) + e

That is, the actual outcome Y is equal to the CEF plus the CEF error. Notice that (besides
regularity conditions that expectations exist), we are not making any assumptions here — we can
essentially always write that Y is equal to its conditional expection plus CEF error.

A fundamental property of the CEF error is that E[e|X] = 0. Let us show why this holds

E[e|X] = E[Y − m(X)|X]

= E[Y |X] − E[m(X)|X]

= m(X) − m(X)

= 0

From the law of iterated expectations, this also implies that

E[e] = E
[
E[e|X]︸ ︷︷ ︸

=0

]
= 0

The condition that E[e|X] = 0 is called mean independence. It is weaker than “full’ ’
independence. To give an example, even if E[e|X] = 0, it could be the case that E[e2|X] varies with
X which would imply that e and X are not independent.

We can also define the variance of the CEF error as

σ2 = var(e) = E[(e − E[e])2] = E[e2]

σ2 measures the amount of variation in Y that is not accounted for by E[Y |X].
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Best Predictor

H: 2.11
Next, we will show that the conditional expectation function is the “best’ ’ predictor of Y given

X. We can write any predictor as a function g(X); i.e., a function that takes values of X and
makes predictions about what the outcome will be. In order to evaluate how well a predictor makes
predictions, we need some criteria. The most common criteria is mean squared prediction error.
This is given by

E[(Y − g(X))2]

The squared difference between Y and its prediction g(X) is a measure of the distance between
Y and g(X) — in particular, it is always non-negative and gets larger as when Y and g(X) are
further away from each other. The outside expectation averages this distance over the distribution
of Y and X.

Next, we show that m(X) minimizes mean squared prediction error. To this end, notice that

E[(Y − g(X))2] = E
[(

(Y − m(X)) + (m(X) − g(X))
)2]

= E
[(

e + (m(X) − g(X))
)2]

= E[e2] + 2E[e(m(X) − g(X))] + E[(m(X) − g(X))2]

where the first equality holds by adding and subtracting m(X), the second equality holds by the
definition of e, and the last equality holds by squaring the main term and pushing the expectation
through the sum. Now, let’s consider each term. First, E[e2] = σ2 which does not depend on our
prediction function g(X). Next, consider the middle term

E[e(m(X) − g(X))] = E[(m(X) − g(X))E[e|X]]

= 0

where the first equality holds by the law of iterated expectations and the second equality holds
because E[e|X] = 0. Finally, the third term is minimized at 0 by setting g(X) = m(X). This implies
that setting g(X) = m(X) minimizes mean squared prediction error.

Regression Derivatives

H 2.14
Following the textbook, we’ll use the shorthand notation m(x) := E[Y |X = x]. We will often be

interested in the regression derivative. An example of a regression derivative is
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∂ E[Y |X = x]
∂ x1

which holds when x1 is continuously distributed. This derivative should be interpreted as how much
Y changes, on average, when x1 increases by one unit holding the other regressors constant.

You can also define a regression derivative when X1 is discrete. For example, suppose that X1 is
binary (so it only takes the value 0 or 1), then the regression derivative is given by

E[Y |X1 = 1, X2 = x2, . . . , Xk = xk] − E[Y |X1 = 0, X2 = x2, . . . Xk = xk]

You could similarly define a regression derivative for the case where X1 was discrete but took
more possible values.

In order to unify notation, we write

∇1m(x) :=


∂ E[Y |X=x]

∂x1
if x1 is continuous

E[Y |X1 = 1, X2 = x2, . . . , Xk = xk] − E[Y |X1 = 0, X2 = x2, . . . Xk = xk] if x1 is binary

There is nothing unique about defining partial effects for just X1, and we can likewise define partial
effects for X2, . . . , Xk, for example, ∇2m(x) is the partial effect of X2.

The regression derivatives above are also sometimes called the “partial effect” of x1 or the
“marginal effect” of x1.

Some Comments

• First, partial effects hold other regressors constant. But they do not hold other variables that
are not in the model constant.

• Second, you should notice that ∇1m(x) is a function of x. If you plug in different values of
x, then the value of this function could change. For example, if you take X1 to be a binary
variable indicating whether or not an individual attended college, Y to be their earnings, and
X2 to be a person’s age, you could imagine that the partial effect of college differs depending
on a person’s age.

• Third, partial effects are really about averages rather than individual-level effects. Continuing
the example of the return to going to college – you can easily imagine that, holding age
constant, the effect of going to college on a person’s earnings may vary (perhaps tremendously
across different people). The regression derivative averages over all of these individual-level
effects while holding age constant.

Linear CEF

H: 2.15
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An important special case is when E[Y |X] = X ′β; that is, when the CEF is linear. Importantly,
unlike the previous generic discussion of CEFs, in many cases, it may be a strong assumption to
impose a linear CEF.

Notation:
I’ll follow the convention in the book by writing

E[Y |X = x] = x1β1 + x2β2 + · · · + xk−1βk−1 + βk

so that the “intercept” is in the last position. More specifically,

X =



X1

X2
...

Xk−1

1


β =


β1
...

βk



so that X and β are both k × 1 vectors. And Y , the outcome, is a scalar.
When referring to particular observations, I’ll use the notation

Xi =


Xi1

Xi2
...

Xik

 and Yi

where Xi is k × 1 and Yi is a scalar.

In this case, the regression derivative is given by ∇1m(x) = β1. This is a major simplification
from the general version of ∇1m(x) that we discussed above. It has pros and cons. If the CEF really
is linear, then (i) it will be much easier to estimate m(x) = x′β (and, hence, ∇1m(x) = β1) than in
the more general case. Additionally, given an estimate of β1, it is easy to report/fully summary
the partial effect of X1 on E[Y |X]. The main disadvantage is that, often, we may not have a good
reason to think/impose that the CEF is actually linear.

Linear CEF with Nonlinear Effects

H: 2.16-2.17
One way to add some additional “flexibility” to the linear CEF model that we have been

discussing is to add higher order terms and interactions into the model. For example,

m(x1, x2) = x1β1 + x2β2 + x2
1β3 + x2

2β4 + x1x2β5 + β6
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This would still be considered a linear CEF as it is still linear in the parameters though it allows for
nonlinear effects of the regressors. In particular, notice that

∇1m(x1, x2) = β1 + 2x1β3 + x2β5

which can depend on the values of x1 and x2. To be clear, this is still less flexible than the general
version of ∇1m(x) that we discussed earlier, but it does allow for partial effects to depend on the
values of different regressors.

One important special case of the nonlinear effects CEF mentioned above is when, say, x2 is a
binary variable. For simplicity, let’s consider a slight modification of the previous model such that

m(x1, x2, x3) = x1β1 + x2β2 + x1x2β3 + x3β4

Suppose also that Y is a person’s income, X1 is a person’s years of education, X2 is whether or not
a person is married, and X3 is how old a person is. In this case,

∇1(x1, x2, x3) = x1 + x2β3

which depends on whether x2 = 1 or 0; that is ∇1(x1, x2 = 1, x3) = x1 + β3 while ∇1(x1, x2 =
0, x3) = x1, so that (in the example), the partial effect of education can depend on whether or not a
person is married. Further, rearranging, we have that

β3 = ∇1(x1, x2 = 1, x3) − ∇1(x1, x2 = 0, x3)

so that β3 is equal to the difference between partial effects of education for married people relative
to unmarried people.

Please read H: 2.16-2.17 for additional discussions on nonlinear effects in linear CEF models. I
think much of this will be review from your undergrad econometrics, but these are things that you
should make sure that you fully understand. Relatedly, please read the discussion in H: 2.4 about
taking the logarithm of positive random variables (which is relatively common in economics).

Best Linear Predictor

H: 2.18
In many cases, we may be hesitant (or not have a good reason to believe) that the CEF is

actually linear. Even in this case, we can still “run a regression” of Y on X.
In this section, we’ll consider the best linear predictor of Y given X. A linear predictor for Y is

a function X ′b for some b ∈ Rk. We will choose the best possible value of b. For this section, we
will make the following regularity assumptions (Assumption 2.1 in the textbook)

1. E[Y 2] < ∞

2. E||X||2 < ∞
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3. E[XX ′] is positive definite

where ||x|| = (x′x)1/2 is the Euclidean length of the vector x. The first two assumptions imply
that Y and X have finite second moments (and, therefore, finite means, variances, and covariances).
As earlier, we will try to minimize mean squared prediction error; that is,

β = argmin
b

S(b)

where we define

S(b) = E[(Y − X ′b)2]

We can use tools from calculus to solve this. As a first step, it is helpful to notice that

E[(Y − X ′b)2] = E[Y 2] − 2β′E[XY ] + β′E[XX ′]β

As a side-comment, notice that the function that we are minimizing is a scalar (we will likely
see other parameters/estimators this semester that minimize or maximize some objective function —
these objective functions always return a scalar). Second, the expansion in the previous equation
may not be obvious; in general, I think you can do quite well at linear algebra by keeping track of
the dimensions of the terms that you are working with. In particular, you would know that you
were making a mistake if the dimension of any term above were not scalar. Finally, we combined
the two terms E[Y X]′β and β′E[XY ] for the middle term above — these are equal to the transpose
of each other and since they are both scalars, they are exactly equal to each other.

Next, let’s take the derivative of the previous equation, set it equal to 0 and solve for β. Before
we do this, let’s be clear about exactly what we are doing. We are taking the derivative of a function
S(b) : Rk → R (that is a function that takes in a k dimensional vector and returns a scalar). And,
in particular, this vector derivative is given by

∂S(b)
∂b

=


∂S(b)
∂b1...

∂S(b)
∂bk


which is a k × 1 vector. As a side-comment, I follow the convention (which is also used in the
textbook) of taking first derivatives of scalar-valued functions with respect to a vector “down” (so
that the first derivative is k × 1 vector rather than a 1 × k vector) and (if needed) second derivatives
“across’ ’ (so that the second derivative would result in a k×k matrix). For more details about taking
derivatives with respect to a vector, see the discussion on p.38 of the textbook and in Appendix
A.20 (I consider this to be review material, but it is definitely material you should know).
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Returning to our present problem, notice that

0 = ∂S(b)
∂b

∣∣∣
b=β

= −2E[XY ] + 2E[XX ′]β

In terms of mechanics, this derivative is just like the scalar case (the first term is a linear term and
the second term is a quadratic term) except you just need to make sure that you get a k × 1 vector
(rather than, especially, a 1 × k vector).

We can immediately solve the previous equation for β. The regularity conditions above imply
that all of the moments here exist and that the matrix E[XX ′] is invertible.

β = E[XX ′]−1E[XY ]

In this context, we’ll refer to β as the linear projection coefficient and X ′β as the best linear
predictor

We can also define the projection error

e = Y − X ′β

which is the difference between the actual value of Y and the best linear predictor of Y given X.
An important property of the projection error is that E[Xe] = 0. To see this, notice that

E[Xe] = E[X(Y − X ′β)]

= E[XY ] − E[XX ′]β

= E[XY ] − E[XX ′]E[XX ′]−1E[XY ]

= 0

Notice that E[Xe] is a k × 1 vector. When X includes an intercept (so that Xk = 1), this implies
that E[e] = 0.

Best linear approximation

H 2.25
Next, we show another interesting property/interpretation for the linear projection coefficient

β. Suppose that we are interested in learning about the conditional expectation function m(x) =
E[Y |X = x], but we have no reason to suppose that it is linear. Therefore, we might be interested
in trying to construct the best linear approximation to m(x). That is, let’s consider choosing β in
the following way
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β = argmin
b

E[(m(X) − X ′b)2]

Following roughly the same strategy as earlier, notice that

E[(m(X) − X ′b)2] = E[m(X)2] − 2β′E[XY ] + β′E[XX ′]β

Taking the derivative and setting equal to 0 implies that

0 = −2E[Xm(X)] + 2E[XX ′]β

which further implies that

β = E[XX ′]−1E[Xm(X)]

= E[XX ′]−1E[XE[Y |X]]

= E[XX ′]−1E[XY ]

where the second equality holds by the definition of m(X) and the last equality holds by the law of
iterated expectations.

This is exactly the same expression for β as we derived earlier under the motivation of best linear
predictor. This implies that X ′β can additionally be interpreted as the best linear approximation
to the underlying CEF — even if the CEF is nonlinear. This is a nice property for the linear
projection model to have. That being said, even the best linear approximation to a nonlinear CEF
can sometimes be quite poor. See Section 2.28 for an example and some discussion.
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