
This material comes from Hansen Appendix A.

Linear Regression Notes 1: Review of Matrix Algebra

H A.1
A vector a is a k × 1 list of numbers. We will follow the convention of (primarily) using column

vectors. That is,

a =


a1

a2
...

ak


If k = 1, then a is a scalar. A matrix A is a k × r rectangular array of numbers which we will
write as

A =


a11 a12 · · · a1r

a21 a22 · · · a2r

...
... . . . ...

ak1 ak2 · · · akr


I will typically capitalize and use bold-font to indicate a matrix in the course notes and will underline
it on the board, e.g., A (since it is hard to write in bold on the board).

The transpose of a matrix, which will denote by A′ is obtained by flipping the matrix on its
diagonal. That is,

A′ =


a11 a21 · · · ak1

a12 a22 · · · ak2
...

... . . . ...
a1r a2r · · · akr


Notice that A′ is an r × k matrix. For a k × 1 vector a, its tranpose, a′, is a 1 × k vector. For a
scalar a, a = a′.

A matrix is square if k = r. A square matrix is symmetric if A = A′. A square matrix is
diagonal if the off-diagonal elements are all zero. The identity matrix is the diagonal matrix
where all the elements on the diagonal are equal to 1. It is common to denote the k × k identity

1



matrix by

Ik =


1 0 · · · 0
0 1 · · · 0
...

... . . . ...
0 0 · · · 1


Matrix Addition

H A.3
If two matrices A = (aij) and B = (bij) (here the notation just means that aij and bij are

elements of each matrix) have the same dimension, then they can be added, and

A + B = (aij + bij)

Matrix addition is commutative, that is, A + B = B + A. It is also associative: A + (B + C) =
(A + B) + C.

Matrix Multiplication

H A.4
Let c denote a scalar, then (we define) Ac = cA = (aijc). If a and b are both k × 1 vectors, then

their inner product is

a′b = a1b1 + a2b2 + · · · + akbk =
k∑

j=1
ajbj

Further, notice that a′b = b′a. a and b are said to be orthogonal if a′b = 0.
If A is k × r and B is r × s (that is, the number of columns of A is the same as the number of

rows of B), then A and B are said to be conformable and the matrix produce AB is defined as

AB =


a′

1
a′

2
...

a′
k


[
b1 b2 · · · bs

]
=


a′

1b1 a′
1b2 · · · a′

1bs

a′
2b1 a′

2b2 · · · a′
2bs

...
... . . . ...

a′
kb1 a′

kb2 · · · a′
kbs


where, for example, a′

1 = (a11, a12, . . . , a1r) (which is the first row of A) and b1 = (b11, b21, . . . , br1)′

is the first column of B. Notice that the product is a k × s matrix.
Matrix multiplication is not commutative, i.e., in general, AB ̸= BA. But it is associative:

A(BC) = (AB)C. And it is distributive: A(B + C) = AB + AC.
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Trace

H A.5
The trace of k × k square matrix A is the sum of its diagonal elements:

tr(A) =
k∑

i=1
aii

Here are some useful properties of trace (where A and B are square matrices and c is a scalar):

1. tr(cA) = ctr(A)
2. tr(A′) = tr(A)
3. tr(A + B) = tr(A) + tr(B)
4. tr(Ik) = k

Another useful property is that if A is k × r and B is r × k, then tr(AB) = tr(BA). Unlike the
previous results, this one is not obvious, so let’s provide a quick proof:

tr(AB) = tr


a′

1b1 a′
1b2 · · · a′

1bk

a′
2b1 a′

2b2 · · · a′
2bs

...
... . . . ...

a′
kb1 a′

kb2 · · · a′
kbk


=

k∑
i=1

a′
ibi

=
k∑

i=1
b′

iai

= tr(BA)

Rank and Inverse

H A.6
The rank of a k × r matrix (with r ≤ k)

A =
[
a1 a2 · · · ar

]
written rank(A), is the number of linearly independent columns of A. A is said to have full rank if
rank(A) = r. Linear independence means that there is no non-zero k × 1 vector c such that A′c = 0.
For example,

rank
[
1 2
2 4

]
= 1, rank

[
1 2
2 3

]
= 2
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so that the second matrix has full rank but the first matrix does not (notice that the second column
equals the first column times 2 so that they are not linearly independent; alternatively, you can
notice that A′c = 0 for c = (2, −1)′).

A square k × k matrix A is nonsingular if rank(A) = k (i.e., if it has full rank). If A is
nonsingular, then it has an inverse A−1 that satisfies

AA−1 = A−1A = Ik

For two non-singular matrices A and C, another useful property is that

(A−1)′ = (A′)−1

that is, for a nonsingular matrix, you can swap the order of transpose and inverse. Another useful
property is that

(AC)−1 = C−1A−1

These properties are the ones that we’ll use often though Appendix A.6 has several additional
properties of nonsingular matrices that may be useful as a reference at some point.

Positive definite matrices

H A.10
A k × k symmetric matrix A is said to be positive semi-definite if c′Ac ≥ 0 for any non-zero,

k × 1 vector c; this is often written A ≥ 0. A is said to be positive definite if c′Ac > 0 for any
non-zero, k × 1 vector c; this is often written A > 0.

The textbook lists a number of properties of a positive definite matrix. One of these that we
will use is that, if A > 0, then A is nonsingular, A−1 exists, and A−1 > 0.

Another is that, if A is positive definite, then we can find a square root matrix A1/2 such that
A = A1/2A1/2 where A1/2 is itself positive definite and symmetric.

Idempotent Matrices

H A.11
A k × k square matrix A is idempotent if AA = A.

Matrix Calculus

H A.20
For this section, let x = (x1, x2, . . . , xk)′ denote a k × 1 vector and g(x) : Rk → R. Now, let’s

consider taking the partial derivatives of the function g with respect to each variable in x; in
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particular,

∂g(x)
∂x

=



∂g(x)
∂x1

∂g(x)
∂x2

...
∂g(x)
∂xk


I will typically follow the convention of taking vector derivatives like the previous one “down” (as
above), but it is also useful to have a notation for taking vector derivatives “across” as in

∂g(x)
∂x′ =

(
∂g(x)
∂x1

∂g(x)
∂x2

· · · ∂g(x)
∂xk

)
Sometimes, we will also take second derivatives, which are given by

∂2g(x)
∂x∂x′ =



∂2g(x)
∂x2

1

∂2g(x)
∂x1∂x2

· · · ∂2g(x)
∂x1∂xk

∂2g(x)
∂x1∂x2

∂2g(x)
∂x2

2
· · · ∂2g(x)

∂x2∂xk

...
... . . . ...

∂2g(x)
∂x1∂xk

∂2g(x)
∂x2∂xk

· · · ∂2g(x)
∂x2

k


Notice that this is a k × k matrix which is symmetric and arises from taking the partial derivatives
“down” and then “across”.

Here are some examples (we will consider the case where a is a k × 1 vector and A is a k × k

symmetric matrix):

• ∂

∂x
(a′x) = ∂

∂x
(x′a) = a

• ∂

∂x′ (Ax)k×1 = A and ∂

∂x
(x′A)1×k = A

• ∂

∂x
(x′Ax) = 2Ax and ∂

∂x′ (x
′Ax) = 2x′A

• ∂2

∂x∂x′ (x
′Ax) = 2A

In my view, a main takeaway from the above examples is that matrix calculus behaves very much
like scalar calculus as long as you pay close attention to keeping the dimensions of the matrices
straight (and also pay some attention to where to put transposes).

Vec Operator and Kronecker Product

H A.21

5



Write the k × r matrix A =
[
a1 a2 · · · ar

]
. Then, the vec of A is defined as

vec(A) =


a1

a2
...

an


which is a kr × 1 vector that stacks all the columns of A into one long column.

Next, write A = (aij), then the Kronecker product of A and B is defined as (note that there
are not restrictions on the dimensions of the matrices):

A ⊗ B =


a11B a12B · · · a1rB
a21B a22B · · · a2rB

...
... . . . ...

ak1B ak2B · · · akrB


If the dimension of B is m × n, then the dimension of A ⊗ B is km × rn. The book provides some
additional properties of Kronecker products.

Vector norms

H A.22
A norm is a function ρ : Rk → R that satisfies the following properties:

1. ρ(ca) = cρ(a) for any scalar c and a ∈ Rk

2. ρ(a + b) ≤ ρ(a) + ρ(b). This is called the triangle inequality.

3. If ρ(a) = 0, then a = 0.

The three most common norm functions are

• The Euclidean norm: ||a|| = (a′a)1/2

• The 1-norm: ||a||1 = ∑k
i=1 |ai|

• The sup-norm: ||a||∞ = max{|a1|, . . . , |ak|}

6


	Linear Regression Notes 1: Review of Matrix Algebra
	Matrix Addition
	Matrix Multiplication
	Trace
	Rank and Inverse
	Positive definite matrices
	Idempotent Matrices
	Matrix Calculus
	Vec Operator and Kronecker Product
	Vector norms


