
Homework 3 Solutions
Hansen 3.16
To start with, notice that

𝑅2
1 = 1 − ẽ′ẽ

(Y − 1𝑛 ̄𝑌 )′(Y − 1𝑛 ̄𝑌 )

𝑅2
2 = 1 − ê′ê

(Y − 1𝑛 ̄𝑌 )′(Y − 1𝑛 ̄𝑌 )

where these expressions come from Section 3.14 in Hansen (these are just saying that 𝑅2 is 1 minus
the ratio of the sum of squared residuals to the total sum of squares). We aim to show that 𝑅2

2 ≥ 𝑅2
1.

To do this, given that the only difference between the two expressions comes ẽ′ẽ versus ê′ê, the
result will hold if we can show that ẽ′ẽ ≥ ê′ê.

One useful property of annihilator matrices that is useful below is that

MM1 = M(I − P1)
= M (1)

where P1 and M1 are the projection and annihilator matrices for X1. The second equality holds
because MP1 = MX1⏟

=0

(X′
1X1)−1X′

1 = 0. An implication of Equation 1 is that M1M = M, which

follows from the symmetry properties of annihilator matrices which have used many times before.
This is useful below.

Next, notice that

ẽ′ẽ = (Y − X1 ̃𝛽1)′(Y − X1 ̃𝛽1)
= Y′Y − 2Y′X1 ̃𝛽1 + ̃𝛽′

1X′
1X1 ̃𝛽1

= Y′Y − 2Y′P1Y + Y′P′
1P1Y

= Y′Y − Y′P1Y
= Y′M1Y

where the first equality holds be the definition of ẽ, the second equality expands the previous line,
the third equality holds because X1 ̃𝛽1 = P1Y, the fourth equality holds because P1 is symmetric
and idempotent and by cancelling terms, and the last equality holds because M1 = I − P1.

Second, notice that

Y = X1 ̂𝛽1 + X2 ̂𝛽2 + ê
⟹ M1Y = M1X1⏟

=0

̂𝛽1 + M1X2 ̂𝛽2 + M1ê

= M1X2 ̂𝛽2 + M1Me
= M1X2 ̂𝛽2 + Me
= M1X2 ̂𝛽2 + ̂e

⟹ ê = M1Y − M1X2 ̂𝛽2

where the first line is given in the problem, the second line comes from pre-multiplying by M1, the
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third equality cancels the first term and holds because ê = Me, the fourth equality holds because
(as discussed above) M1M = M, the fifth equality again uses that Me = ê, and the last line holds
by rearranging terms. From this expression, we have that

ê′ê = (M1Y − M1X2 ̂𝛽2)′(M1Y − M1X2 ̂𝛽2)
= Y′M1Y − 2 ̂𝛽′

2X′
2M1Y + ̂𝛽′

2X′
2M1X2 ̂𝛽2

= Y′M1Y − 2 ̂𝛽′
2X′

2M1Y + ̂𝛽′
2X′

2M1X2(X′
2M1X2)−1X′

2M1Y
= Y′M1Y − ̂𝛽′

2X′
2M1Y

= Y′M1Y − Y′M1X2(X′
2M1X2)−1X′

2M1Y⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≥0

where the first equality holds from the previous expression for ê, the second equality expands the
previous line, the third equality holds by plugging in ̂𝛽2 = (X′

2M1X2)−1X′
2M1Y (which holds by

FWL), the fourth equality holds by cancelling and combining terms from the previous line, and the
last equality holds by plugging in for ̂𝛽2 again. The underlined term is non-negative because it is
a quadratic form.

Plugging in from the above expressions, we have that

ẽ′ẽ − ê′ ̂e = Y′M1X2(X′
2M1X2)−1X′

2M1Y ≥ 0

which, as discussed above, implies that 𝑅2
2 ≥ 𝑅2

1.
The case where 𝑅2

2 = 𝑅2
1 occurs when X′

2M1Y = 0. This is equivalent to ̂𝛽2 =
(X′

2M1X2)−1X′
2M1Y = 0; i.e., 𝑅2 is the same for the two models if ̂𝛽2 = 0. This is the

case where the second set of regressors does not help to explain the variation in 𝑌 after accounting
for the first set of regressors.

Hansen 3.24
Part a

# read data
library(haven)
cps <- read_dta("cps09mar.dta")

# construct subset of single, Asian men
data <- subset(cps, marital==7 & race==4 & female==0)

# ...not totally clear if this is exactly right subset
# confirm same number of rows as mentioned in textbook
nrow(data)

[1] 268

# construct experience and wage
data$exp <- data$age - data$education - 6
data$wage <- data$earnings/(data$hours*data$week)
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# also construct subset with < 45 years of experience
data <- subset(data, exp < 45)

# run regression
Y <- log(data$wage)
X <- cbind(1, data$education, data$exp, data$exp^2/100)
bet <- solve(t(X)%*%X)%*%t(X)%*%Y
round(bet,3)

[,1]
[1,] 0.531
[2,] 0.144
[3,] 0.043
[4,] -0.095

ehat <- Y - X%*%bet

# sum of squared errors
ssr <- t(ehat)%*%ehat
round(ssr,3)

[,1]
[1,] 82.505

# r-squared
tss <- t(Y-mean(Y)) %*% (Y-mean(Y))
r2 <- 1-ssr/tss
round(r2,3)

[,1]
[1,] 0.389

Part b

# residual regression
X1 <- data$education
X2 <- cbind(1, data$exp, data$exp^2/100)
ycoef <- solve(t(X2)%*%X2)%*%t(X2)%*%Y
yresid <- Y - X2%*%ycoef
x1coef <- solve(t(X2)%*%X2)%*%t(X2)%*%X1
x1resid <- X1 - X2%*%x1coef
fw_bet <- solve(t(x1resid)%*%x1resid)%*%t(x1resid)%*%yresid
round(fw_bet,3)

[,1]
[1,] 0.144
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This is the same as the estimate from part a. This is expected due to the Frisch-Waugh theorem.

# calculate sum of squared errors
uhat <- yresid - x1resid%*%fw_bet
fw_ssr <- t(uhat)%*%uhat
round(fw_ssr,3)

[,1]
[1,] 82.505

# calculate R2
fw_tss <- t(yresid-mean(yresid))%*%(yresid-mean(yresid))
fw_r2 <- 1-fw_ssr/fw_tss
round(fw_r2, 3)

[,1]
[1,] 0.369

Part c

The sum of squared errors is the same as in part (a). This is expected, e.g., Theorem 3.5 shows
that the residuals from the FWL-type residual regression are the same as for the regression that
includes both 𝑋1 and 𝑋2. This implies that the sum of squared errors will be the same too. On
the other hand, 𝑅2 is different because the total sum of squares is different between the case where
it is calculated with 𝑌 directly relative to using the residuals from 𝑌 on 𝑋1.

Hansen 3.25

# a)
ehat <- Y - X%*%bet
round(sum(ehat),5)

[1] 0

# b)
round(sum(data$education*ehat),5)

[1] 0

# c)
round(sum(data$exp*ehat),5)

[1] 0
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# d)
round(sum(data$education^2 * ehat),5)

[1] 133.1331

# e)
round(sum(data$exp^2 * ehat),5)

[1] 0

# f)
Yhat <- X%*%bet
round(sum(Yhat*ehat),5)

[1] 0

# g)
round(sum(ehat^2),5)

[1] 82.505

Yes, these calculations are consistent with the theoretical properties of OLS. Parts a, b, c, e, and
f all hold due to the property that ∑𝑛

𝑖=1 𝑋𝑖 ̂𝑒𝑖 = 0. Part d is not equal to 0 because 𝑋2
1 is not an

included regressor. Part g provides the sum of squared errors which is not generally equal to 0.

Hansen 4.6
Recall that the restriction to linear estimators implies that we can write any estimator in this class
as ̃𝛽 = A′Y for an 𝑛 × 𝑘 matrix A that is a function of X. Unbiasedness implies that, it must be
the case that 𝔼[ ̃𝛽|X] = 𝛽. Then, notice that under linearity, we have that

𝔼[ ̃𝛽|X] = 𝔼[A′Y|X] = A′𝔼[Y|X] = A′X𝛽

where the second equality holds because A is a function of X. Therefore, together linearity and
unbiasedness imply that A′X = I𝑘. Next, notice that

var( ̃𝛽|X) = var(A′Y|X) = A′var(Y|X)A = 𝜎2A′ΣΣΣA

We aim to show that var( ̃𝛽|X) − 𝜎2(X′ΣΣΣ−1X)−1 ≥ 0. Notice that

var( ̃𝛽|X) − 𝜎2(X′ΣΣΣ−1X)−1 = 𝜎2 (A′ΣΣΣA − (X′ΣΣΣ−1X)−1)
= 𝜎2 (A′ΣΣΣA − A′ΣΣΣ1/2ΣΣΣ−1/2X(X′ΣΣΣ−1X)−1X′ΣΣΣ−1/2ΣΣΣ1/2A)

= 𝜎2A′ΣΣΣ1/2 (I − ΣΣΣ−1/2X((ΣΣΣ−1/2X)′ΣΣΣ−1/2X)
−1

X′ΣΣΣ−1/2)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=∶MΣ−1/2𝑋

ΣΣΣ1/2A

= 𝜎2A′ΣΣΣ1/2MΣ−1/2𝑋ΣΣΣ1/2A

= 𝜎2 (MΣ−1/2𝑋ΣΣΣ1/2A)′ MΣ−1/2𝑋ΣΣΣ1/2A
≥ 0
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where the above result repeatedly uses ΣΣΣ is positive definite and symmetric (which implies that it
has a positive definite and symmetric inverse, and that it has a positive definite and symmetric
square root matrix, and so does its inverse). In particular, the second equality holds because (i)
ΣΣΣ−1/2ΣΣΣ1/2 = I𝑛, and A′X = I𝑘 (due to linearity and unbiasedness as discussed above); the third
equality holds by factoring out A′ΣΣΣ1/2 and from a slight manipulation of the inside term; the fourth
equality holds by the definition of MΣ−1/2𝑋 (which is an annihilator matrix); the fifth equality holds
because MΣ−1/2𝑋 is idempotent and symmetric; and the last equality holds because the previous
expression is a quadratic form.

7.7
(a)

𝛽 is defined as the coefficient of the linear projection of 𝑌 ∗ on 𝑋. Thus, 𝛽 = 𝔼[𝑋𝑋′]−1𝔼[𝑋𝑌 ∗].
Now, let’s define

̃𝛽 = argmin
𝑏

𝔼[(𝑌 − 𝑋′𝑏)2]

so that ̃𝛽 is the coefficient from the linear projection of 𝑌 on 𝑋. Solving this, we get that

̃𝛽 = 𝔼[𝑋𝑋′]−1𝔼[𝑋𝑌 ]
= 𝔼[𝑋𝑋′]−1𝔼[𝑋(𝑌 ∗ + 𝑢)]
= 𝔼[𝑋𝑋′]−1𝔼[𝑋𝑌 ∗] + 𝔼[𝑋𝑋′]−1 𝔼[𝑋𝑢]⏟

=0
= 𝛽

Thus, ̃𝛽 = 𝛽.
I think the above is the correct answer to the question, but there is one more thing that is worth

pointing out. As in the problem, let’s define ̂𝛽 as the estimate that comes from running a regression
of 𝑌 on 𝑋, and additionally define ̂𝛽∗ as the (infeasible) regression coefficient that you would get
if you could run the regression of 𝑌 ∗ on 𝑋. Note that

̂𝛽∗ = ( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑋′
𝑖)

−1
1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑌 ∗
𝑖

and

̂𝛽 = ( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑋′
𝑖)

−1
1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑌𝑖

= ( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑋′
𝑖)

−1
1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖(𝑌 ∗
𝑖 + 𝑢𝑖) (2)

so, in general, ̂𝛽 ≠ ̂𝛽∗; that is, if we were to observe 𝑌 ∗
𝑖 , we would not get numerically estimates

from the regression of 𝑌 on 𝑋 as from the regression of 𝑌 ∗ on 𝑋.
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(b)

From Equation 2, we can write

̂𝛽 = ( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑋′
𝑖)

−1
1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑌 ∗
𝑖 + ( 1

𝑛
𝑛

∑
𝑖=1

𝑋𝑖𝑋′
𝑖)

−1
1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑢𝑖

𝑝
−→ 𝔼[𝑋𝑋′]−1𝔼[𝑋𝑌 ∗] + 0
= 𝛽

where the second equality holds by the law of large numbers and the continuous mapping theorem.
This implies that, despite the measurement error, ̂𝛽 is consistent for 𝛽.

(c)

Plugging in 𝑌 ∗
𝑖 = 𝑋′

𝑖𝛽 + 𝑒𝑖 into Equation 2 and multiplying by
√𝑛, we have that

√𝑛( ̂𝛽 − 𝛽) = ( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑋′
𝑖)

−1
1√𝑛

𝑛
∑
𝑖=1

𝑋𝑖(𝑒𝑖 + 𝑢𝑖)

= 𝔼[𝑋𝑋′]−1 1√𝑛
𝑛

∑
𝑖=1

𝑋𝑖(𝑒𝑖 + 𝑢𝑖) + 𝑜𝑝(1)

𝑑−→ 𝒩(0, 𝔼[𝑋𝑋′]−1ΩΩΩ𝔼[𝑋𝑋′]−1)

where

ΩΩΩ = 𝔼[𝑋𝑋′(𝑒 + 𝑢)2]

This is related, but different, from the case without measurement error; recall that, in that case
ΩΩΩ = 𝔼[𝑋𝑋′𝑒2].

Altogether, this suggests that, when there is this relatively simple kind of measurement error in
the outcome, using the measured-with-error outcome still delivers consistent estimates of 𝛽, but
the asymptotic variance changes; it is likely to be bigger.

7.14
(a)

̂𝜃 = ̂𝛽1 ̂𝛽2

where ̂𝛽1 and ̂𝛽2 come from the regression of 𝑌 on 𝑋1 and 𝑋2.

(b)

First, notice that our usual arguments imply that

√𝑛 (
̂𝛽1 − 𝛽1
̂𝛽2 − 𝛽2

) 𝑑−→ 𝒩(0, V𝛽)
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where V𝛽 = 𝔼[𝑋𝑋′]−1ΩΩΩ𝔼[𝑋𝑋′]−1, where we take 𝑋 = (𝑋1, 𝑋2)′ and where ΩΩΩ = 𝔼[𝑋𝑋′𝑒2]. Note
that V𝛽 is a 2 × 2 variance matrix.

Next, notice that we can write 𝜃 = 𝑟(𝛽1, 𝛽2) and ̂𝜃 = 𝑟( ̂𝛽1, ̂𝛽2) where 𝑟(𝑏1, 𝑏2) = 𝑏1𝑏2. Moreover,
using a mean value theorem argument, we have that

𝑟( ̂𝛽1, ̂𝛽2) = 𝑟(𝛽1, 𝛽2) + ∇𝑟( ̄𝛽1, ̄𝛽2)′ (
̂𝛽1 − 𝛽1
̂𝛽2 − 𝛽2

)

where

∇𝑟( ̄𝛽1, ̄𝛽2) ∶= ⎡⎢
⎣

𝜕𝑟(𝑏1,𝑏2)
𝜕𝑏1

𝜕𝑟(𝑏1,𝑏2)
𝜕𝑏2

⎤⎥
⎦

∣
𝑏1= ̄𝛽1,𝑏2= ̄𝛽2

= ⎡⎢
⎣

𝑏2

𝑏1

⎤⎥
⎦

∣
𝑏1= ̄𝛽1,𝑏2= ̄𝛽2

= ⎡⎢
⎣

̄𝛽2

̄𝛽1

⎤⎥
⎦

This implies that

√𝑛( ̂𝜃 − 𝜃) = ⎡⎢
⎣

̄𝛽2

̄𝛽1

⎤⎥
⎦

′
√𝑛 (

̂𝛽1 − 𝛽1
̂𝛽2 − 𝛽2

)

= ⎡⎢
⎣

𝛽2

𝛽1

⎤⎥
⎦

′
√𝑛 (

̂𝛽1 − 𝛽1
̂𝛽2 − 𝛽2

) + ⎛⎜
⎝

⎡⎢
⎣

̄𝛽2

̄𝛽1

⎤⎥
⎦

− ⎡⎢
⎣

𝛽2

𝛽1

⎤⎥
⎦

⎞⎟
⎠

′

⏟⏟⏟⏟⏟⏟⏟⏟⏟
=𝑜𝑝(1)

√𝑛 (
̂𝛽1 − 𝛽1
̂𝛽2 − 𝛽2

)
⏟⏟⏟⏟⏟⏟⏟

=𝑂𝑝(1)

= ⎡⎢
⎣

𝛽2

𝛽1

⎤⎥
⎦

′
√𝑛 (

̂𝛽1 − 𝛽1
̂𝛽2 − 𝛽2

) + 𝑜𝑝(1)

𝑑−→ 𝒩(0, 𝑉 )

where the second equality holds by adding and subtracting, the third equality holds because (
̄𝛽1̄𝛽2
)

is between ̂𝛽 and 𝛽 (and because ̂𝛽 is consistent for 𝛽), and where

𝑉 = ⎡⎢
⎣

𝛽2

𝛽1

⎤⎥
⎦

′

V𝛽 ⎡⎢
⎣

𝛽2

𝛽1

⎤⎥
⎦

(c)

To calculate a 95% confidence interval, the main step is to estimate 𝑉 . The natural estimate is
given by

⎡⎢
⎣

̂𝛽2

̂𝛽1

⎤⎥
⎦

′

V̂𝛽
⎡⎢
⎣

̂𝛽2

̂𝛽1

⎤⎥
⎦
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and where we use the usual estimate of V𝛽 that is given by

V̂𝛽 = ( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑋′
𝑖)

−1
1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑋′
𝑖 ̂𝑒2

𝑖 ( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑋′
𝑖)

−1

and then we can construct a 95% confidence interval by

̂𝐶 = [ ̂𝜃 ± 1.96
√ ̂𝑉√𝑛 ]

7.28
(a)

I am going to include a little bit of extra detail about comparing “manually” calculated standard
errors with those coming directly from R as I think this is interesting. For part of the problem, I’ll
compare to results from the R package estimatr which is popular among economists for computing
heteroskedasticity robust standard errors.

# read data
library(haven)
cps <- read_dta("cps09mar.dta")

# construct subset of white, male, Hispanic
data <- subset(cps, race==1 & female==0 & hisp==1)

# construct experience and wage
data$exp <- data$age - data$education - 6
data$wage <- data$earnings/(data$hours*data$week)

# run regression
Y <- log(data$wage)
X <- cbind(data$education, data$exp, data$exp^2/100, 1)
bet <- solve(t(X)%*%X)%*%t(X)%*%Y
round(bet,5)

[,1]
[1,] 0.09045
[2,] 0.03538
[3,] -0.04651
[4,] 1.18521

# construct standard errors
ehat <- as.numeric(Y - X%*%bet)
Xe <- X*ehat
n <- nrow(data)
Omeg <- t(Xe)%*%Xe/n
XX <- t(X)%*%X/n
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V <- solve(XX)%*%Omeg%*%solve(XX)
se <- sqrt(diag(V))/sqrt(n)
round(data.frame(beta=bet, se=se),5)

beta se
1 0.09045 0.00292
2 0.03538 0.00258
3 -0.04651 0.00530
4 1.18521 0.04608

# compare to R's lm function
reg <- lm(log(wage) ~ education + exp + I(exp^2/100), data=data)
summary(reg)

Call:
lm(formula = log(wage) ~ education + exp + I(exp^2/100), data = data)

Residuals:
Min 1Q Median 3Q Max

-8.0275 -0.3135 0.0063 0.3411 2.8603

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.185209 0.044745 26.488 <2e-16 ***
education 0.090449 0.002737 33.051 <2e-16 ***
exp 0.035380 0.002512 14.083 <2e-16 ***
I(exp^2/100) -0.046506 0.005027 -9.251 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.5739 on 4226 degrees of freedom
Multiple R-squared: 0.2334, Adjusted R-squared: 0.2328
F-statistic: 428.8 on 3 and 4226 DF, p-value: < 2.2e-16

# Notice that estimates of beta are the same but
# standard errors are different

library(estimatr)
reg2 <- lm_robust(log(wage) ~ education + exp + I(exp^2/100), data=data, se_type="HC0")
summary(reg2)

Call:
lm_robust(formula = log(wage) ~ education + exp + I(exp^2/100),

data = data, se_type = "HC0")
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Standard error type: HC0

Coefficients:
Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper DF

(Intercept) 1.18521 0.046078 25.722 1.129e-135 1.09487 1.27555 4226
education 0.09045 0.002915 31.028 1.312e-190 0.08473 0.09616 4226
exp 0.03538 0.002584 13.691 8.859e-42 0.03031 0.04045 4226
I(exp^2/100) -0.04651 0.005304 -8.767 2.606e-18 -0.05691 -0.03611 4226

Multiple R-squared: 0.2334 , Adjusted R-squared: 0.2328
F-statistic: 372.7 on 3 and 4226 DF, p-value: < 2.2e-16

# these are exactly the same now

# Homoskedasticity standard errors
sigma2 <- mean(ehat^2)
V0 <- sigma2 * solve(XX)
se0 <- sqrt(diag(V0))/sqrt(n)
se0

[1] 0.002735371 0.002511055 0.005024746 0.044723948

# these are very, very close to R's lm standard errors
# but not exactly the same

# Homoskedasticity w/ degree of freedom adjustment
k <- 4 # number of regressors (including intercept)
s2 <- sum(ehat^2)/(n-k)
Vs <- s2 * solve(XX)
ses <- sqrt(diag(Vs))/sqrt(n)
ses

[1] 0.002736665 0.002512243 0.005027124 0.044745109

# these are exactly the same now
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