
Homework 4 Solutions
7.17
(a)

To start with, let’s write 𝜃 = 𝑟(𝛽1, 𝛽2) = 𝛽1 − 𝛽2. The key step is to derive an expression for
√𝑛(̂𝜃 − 𝜃). This is a linear function of the parameters, i.e., we can write 𝜃 = R′𝛽 where R = [1

−1].

Therefore, we have that
√𝑛(̂𝜃 − 𝜃) = R′√𝑛(̂𝛽 − 𝛽)

𝑑−→ 𝒩(0, 𝑉)

where

𝑉 = R′V𝛽R

= ⎡⎢
⎣

1

−1
⎤⎥
⎦

′

[𝑉11 𝑉12
𝑉21 𝑉22

] ⎡⎢
⎣

1

−1
⎤⎥
⎦

= [(𝑉11 − 𝑉21) (𝑉12 − 𝑉22)] ⎡⎢
⎣

1

−1
⎤⎥
⎦

= 𝑉11 − 𝑉21 − 𝑉12 + 𝑉22

where 𝑉𝑖𝑗 denotes the element in the ith row and jth column in V𝛽. This is the main theoretical
result that we needed to show, but we would still need to estimate 𝑉 in order to come up with a
confidence interval. Before doing that, it is useful to note that we can write a 2×2 variance matrix,
like V𝛽 as

V𝛽 = [𝑉11 𝑉12
𝑉21 𝑉22

] = [𝑉11 𝜌√𝑉11√𝑉22
𝜌√𝑉11√𝑉22 𝑉22

]

which holds because the diagonal elements of this matrix are variance, and the off diagonals are
covariances (and recalling that cov(𝑋, 𝑌) = corr(𝑋, 𝑌)√var(𝑋)√var(𝑌) — which just holds from
the definition of correlation). This suggests that,

̂𝑉 = ̂𝑉11 − 2 ̂𝜌√ ̂𝑉11√ ̂𝑉22 + ̂𝑉22

which further implies that

̂𝑉
𝑛 =

̂𝑉11
𝑛 − 2 ̂𝜌

√ ̂𝑉11√𝑛
√ ̂𝑉22√𝑛 +

̂𝑉22
𝑛

= se(̂𝛽1)2 − 2 ̂𝜌 se(̂𝛽1) se(̂𝛽2) + se(̂𝛽2)2

1

Finally, we can write down a 95% confidence interval as

̂𝐶 = ⎡⎢
⎣

̂𝜃 ± 1.96√ ̂𝑉
𝑛

⎤⎥
⎦

= [̂𝜃 ± 1.96√se(̂𝛽1)2 − 2 ̂𝜌 se(̂𝛽1) se(̂𝛽2) + se(̂𝛽2)2]

where the first line is just the usual confidence interval (i.e., estimate plus or minus critical value
times standard error), and the second equality plugs in the expression for ̂𝑉 /𝑛 derived above.

(b)

No, it is not possible to calculate ̂𝜌 from the information given in the problem. Besides the estimates
of ̂𝛽1 and ̂𝛽2, the only other information that we have is about se(̂𝛽1) and se(̂𝛽2) — which does not
tell us about their correlation.

(c)

I think the way to think about this problem is to think about the largest possible confidence interval
given the information that we have. If this confidence interval does not include 0, then it would
support the author’s claim. As a side-comment, this is actually a really interesting question (at least
in my view) because: on the one hand, you can immediately see that the 95% confidence interval
for 𝛽1 would not include the estimated value of 𝛽2 (which is probably what the author is thinking),
on the other hand, if you compute both confidence intervals for 𝛽1 and 𝛽2, they overlap (which
would suggest that they are not different from each other). These are just heuristic arguments
though, and our calculations above indicate that it is actually more complicated than either of
these scenarios. Anyway…the widest possible confidence interval here will occur when ̂𝜌 = −1 (you
can see this because it shows up in the negative term in the square root). Therefore, the widest
possible confidence interval is given by

̂𝐶𝑤𝑖𝑑𝑒 = [̂𝜃 ± 1.96√se(̂𝛽1)2 + 2se(̂𝛽1)se(̂𝛽2) + se(̂𝛽2)2]

= [0.2 ± 1.96
√

4 × 0.072]
= [−0.07, 0.47]

This includes 0, which suggests that the author’s claim is not correct. The information that we
have from the problem does not necessarily imply that ̂𝛽1 and ̂𝛽2 are statistically different from
each other.

7.28
(a)

We did part (a) on the previous homework, I am showing those results here so we can
compare to them later

read data
library(haven)
cps <- read_dta("cps09mar.dta")

2

construct subset of white, male, Hispanic
data <- subset(cps, race==1 & female==0 & hisp==1)

construct experience and wage
data$exp <- data$age - data$education - 6
data$wage <- data$earnings/(data$hours*data$week)

run regression
Y <- log(data$wage)
X <- cbind(data$education, data$exp, data$exp^2/100, 1)
bet <- solve(t(X)%*%X)%*%t(X)%*%Y
round(bet,5)

[,1]
[1,] 0.09045
[2,] 0.03538
[3,] -0.04651
[4,] 1.18521

construct standard errors
ehat <- as.numeric(Y - X%*%bet)
Xe <- X*ehat
n <- nrow(data)
Omeg <- t(Xe)%*%Xe/n
XX <- t(X)%*%X/n
V <- solve(XX)%*%Omeg%*%solve(XX)
se <- sqrt(diag(V))/sqrt(n)
round(data.frame(beta=bet, se=se),5)

beta se
1 0.09045 0.00292
2 0.03538 0.00258
3 -0.04651 0.00530
4 1.18521 0.04608

(b)

𝜃 = 𝛽1
𝛽2 + 2𝛽3(10)/100 = 𝛽1

𝛽2 + 1
5𝛽3

thet <- bet[1]/(bet[2] + bet[3]/5)
thet

[1] 3.468335

3

(c)

We can use a Delta method argument for this. In particular, define

𝑟(𝑏) = 𝑏1
𝑏2 + 1

5𝑏3

and, therefore, we have that
√𝑛(̂𝜃 − 𝜃) = ∇𝑟(𝛽)′√𝑛(̂𝛽 − 𝛽) + 𝑜𝑝(1)

where

∇𝑟(𝛽) =
⎡
⎢
⎢
⎢
⎢
⎣

𝜕𝑟(𝑏)
𝜕𝑏1

𝜕𝑟(𝑏)
𝜕𝑏2

𝜕𝑟(𝑏)
𝜕𝑏3

𝜕𝑟(𝑏)
𝜕𝑏4

⎤
⎥
⎥
⎥
⎥
⎦

∣
∣
∣
∣
∣
∣𝑏=𝛽

=
⎡
⎢⎢⎢⎢
⎣

1
𝑏2+ 1

5 𝑏3

− 𝑏1
(𝑏2+ 1

5 𝑏3)2

− 𝑏1
5(𝑏2+ 1

5 𝑏3)2

0

⎤
⎥⎥⎥⎥
⎦

∣
∣
∣
∣
∣
∣𝑏=𝛽

Thus, we have that

√𝑛(̂𝜃 − 𝜃) 𝑑−→ 𝒩(0, Γ)

where

Γ = ∇𝑟(𝛽)′V𝛽∇𝑟(𝛽)

which we can estimate by

Γ̂ =
⎡
⎢⎢⎢⎢
⎣

1
̂𝛽2+ 1

5
̂𝛽3

− ̂𝛽1
(̂𝛽2+ 1

5
̂𝛽3)2

− 1
5(̂𝛽2+ 1

5
̂𝛽3)2

0

⎤
⎥⎥⎥⎥
⎦

′

V̂𝛽

⎡
⎢
⎢
⎢
⎢
⎣

1
̂𝛽2+ 1

5
̂𝛽3

− ̂𝛽1
(̂𝛽2+ 1

5
̂𝛽3)2

− ̂𝛽1
5(̂𝛽2+ 1

5
̂𝛽3)2

0

⎤
⎥
⎥
⎥
⎥
⎦

and

s.e.(̂𝜃) =
√Γ̂√𝑛

se(\hat{\theta})
r1 <- 1/(bet[2] + bet[3]/5)
r2 <- -bet[1]/(bet[2] + bet[3]/5)^2
r3 <- -bet[1]/(5*(bet[2] + bet[3]/5)^2)
r4 <- 0
r <- as.matrix(c(r1,r2,r3,r4))
Gamma <- t(r)%*%V%*%r
se_theta <- sqrt(Gamma)/sqrt(n)
se_theta

4

[,1]
[1,] 0.2267341

(d)

90% confidence interval
ci_thet_L <- thet - 1.645*se_theta
ci_thet_U <- thet + 1.645*se_theta
paste0("[", round(ci_thet_L,3), ", ", round(ci_thet_U,3), "]")

[1] "[3.095, 3.841]"

(e)

compute regression intervals and 95% confidence interval
x <- c(12,20,20^2/100,1)
m <- t(x)%*%bet
m

[,1]
[1,] 2.792167

Vm <- t(x)%*%V%*%x
sem <- sqrt(Vm)/sqrt(n)
L <- m - 1.96*sem
U <- m + 1.96*sem
paste0("[",round(L,3),", ", round(U,3), "]")

[1] "[2.769, 2.815]"

Extra Question 1

set.seed(1234) # set seed for reproducibility

B <- 1000 # 1000 bootstrap iterations

boot_res <- list() # list to hold bootstrap results
for (b in 1:B) {

draw a sample
index <- sample(1:n, replace=TRUE)
boot_data <- data[index,]
Yb <- log(boot_data$wage)
Xb <- cbind(boot_data$education, boot_data$exp, boot_data$exp^2/100, 1)
betb <- solve(t(Xb)%*%Xb)%*%t(Xb)%*%Yb
boot_res[[b]] <- betb

5

}

bootstrap list to matrix
boot_res <- do.call(cbind, boot_res)
boot_res <- t(boot_res) # and take transpose for cov call below

bootstrap estimate of asymptotic variance
Vb <- cov(boot_res)*n

standard errors
seb <- sqrt(diag(Vb))/sqrt(n)

compare to analytical standard errors computed above
round(data.frame(analytical=se, bootstrap=seb),5)

analytical bootstrap
1 0.00292 0.00290
2 0.00258 0.00257
3 0.00530 0.00525
4 0.04608 0.04568

You can see that these are not exactly the same, but they are very close.

Extra Question 2

function to run a single simulation
sim <- function() {

draw X1
X1 <- rexp(n)

draw the error term
e <- mixtools::rnormmix(n, lambda=c(.5,.5), mu=c(-2,2), sigma=c(1,1))

TODO: construct Y
Y <- b0 + b1*X1 + e

TODO: use X1 and Y to estimate bet0 and bet1
X <- cbind(1,X1)
bet <- solve(t(X)%*%X)%*%t(X)%*%Y
bet1 <- bet[2,1]

TODO: return estimated value of bet1
bet1

}

function to run many simulations
@param n_sims is the number of simulations to run

6

run_mc <- function(n_sims=1000) {

run n_sims simulations and store in a vector
mc_res <- sapply(1:n_sims, function(s) {
sim()

})

print number of observations
cat("n = ", n, "....\n")

print the mean of b1
cat("mean b1 : ", mean(mc_res), "\n")

print the variance of b1
cat("var b1 : ", var(mc_res), "\n")

}

run the simulations
set values of parameters and number of observations
set.seed(1234) # so can reproduce
b0 <- 0
b1 <- 1

n <- 2
run_mc()

n = 2
mean b1 : 2.506428
var b1 : 4841.861

n <- 10
run_mc()

n = 10
mean b1 : 1.036217
var b1 : 1.074335

n <- 50
run_mc()

n = 50
mean b1 : 0.9884143
var b1 : 0.122526

7

n <- 100
run_mc()

n = 100
mean b1 : 1.004076
var b1 : 0.05406661

n <- 500
run_mc()

n = 500
mean b1 : 1.006865
var b1 : 0.01053563

It looks like our theory is holding here. ̂𝛽1 appears to be unbiased — recall unbiasedness is a
finite sample property — so this should hold for all values of 𝑛 (the only case where there are issues
is when 𝑛 = 2; in this case, you can see that the variance is extremely high, and I think that we are
not doing enough simulations to see that it is actually unbiased in this case). The other interesting
thing to note is that, as expected, the variance of ̂𝛽1 is decreasing for larger sample sizes.

Extra Question 3
(a)

Given our discussion in class (and given that ℍ0 is true here), we would expect/hope to reject about
5% of the time.

(b)

function to run a single simulation
sim <- function() {

draw X1
X1 <- rexp(n)

draw the error term
e <- mixtools::rnormmix(n, lambda=c(.5,.5), mu=c(-2,2), sigma=c(1,1))

construct Y
Y <- b0 + b1*X1 + e

estimate bet1 and V and construct t-stat
X <- cbind(1,X1)
bet <- solve(t(X)%*%X)%*%t(X)%*%Y
ehat <- as.numeric(Y-X%*%bet)
Xe <- X*ehat
XX <- t(X)%*%X/n
Omeg <- t(Xe)%*%Xe/n

8

V <- solve(XX)%*%Omeg%*%solve(XX)
bet1 <- bet[2,1]
t_stat <- sqrt(n)*(bet1 - H0)/sqrt(V[2,2])

return whether or not reject
1*(abs(t_stat) > qnorm(.975))

}

function to run many simulations
@param n_sims is the number of simulations to run
run_mc <- function(n_sims=1000) {

run n_sims simulations and store in a vector
mc_res <- sapply(1:n_sims, function(s) {
sim()

})

print rejection probability
cat("rej. prob : ", mean(mc_res), "\n")

}

run the simulations
set values of parameters and number of observations
set.seed(1234)
b0 <- 0
b1 <- 1
H0 <- 1
n <- 100

run_mc()

rej. prob : 0.071

We reject 7.1% of the time here. This looks like we are slightly over-rejecting (relative to the
fraction of time that we’d like to), but this seems to at least be working pretty well.

(c)

n=10
n <- 10
run_mc()

rej. prob : 0.256

9

n=50
n <- 50
run_mc()

rej. prob : 0.1

n=500
n <- 500
run_mc()

rej. prob : 0.052

n=1000
n <- 1000
run_mc()

rej. prob : 0.045

These results are quite interesting. When 𝑛 = 10, we reject ℍ0 25.6% of the time — in other words,
despite being true, we reject the null about 25% of the time when we only have 10 observations. This
suggests that our asymptotic approximation arguments for the limiting distribution of

√𝑛(̂𝛽 − 𝛽)
are not working very well when 𝑛 = 10. This should not be surprising though because 𝑛 is quite
small here.

The performance of inference procedure is better, though we still over-reject, when 𝑛 = 50. By
the time 𝑛 = 500 or 𝑛 = 1000, it looks like our inference procedure is working quite well.

(d)

In this case ℍ0 is false, so we’d like to reject ℍ0. We expect to have more power (i.e., be able to
reject a false null) as the number of observations increases.

set.seed(1234)
b0 <- 0
b1 <- 1
H0 <- 0

n=10
n <- 10
run_mc()

rej. prob : 0.439

n=50
n <- 50
run_mc()

rej. prob : 0.844

10

n=100
n <- 100
run_mc()

rej. prob : 0.987

n=500
n <- 500
run_mc()

rej. prob : 1

n=1000
n <- 1000
run_mc()

rej. prob : 1

This is exactly what we find. When 𝑛 = 10, we reject only 44% of the time; when 𝑛 = 50, we
reject 84% of the time; when 𝑛 = 100, we reject almost 99% of the time; and for higher values of
𝑛, we reject 100% of the time.

If you are interested, it would interesting to experiment with different values of b1 and/or H0
here and also see how that affects the power of the test.

11

	Homework 4 Solutions
	7.17
	(a)
	(b)
	(c)

	7.28
	(a)
	(b)
	(c)
	(d)
	(e)

	Extra Question 1
	Extra Question 2
	Extra Question 3
	(a)
	(b)
	(c)
	(d)

