
Homework 2 Solutions
Hansen 2.2

𝔼[𝑌 𝑋] = 𝔼[𝑋𝔼[𝑌 |𝑋]]
= 𝔼[𝑋(𝑎 + 𝑏𝑋)]
= 𝔼[𝑎𝑋 + 𝑏𝑋2]
= 𝑎𝔼[𝑋] + 𝑏𝔼[𝑋2]

where the first equality holds by the law of iterated expectations, the second equality holds by
the expression for 𝔼[𝑌 |𝑋] in the problem, and the remaining two equalities are just algebra/basic
properties of expectations.

Hansen 2.5
a) The mean squared error is given by

𝑀𝑆𝐸 = 𝔼[(𝑒2 − ℎ(𝑋))2]

b) 𝑒2 is closely related to a measure of the magnitude of how far off our predictions of 𝑌 given
𝑋 are. For example, given 𝑋, if we predict a “high” value of 𝑒2, it would suggest that we
expect our predictions of 𝑌 to not be too accurate for that value of 𝑋.

c) Recall that 𝜎2(𝑋) = 𝔼[𝑒2|𝑋] so that

𝑀𝑆𝐸 = 𝔼[((𝑒2 − 𝔼[𝑒2|𝑋]) − (ℎ(𝑋) − 𝔼[𝑒2|𝑋]))2]

= 𝔼[(𝑒2 − 𝔼[𝑒2|𝑋])2] − 2𝔼[(𝑒2 − 𝔼[𝑒2|𝑋])(ℎ(𝑋) − 𝔼[𝑒2|𝑋])] + 𝔼[(ℎ(𝑋) − 𝔼[𝑒2|𝑋])2]

Let’s consider each of these three terms.

• The first term does not depend on ℎ(𝑋) so it is invariant to our choice of ℎ.
• The second term is equal to 0 after applying the law of iterated expectations.
• The third term is minimized by setting ℎ(𝑋) = 𝔼[𝑒2|𝑋] = 𝜎2(𝑋) which implies that

𝑀𝑆𝐸 is minimized by 𝜎2(𝑋).

Hansen 2.6
To start with, notice that

𝔼[𝑌 ] = 𝔼[𝑚(𝑋) + 𝑒] = 𝔼[𝑚(𝑋)]
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where the last equality holds because 𝔼[𝑒] = 0. Thus, we have that

var(𝑌 ) = 𝔼[(𝑌 − 𝔼[𝑌 ])2]

= 𝔼[(𝑚(𝑋) + 𝑒 − 𝔼[𝑚(𝑋)])2]

= 𝔼[(𝑚(𝑋) − 𝔼[𝑚(𝑋)])2] + 2𝔼[(𝑚(𝑋) − 𝔼[𝑚(𝑋)])𝑒] + 𝔼[𝑒2]

= 𝔼[(𝑚(𝑋) − 𝔼[𝑚(𝑋)])2] + 𝔼[𝑒2]
= var[𝑚(𝑋)] + 𝜎2

where first equality holds by the definition of var(𝑌 ), the second equality holds by the expression for
𝔼[𝑌 ] in the previous display, the third equality holds by expanding the square, the fourth equality
holds by applying the law of iterated expectations to the middle term (and because 𝔼[𝑒|𝑋] = 0),
and the fifth equality holds by the definition of var[𝑚(𝑋)] and the fact that 𝔼[𝑒2] = 𝜎2.

Hansen 2.10
True.

𝔼[𝑋2𝑒] = 𝔼[𝑋2 𝔼[𝑒|𝑋]⏟
=0

] = 0

Hansen 2.11
False. Here is a counterexample. Suppose that 𝑋 ∼ 𝒩(0, 1) and 𝑒|𝑋 ∼ 𝒩(𝑋2 − 1, 1). Recall
that, if 𝑋 ∼ 𝒩(0, 1), then 𝔼[𝑋] = 0, 𝔼[𝑋2] = 1, and 𝔼[𝑋3] = 0, and 𝔼[𝑋4] = 3. Notice that
𝔼[𝑒] = 𝔼[𝔼[𝑒|𝑋]] = 𝔼[𝑋2 − 1] = 0 and 𝔼[𝑋𝑒] = 𝔼[𝑋𝔼[𝑒|𝑋]] = 𝔼[𝑋(𝑋2 − 1)] = 0. However,
𝔼[𝑋2𝑒] = 𝔼[𝑋2𝔼[𝑒|𝑋]] = 𝔼[𝑋2(𝑋2 − 1)] = 2 ≠ 0.

As a side-comment, perhaps it is helpful to explain how I came up with this counterexample.
Remember that 𝔼[𝑋𝑒] is the correlation between 𝑋 and 𝑒—i.e., it is a scalar, linear measure of the
relationship between 𝑋 and 𝑒. On the other hand, 𝔼[𝑒|𝑋] is a function of 𝑋. To make 𝑋 and 𝑒
uncorrelated, but 𝔼[𝑋2𝑒] = 0, we need to think of a case where 𝔼[𝑒|𝑋] is a function of 𝑋 that is
not linear in 𝑋. Using a normal distribution for 𝑋 and having 𝔼[𝑒|𝑋] be a quadratic function of
𝑋 is a natural choice, and then I just chose 𝔼[𝑒|𝑋] = 𝑋2 − 1 to make the math work out.

Hansen 2.12
False. Here is a counterexample. Suppose that 𝔼[𝑒2|𝑋] depends on 𝑋, then 𝑒 and 𝑋 are not
independent. As a concrete counterexample, suppose 𝑒|𝑋 ∼ 𝒩(0, 𝑋2) (that is, conditional on 𝑋,
𝑒 follows a normal distribution with mean 0 and variance 𝑋2). In this case 𝔼[𝑒|𝑋] = 0, but 𝑒 and
𝑋 are not independent.

Hansen 2.13
False. The same counterexample as in 2.11 works here. In that case, 𝔼[𝑋𝑒] = 0, but 𝔼[𝑒|𝑋] = 𝑋2−1
�0.
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Hansen 2.14
False. In this case, higher order moments can still depend on 𝑋. For example, 𝔼[𝑒3|𝑋] can still
depend on 𝑋. If it does, then 𝑒 and 𝑋 are not independent.

Hansen 2.21
a) Following omitted variable bias types of arguments (also, notice that the notation in the

problem implies that 𝑋 is scalar here), we have that

𝛾1 = 𝔼[𝑋𝑌 ]
𝔼[𝑋2]

= 𝔼[𝑋(𝑋𝛽1 + 𝑋2𝛽2 + 𝑢)]
𝔼[𝑋2]

= 𝛽1 + 𝔼[𝑋3]
𝔼[𝑋2]𝛽2

Thus, 𝛾1 = 𝛽1 if either 𝛽2 = 0 or 𝔼[𝑋3] = 0. 𝛽2 = 0 if 𝑋2 does not have an effect on the
outcome (after accounting for the effect of 𝑋); this is similar to the omitted variable logic that
we talked about in class. A leading case where 𝔼[𝑋3] = 0 is when 𝑋 is a mean 0 symmetric
random variable; for example, if 𝑋 is standard normal, then its third moment is equal to 0.

b) Using the same arguments as in part (a), we have that

𝛾1 = 𝜃1 + 𝔼[𝑋4]
𝔼[𝑋2]𝜃2

Similar to the previous part, 𝛾1 could equal 𝜃1 if 𝜃2 were equal to 0. Unlike the previous part
though, here, we cannot have that 𝔼[𝑋4] = 0 except in the degenerate case where 𝑋 = 0 with
probability 1 (which would be ruled out here as it would also imply that 𝔼[𝑋2] = 0).

Extra Question 1
a)

𝐴𝑇 𝐸 = 𝔼[𝑌 (1) − 𝑌 (0)]
= 𝔼[𝑌 (1)] − 𝔼[𝑌 (0)]
= 𝔼[𝔼[𝑌 (1)|𝑋]] − 𝔼[𝔼[𝑌 (0)|𝑋]]

= 𝔼[𝔼[𝑌 (1)|𝑋, 𝐷 = 1]] − 𝔼[𝔼[𝑌 (0)|𝑋, 𝐷 = 0]]

= 𝔼[𝔼[𝑌 |𝑋, 𝐷 = 1]] − 𝔼[𝔼[𝑌 |𝑋, 𝐷 = 0]]

where the first equality is the definition of 𝐴𝑇 𝐸, the second equality pushes the expectation
through the difference, the third equality holds by the law iterated expectations, the fourth
equality holds by unconfoundedness, and the last equality holds because 𝑌 = 𝑌 (1) among the
treated group and 𝑌 = 𝑌 (0) among the untreated group. This shows that 𝐴𝑇 𝐸 is identified.
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b) In class, we showed that 𝐴𝑇 𝑇 = 𝔼[𝑌 |𝐷 = 1] − 𝔼[𝔼[𝑌 |𝑋, 𝐷 = 0]|𝐷 = 1]. These are notably
different. The expression for 𝐴𝑇 𝐸 takes the 𝔼[𝑌 |𝑋, 𝐷 = 1] (the mean of 𝑌 conditional on 𝑋
among the treated group) and averages it over the distribution of 𝑋 for the entire population
and then subtracts 𝔼[𝑌 |𝑋, 𝐷 = 0] (the mean of 𝑌 conditional on 𝑋 among the untreated
group) averaged over the population distribution of 𝑋.
In contrast, 𝐴𝑇 𝑇 compares the mean of 𝑌 among the treated group to 𝔼[𝑌 |𝑋, 𝐷 = 0] where
this is averaged over the distribution of 𝑋 among the treated group.
An intuition for why 𝐴𝑇 𝐸 involves averaging over the distribution of 𝑋 for the entire popu-
lation is that 𝐴𝑇 𝐸 is the average treatment effect for the entire population.

c) We have that

𝑌𝑖 = 𝑌𝑖(0) + 𝐷𝑖(𝑌𝑖(1) − 𝑌𝑖(0))
= 𝑋′

𝑖𝛽 + 𝑒𝑖 + 𝛼𝐷𝑖
= 𝛼𝐷𝑖 + 𝑋′

𝑖𝛽 + 𝑒𝑖

where the first equality holds by writing observed outcomes in terms of potential outcomes,
the second equality uses the model for untreated potential outcomes and treatment effect
homogeneity, and the last equality rearranges terms.
Furthermore, unconfoundedness implies that 𝔼[𝑒|𝑋, 𝐷] = 0 which implies that 𝛼 can be
estimated from the regression of 𝑌 on 𝐷 and 𝑋.

d) This is exactly the same regressions as we talked about in class after we had identified the
𝐴𝑇 𝑇 . This should not be surprising because, if we restrict the effect of participating in the
treatment to be the same across all units, then 𝐴𝑇 𝑇 = 𝐴𝑇 𝐸 = 𝛼.

Extra Question 2

# load data
data(Star, package="Ecdat")

# limit data to boys in small or regular class
data <- subset(Star,

classk %in% c("small.class", "regular") & sex=="boy")

# part (a)
att_a <- mean(subset(data, classk == "small.class")$tmathssk) -

mean(subset(data, classk=="regular")$tmathssk)
att_a

[1] 13.67522

# part (b)
data <- droplevels(data) # drop extra factors
X <- model.matrix(~classk, data=data) # get data matrix
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Y <- as.matrix(data$tmathssk) # get outcome
bet <- solve(t(X)%*%X)%*%t(X)%*%Y # estimate beta
att_b <- bet[2] # report coefficient on small class
att_b

[1] 13.67522

# part (c)
X <- model.matrix(~classk + totexpk + freelunk, data=data) # X w/ extra vars
bet <- solve(t(X)%*%X)%*%t(X)%*%Y # estimate beta
att_c <- bet[2] # report coef. on small
att_c

[1] 13.42333

The results from parts (a) and (b) are exactly identical. The result from part (c) is similar, but
not exactly the same — this is exactly what we would expect.
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