
Additional Practics Questions for Midterm 1 Solutions
Hansen 3.2
Let’s call ̃𝛽 and ẽ the OLS estimates and residuals from the regression of Y on Z. Notice that

̃𝛽 = (Z′Z)−1Z′Y

= ((XC)′XC)−1(XC)′Y
= (C′X′XC)−1C′X′Y
= C−1(X′X)−1C′−1C′X′Y
= C−1(X′X)−1X′Y
= C−1 ̂𝛽

where the second equality holds by plugging in Z = XC, the third equality holds by taking the
transpose of XC, the fourth equality holds because C and X′X are nonsingular, the fifth equality
holds by canceling the C′−1C′, and the last equality holds by the definition of ̂𝛽.

Now, for the residuals, notice that

ẽ = Y − Z ̃𝛽
= Y − XCC−1 ̂𝛽
= Y − X ̂𝛽
= ê

where this result holds just by plugging in and canceling terms. This says that the residuals from
the regression of Y on Z are exactly the same as the residuals from the regression of Y on X.

As a side-comment, a simple example of this problem would be something like scaling all the
regressors by, say, 100. If you did this, it would change the value of the estimated coefficients
(divide them by 100) but would fit the data equally well.

Hansen 3.5
The OLS coefficient from a regression of ê on X is given by

(X′X)−1X′ê = (X′X)−1X′(Y − X ̂𝛽)
= (X′X)−1X′Y − (X′X)−1X′X ̂𝛽
= ̂𝛽 − ̂𝛽
= 0

where the first part of the third equality holds by the definition of ̂𝛽 and the last part holds by
canceling the terms involving (X′X).
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Hansen 3.6
Call ̂𝛾 the coefficient of the regression of Ŷ on X. It is given by

̂𝛾 = (X′X)−1X′Ŷ
= (X′X)−1X′X ̂𝛽
= ̂𝛽

so that running a regression of Ŷ on X gives the same coefficient as running a regression of Y on
X.

Hansen 3.7

PX = P [X1 X2]
= [PX1 PX2]

Further, since X = [X1 X2] and PX = X (from the properties of the projection matrix P),
this implies that PX1 = X1.

Similarly,

MX = M [X1 X2]
= [MX1 MX2]

but we also know that MX = 0𝑛×𝑘 = [0𝑛×𝑘1
0𝑛×𝑘2] where, for example, 0𝑛×𝑘1

is an 𝑛×𝑘1 matrix
of zeroes. This implies that MX1 = 0𝑛×𝑘1

.

Hansen 3.10
Notice that

P = X(X′X)−1X′

= [X1 X2] ([X′
1

X′
2
] [X1 X2])
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]
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= [X1 X2] [(X′
1X1)−1 0𝑘1×𝑘2
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(X′

2X2)−1] [X′
1
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= [X1(X′
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= P1 + P2

2



where the first equality holds by the definition of P, the second equality holds by partitioning X
as in the problem, the third equality holds by multiplying the two matrices inside the inverse, the
fourth equality holds because X′

1X2 = 0, the fifth equality holds because the inverse of a block
diagonal matrix is equal to the inverse of the blocks, the sixth equality holds by multiplying the
first two matrices, the seventh equality holds again by matrix multiplication, and the last equality
holds by the definition of P1 and P2.

Hansen 3.22
From the first regression, we immediately have that

ũ = M1Y

which holds because it is a regression of 𝑌 on 𝑋1 (and I use bold font above to indicate that, e.g.,
ũ is the 𝑛 × 1 vector of residuals from the first regression). Then, the coefficient from the second
regression is given by

̃𝛽2 = (X′
2X2)−1X′

2ũ
= (X′

2X2)−1X′
2M1Y

We can compare this to ̂𝛽 from the third regression given in the problem. We immediately know
from FWL-type arguments that

̂𝛽2 = (X′
2M1X2)−1X′

2M1Y

In general, these are not equal to each other.

Hansen 4.1
Part a

̂𝜇𝑘 = 1
𝑛

𝑛
∑
𝑖=1

𝑌 𝑘
𝑖

Part b

𝔼 [ ̂𝜇𝑘] = 𝔼 [ 1
𝑛

𝑛
∑
𝑖=1

𝑌 𝑘
𝑖 ]

= 1
𝑛

𝑛
∑
𝑖=1

𝔼[𝑌 𝑘
𝑖 ]

= 1
𝑛

𝑛
∑
𝑖=1

𝔼[𝑌 𝑘]

= 𝔼[𝑌 𝑘]

where the third equality holds because the 𝑌𝑖 are identically distributed (implying the mean is the
same across 𝑖). This result implies that ̂𝜇𝑘 is unbiased for 𝜇𝑘.
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Part c

var ( ̂𝜇𝑘) = var ( 1
𝑛

𝑛
∑
𝑖=1

𝑌 𝑘
𝑖 )

= 1
𝑛2 var (

𝑛
∑
𝑖=1

𝑌 𝑘
𝑖 )

= 1
𝑛2

𝑛
∑
𝑖=1

var(𝑌 𝑘)

= var(𝑌 𝑘)
𝑛

where the second equality holds because 1/𝑛 is a constant and it should be squared to come out
of the variance, the third equality holds by passing the variance through the sum (in order for
their not to be any covariance terms introduced here, it requires the “independence” part of iid;
for this variance to be the same across all units requires the “identically distributed” part of iid),
and the last equality holds because summing a constant 𝑛 times cancels one of the 𝑛’s from the
denominator.

For var( ̂𝜇𝑘) to exist, we need for var(𝑌 𝑘) to exist. Notice that,

var(𝑌 𝑘) = 𝔼[(𝑌 𝑘)2] − 𝔼[𝑌 𝑘]2

Thus, the condition that we need is that 𝔼[(𝑌 𝑘)2] = 𝔼[𝑌 2𝑘] < ∞.

Part d

We can estimate by

v̂ar( ̂𝜇𝑘) = v̂ar(𝑌 𝑘)
𝑛 =

1
𝑛

𝑛
∑
𝑖=1

𝑌 2𝑘
𝑖 − ( 1

𝑛
𝑛

∑
𝑖=1

𝑌 𝑘
𝑖 )

2

𝑛

Hansen 4.5
First (and notice that this is exactly the same as what we showed in class…because unbiasedness
did not rely on homoskedasticity),

𝔼[ ̂𝛽|X] = 𝔼[(X′X)−1X′Y|X]
= (X′X)−1X′𝔼[Y|X]
= (X′X)−1X′X𝛽
= 𝛽
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For thinking about the sampling variance, first notice that

var(Y|X) = var(X𝛽 + e|X)
= var(e|X)
= 𝜎2ΣΣΣ

where the first equality holds by plugging in for Y, the second equality holds because we are
conditioning on X, and the third equality holds from the way that ΣΣΣ is defined in the textbook.
Next,

var( ̂𝛽|X) = var((X′X)−1X′Y|X)
= (X′X)−1X′var(Y|X)X(X′X)−1

= 𝜎2(X′X)−1X′ΣΣΣX(X′X)−1

where the first equality holds by plugging in for ̂𝛽, the second equality holds because the variance
is conditional on X (so the terms involving X can come out but need to be “squared”), and the
last equality holds by plugging in the expression for var(Y|X) that we derived above. This is the
result we were trying to show.

Hansen 4.23
Notice that

𝔼[ ̂𝛽𝑟𝑖𝑑𝑔𝑒|X] = 𝔼 [(X′X + I𝑘𝜆)−1X′Y]
= (X′X + I𝑘𝜆)−1X′𝔼[Y|X]
= (X′X + I𝑘𝜆)−1X′X𝛽
≠ 𝛽

This implies that ̂𝛽𝑟𝑖𝑑𝑔𝑒 is not unbiased for 𝛽.
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