
These notes come from Chapters 13 and 14 of the textbook and provide an introduction to
inference and hypothesis testing. This section will rely heavily on our results concerning asymptotic
normality from the previous set of notes.

Hypothesis Testing Notes

Often in empirical applications in economics/business/social sciences, we have some theory (or
“hypothesis”) that we would like to test. For example, a theory might be that some economic policy
has no effect on an outcome of interest.

Because we only have access to a sample rather than the full population, even if the theory is
correct (e.g., no effect), then we still will not generally estimate, say, θ̂ = 0 (i.e., that our estimate
of θ is exactly equal to 0).

The idea of hypothesis testing is to try answer the question: Are the observed estimates
compatible with the theory in the sense that the difference of the estimate relative to the theory
can be explained by stochastic variation (i.e., that we collected a sample); or, alternatively, are the
estimates incompatible with the theory in the sense that the estimate would be highly unlikely if
the hypothesis were true?

Hypotheses

PSE: 13.2
The null hypothesis H0 is the restriction that θ = θ0 where θ0 is a hypothesized value (and,

therefore, known) value. A leading case is θ0 = 0.
The alternative hypothesis H1 is the set {θ ∈ Θ|θ ̸= θ0} where Θ is the set of possible values

of θ (aka the parameter space).
In some cases, it might make sense to consider a one-sided alternative hypothesis, that is,

H1 : θ > θ0, but because it is the most common case, I’ll stick to the case with the two sided
alternative above.

Acceptance and Rejection

PSE: 13.3
A hypothesis test either rejects the null hypothesis or fails to reject the null hypothesis. This

amounts to making a decision based on the available data. The most common version of this is to
construct a test statistic that is a function of the data; that is,

T = T
(
X1, . . . , , Xn)

)
and then to compare T to a critical value c and to use the decision rule: reject H0 if T > c;
otherwise, fail to reject.

1



Type I Error

PSE: 13.4
Type I Error means to reject H0 when H0 is true.
The probability of a Type I Error is called the size of a test. That is,

P(Reject H0|H0 true) = P(T > c|H0 true)

Type II Error and Power

PSE: 13.4
Type II Error means to fail to reject H0 when H1 is true. The rejection probability under the

alternative hypothesis is called the power of the test. The power of the test is equal to 1 minus the
probability of a Type II error. It is given by

π(θ) = P(reject H0|H1 true) = P(T > c|H1)

where we write this as a function of θ to indicate that it depends on the true value of the parameter
θ.

The most common approach to hypothesis testing is to pre-select a significance level α (e.g.,
α = 0.05 or α = 0.01) and then to select the critical value c so that the (asymptotic) size of the test
is no larger than α. Subject to this constraint, the goal is then to have high power. The power of a
test depends on the true value θ (generally, power is higher for values of θ further away from θ0)
and on the sample size n (power increases with larger sample sizes) – see simulations at the end of
these notes for an example of this.

Furthermore, notice that there is a tradeoff between committing Type I and Type II errors. For
example, increasing the critical value will decrease the likelihood of a Type I error (thus, decreasing
the size of the test) but it also increases the likelihood of a Type II error (thus, decreasing the power
of the test).

Asymptotic Standard Errors

PSE: 13.9
Next, let us return to our results on asymptotic normality of θ̂ and see how this is useful for

hypothesis testing. In particular, suppose that we have (somehow) established that
√

n(θ̂ − θ) d−→
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N(0, σ2), for example, using techniques such as the central limit theorem, continuous mapping
theorem, or delta method. Recall that this is equivalent to

√
n(θ̂ − θ)√

σ2
d−→ N(0, 1)

which we use below. Asymptotic normality will be the basis for the approach to inference/hypothesis
testing below, and is the whole reason that we invested so much effort into learning about it in the
previous set of notes.

We define the standard error of the θ̂ to be

se(θ̂) =
√

σ̂2
√

n

where σ̂2 is an estimator of σ2. We are operating in a quite generic framework here, so the precise
expression for σ̂2 depends on what σ2 is, and we discussed how to estimate σ2 in a variety of scenarios
at the end of the last set of notes. The only requirement for us is that σ̂2 p−→ σ2. Just to repeat one

concrete example though, if θ = E[g(x)], then, it it is natural to use σ̂2 = 1
n

n∑
i=1

(g(Xi) − θ̂)2.

This also immediately extends to the case where θ is a k × 1 vector. In that case, supposing
that we know that

√
n(θ̂ − θ) d−→ N(0, V) and where V is a k × k matrix, the standard error of θ̂j

(the jth element of θ̂) as

se(θ̂j) =

√
V̂jj√
n

where V̂ is a consistent estimator of V, and V̂jj is the (j, j) element of V̂ (which is an element
along the diagonal of V̂). As above, we are operating quite generally here, and an expression
for V̂ depends on the particular expression for V (that you would know from deriving that θ̂ is
asymptotically normal). Here is concrete example though: if θ = E[g(X)], then a natural way to

estimate the variance is V̂ = 1
n

n∑
i=1

(g(Xi) − θ̂)(g(Xi) − θ̂)′ which is a k × k matrix.

The standard error of an estimator is a key ingredient for the inference procedures discussed
below. It is also very common in applications in economics to just report θ̂ (i.e., your estimator)
and se(θ̂) (i.e., its standard error).

t-statistic

PSE: 13.9
When θ is a scalar and under H0 : θ = θ0, the t-statistic is given by

t = θ̂ − θ0

s.e.(θ̂)

3



The t-statistic is the most common type of test-statistic. Notice that t is a number that we can
calculate given the data that we have. To understand its usefulness (and the arguments below), it
is useful to provide an alternative expression for t:

t =
√

n(θ̂ − θ0)√
σ̂2

=
√

n(θ̂ − θ0)√
σ2

+
( 1√

σ̂2
− 1√

σ2

)
︸ ︷︷ ︸

=op(1)

√
n(θ̂ − θ0)︸ ︷︷ ︸

Op(1)

=
√

n(θ̂ − θ0)√
σ2

+ op(1)

where the first equality holds by the definition of s.e.(θ̂), the second equality holds by adding and
subtracting

√
n(θ̂−θ0)√

σ2 (and then re-arranging), and the third equality holds from the previous one
because σ̂2 is consistent for σ2 and by the continuous mapping theorem.

The basis for our hypothesis testing procedure below will be that t behaves differently depending
on whether or not H0 is true. Consider the two following cases:

• Case 1 (H0 true): If H0 is true, then, in the expression for t above, we can replace θ0 (from
our theory) with θ (the actual population parameter); that is,

t =
√

n(θ̂ − θ0)√
σ2

+ op(1) =
√

n(θ̂ − θ)√
σ2

+ op(1) d−→ N(0, 1)

In other words (given a large sample), if the H0 is true, then t should behave like a draw from
a standard normal distribution.

• Case 2 (H0 false): Now consider the case where H0 is false. In this case θ̂ − θ0 does not
converge to 0; rather, (θ̂ − θ) p−→ (θ − θ0) ̸= 0. Thus,

t =
√

n
(
(θ̂ − θ0)
√

σ2
+ op(1) =

√
n(θ̂ − θ)

)
+ (θ − θ0)

√
σ2

+ op(1)

=
√

n(θ̂ − θ)√
σ2

+
√

n(θ − θ0)
σ2 + op(1)

which holds just by adding and subtracting θ and re-arranging. The first term converges to
N(0, 1) as in the previous case. But the second term is

√
n multiplied by a non-zero constant

(θ − θ0)/σ2). This term will, therefore, diverge as n → ∞. It is the dominant term here and
will cause t itself to diverge. [Note that t can go to positive or negative infinity depending on
the sign of θ − θ0, which basically amounts to whether or not the “theory” from H0 is above
or below the the true value of the population parameter θ.]

The above discussion suggests notably different behavior of t depending on whether or not
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H0 holds — this will be the basis for our inference procedure. In particular, our idea will be the
following: if, when we calculate t using the available data, t “looks like” a draw from a normal
distribution, then we will will not reject H0. On the other hand, if the magnitude of t is large, so
that it appears “unlikely’ ’ that t is a draw from a normal distribution, we will take that as strong
evidence against H0 and reject it.

All that’s left is to formalize what “looks like” means. It is typical to use the decision rule:
Reject H0 if |t| > c where c is a critical value. As we discussed earlier, the critical value depends on
the significance level (which we have chosen ex ante) and denoted by α. The significance level is
the probability with which we’d be willing to reject H0 when it is true (given that we have a large
sample). Now let’s discuss how to choose a critical value c so that, in large samples, we reject H0

with probability α when H0 is true. In particular, we would like c to satisfy

α = lim
n→∞

P(|t| > c|H0)

which is just what we said before — we are aiming to, asymptotically, commit a Type I error α

percent of the time, and we will next solve this equation for c as a function of α.

α = lim
n→∞

P(|t| > c|H0)

= P(|Z| > c)

= P(Z < −c) + P(Z > c)

= 2P(Z > c)

= 2(1 − Φ(c))

=⇒ c = Φ−1
(

1 − α

2

)

where the second equality holds because, if H0 is true, then t
d−→ Z ∼ N(0, 1) and by the extended

continuous mapping theorem (to deal with the absolute value part), the third equality holds
immediately, the fourth equality holds because a normal distribution is symmetric, the fifth holds
by properties of cdfs (and where Φ is the cdf of a standard normal random variable), and the last
equality is just algebra.

This suggests a way to choose a critical value, given a value of α. For example, when α = 0.05,
you would compute c = Φ−1(1 − .05/2) = Φ−1(0.975). You can look up the quantiles of a standard
normal random variable in a table or use R to do it using the qnorm function. For example: c <-

qnorm(.975) = 1.96, which is probably a familiar critical value.
Finally, notice that if you make different choices of α, then this will lead to different critical

values. For example, if you set α = 0.01 (which indicates that you have less tolerance for committing
Type I errors), then the critical value would be qnorm(1-.01/2) = 2.58. It is also worth mentioning
that it makes sense that you get a larger critical value when α = 0.01 than before. In this case, we
are less willing to make Type I errors. The way to avoid making as many Type I errors is to reject
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H0 less, and you will reject less if you use a larger critical value. The “cost” of the larger critical
value is that the test will have lower power.

p-value

PSE: 13.15
The approach to inference discussed so far has been to compute a t-statistic and then to make a

binary decision to either reject or fail to reject H0. This approach has some inherent issues. The
textbook gives the example of a t-statistic equal to 1.7 relative to one that is equal to 2.0. Given a
5% significance level, these t-statistics lead to different decisions. However, it is immediately clear
that the strength of evidence against H0 is not really much different between these two cases.

An alternative approach is to report an (asympotic) p-value. The p-value is the probability of
getting a test-statistic as large (in absolute value) as we did given that H0 is true (an alternative
interpretation is that p is the smallest value of α for which the test would reject H0). A p-value can
be calculated as

p = 2Φ(−|t̃|)

where Φ is the cdf of a standard normal random variable and t̃ is the t-statistic that we calculated
using the data that we have (as a side-comment, below we need to distinguish between the estimator
t, which has a sampling distribution, and t̃ which is the particular value of the t-statistic that we
calculated). To understand where this comes from, notice that

p = lim
n→∞

P(|t| > −|t̃|
∣∣ H0)

= P(|Z| > −|t̃|)

= P(Z < −|t̃|) + P(Z > −|t̃|)

= 2Φ(−|t̃|)

where the first line comes from just writing in math how we described the p-value above – it is the
(asymptotic) probability of getting a t-statistic as extreme as t̃ if H0 were true, the second equality
holds because, under H0, t

d−→ Z ∼ N(0, 1) and by the CMT, the third equality holds immediately,
and the fourth equality holds by the symmetry of a standard normal distribution.

Unlike the binary decision rule that we have discussed previously, the p-value provides continuous
information. For example, if we calculate that p = 0.06, we would not reject H0 at the 5% significance
level, but getting a t-statistic this large in absolute value is still relatively uncommon if H0 is true.
Similarly, if p = 0.00001, this would indicate very strong evidence against H0.

Confidence intervals

PSE: 14.1-14.3, 14.5-14.6, 14.9
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The previous discussion has been broadly about hypothesis testing, i.e., checking whether the
data that you have is compatible with some theory about the population parameter being studied.
An alternative approach, though closely related, is to provide an interval estimator for θ (where
“interval” is to distinguish from estimators like θ̂ that can be referred to as a point estimator for
θ; that is, it is a single value.). An interval estimator is typically of the form, Ĉ = [L̂, Û ] (here: L

stands for “lower” and U stands for “upper”), and where Ĉ is called a confidence interval.
A confidence interval is useful for providing a measure of the accuracy of an estimator. And, for

example, a main motivation for providing a confidence interval would be to provide a range of values
that are “reasonably plausible’ ’ given the data that we have. We will construct a confidence interval
below that exploits that we know that an estimator is asymptotically normal. The arguments will
be broadly similar to the ones for hypothesis testing above.

One thing to point out is that, because Ĉ will be a function of the data, Ĉ itself is random.
The coverage probability of Ĉ is P(θ ∈ Ĉ). The randomness comes from Ĉ because θ is a fixed,
though unknown, population parameter. Ĉ is called a (1 − α)% confidence interval if, at least in
large samples, P(θ ∈ Ĉ) = 1 − α.

The most common version of a confidence interval is the one given by

Ĉ =
[
θ̂ − c1−α/2s.e.(θ̂), θ̂ + c1−α/2s.e.(θ̂)

]
where, for example, if α = 0.05, then c1−α/2 = c.975 = 1.96 (because 1.96 is the 97.5th percentile of
a standard normal distribution). It is worth briefly considering where this confidence interval comes
from. Notice that (below, I drop the (1 − α/2) subscript on c to make the notation clearer, but c

does depend on α):

lim
n→∞

P(θ ∈ Ĉ) = lim
n→∞

P(θ̂ − c s.e.(θ̂) < θ < θ̂ + c s.e.(θ̂))

= lim
n→∞

P
(

−c <
θ − θ̂

s.e.(θ̂)
< c

)

= lim
n→∞

P
(

c >
θ̂ − θ

s.e.(θ̂)
> −c

)

= lim
n→∞

P
(

−c <
θ̂ − θ

s.e.(θ̂)
< c

)
= P (−c < Z < c)

= P(|Z| < c)

= 1 − α

where the first line holds because (i) we are going to establish the asymptotic coverage probability
and (ii) the definition of the confidence interval, the second line holds by subtracting θ̂ from all
terms and then dividing all terms by s.e.(θ̂), the third equality holds by multiplying all terms by
−1, the fourth equality holds by just rearranging the inequalities inside the parentheses, the fifth
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equality holds because

θ̂ − θ

s.e.(θ̂)
=

√
n(θ̂ − θ)√

σ̂2
=

√
n(θ̂ − θ)
√

σ
2 + op(1) d−→ Z ∼ N(0, 1)

the sixth equality holds immediately, and the last equality holds by the definition of critical values
(we constructed c1−α/2 so that the probability that |Z| < c1−α/2 is equal to 1 − α).

Statistical significance vs. economic significance

PSE: 13.14
My sense is that it is most common to report θ̂ and s.e.(θ̂) in applications in economics. I think

it is very uncommon (and not good practice) to only report θ̂ with a binary indicator of whether or
not some H0 is rejected (this used to be more common with statistical significance being indicated
by “significance stars” — there is a lot of pushback lately against “significance stars”; in my view,
they can be useful but should not be the only thing that is reported).

It is also common to report confidence intervals (though less common than the practice of just
θ̂ and its standard error). This is more useful in some particular cases. For example, its fairly
common that papers in the minimum wage literature that estimate “no effect” of the minimum
wage on employment to report a confidence interval; the strength of this sort of argument is to say
something along the lines of: “for any ‘reasonable’ estimate, we find economically small effects of
the minimum wage on employment.” Another effective use of confidence intervals is, in cases where
you want to report a lot of estimates (e.g., how treatment effects vary across different values of the
covariates) to include a figure that includes point estimates and confidence intervals.

I think that it is less common (at least in economics) to report p-values or t-statistics. These
contain essentially the same information as the combination of θ̂ and its standard error anyway. That
said, if you are sitting in a seminar and the researcher provides an estimate and its standard error, I
think many people in the audience will (in their heads) be calculating θ̂/s.e.(θ̂) and comparing it to
2 (i.e., close to the critical value 1.96).

More generally, particularly as datasets in economics tend to become larger over time, it
is important to distinguish between economic significance and statistical significance. In
particular, in most applications in economics, it is probably not reasonable to think that the effect
of one variable on another is literally exactly equal to 0. Along these lines, it is certainly possible to
estimate a statistically significant effect that is “economically small”. This is arguably self-evident
– for example, suppose that you observed the entire population so that you could just directly
calculate the population parameter of interest θ rather than having to estimate θ̂; it seems rather
obvious that “how much” θ is different from, say, 0 will matter a lot in many applications. This
issue is still there even if you have to deal with additional complications due to having to estimate θ.

The exact opposite issue is important too. Just because a statistical test does not reject H0 does
not imply that H0 is true — rather it indicates that we cannot reject it given the data that we have.

The textbook gives an interesting related example of the “marriage premium” (i.e., the difference
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between wages of married people and unmarried people) separately for men and women. The point
estimate for men is 0.21 (p-value = 0.000, so strongly statistically significant), indicating that, on
average, married men have 21% higher earnings than unmarried men, while for women the point
estimate is 0.016 (p-value = 0.094 indicating marginally statistically significant). Supposing that
you set the significance level to be α = 0.1, then you would report that both marriage premiums
are positive and statistically significant. However, this is probably not the best way to think about
these result. Rather, a 95% confidence interval is given by [0.19, 0.23] for men and [0.00, 0.03]. This
indicates a large difference in the marriage premium for men and women; and, in particular, the
magnitudes of these differences are more informative than the results of the hypothesis testing.

Wald Statistic

So far, we have mostly been focusing on the case where θ is a scalar. Now suppose that θ is a k × 1
vector. Further, suppose that we are interested in H0 : θ = θ0 (here: θ0 is also a k × 1 vector). (Note
the arguments below go through, essentially immediately, for the case where we are interested in
conducting inference with respect to β = h(θ)). For this section, we suppose that we have already
somehow established that

√
n(θ̂ − θ) d−→ N(0, V) where V is a k × k variance matrix, and that we

have a consistent estimator V̂ of V.
It is hard to operationalize the t-statistic that we talked about above – e.g., you could calculate

a t-statistic for each element in θ, but to conduct a test, you somehow need to boil that down into
being a scalar test statistic. It is possible to make progress along those lines (e.g., by taking the
maximum of the t-statistics), but these arguments turn out to be rather complicated. Instead, we
will consider a Wald statistic:

W = n(θ̂ − θ0)′V̂−1(θ̂ − θ0)

Notice that this is a number that we can compute (given a value of θ0) and that it is a scalar. Using
similar arguments as we did for the t-statistic above, it is helpful to notice that

W = n(θ̂ − θ0)′V−1(θ̂ − θ0) + n(θ̂ − θ0)′(V̂−1 − V−1)(θ̂ − θ0)

= n(θ̂ − θ0)′V−1(θ̂ − θ0) +
′√

n(θ̂ − θ0)︸ ︷︷ ︸
=Op(1)

(V̂−1 − V−1)︸ ︷︷ ︸
=op(1)

√
n(θ̂ − θ0)︸ ︷︷ ︸
=op(1)

= n(θ̂ − θ0)′V−1(θ̂ − θ0) + op(1)

where the first equality holds by adding and subtracting n(θ̂ − θ0)′V−1(θ̂ − θ0), and going from the
second to the third line holds because V̂ is consistent for V and by the CMT.

Before proceeding, it is useful to recall the following result: If Z ∼ N(0, Ik), then Z ′Z ∼ χ2
k

(that is, Z ′Z follows a chi-square distribution with k degrees of freedom).
As for t above, let’s consider the behavior of W under H0 and under H1 : θ ̸= θ0.
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• Case 1 (H0 true):If H0 is true, then we can replace θ0 in the expression for W with θ. Then,

W =
√

n(θ̂ − θ)′V−1√
n(θ̂ − θ) + op(1)

=
(
V−1/2√

n(θ̂ − θ)
)′

V−1/2√
n(θ̂ − θ) + op(1)

d−→ Z ′Z ∼ χ2
k

where the first equality holds immediately, the second equality uses the square root matrix of
V−1 (which exists because V is positive definite), and the last line holds because V−1/2√

n(θ̂ −
θ) d−→ Z ∼ N(0, Ik). All this to say, if H0 is true, then W should behave like a draw from a χ2

k

distribution.

• Case 2 (H0 false): If H0 is false, then θ̂ − θ0
p−→ θ − θ0 ̸= 0. Thus, the terms

√
n(θ̂ − θ0) both

diverge which implies that W also diverges. s

As for the t-statistic, this different behavior under H0 relative to H1 provides an approach to
inference. If W “looks like” a draw from a χ2

k distribution, then we should not reject H0, but, if not,
then we will reject. The critical values here depend on the number of degrees of freedom; therefore,
it is uncommon to memorize particular critical values. Rather, for testing multiple restrictions like
this, I think that it is most common to report a p-value. Here, you can calculate a p-value by

p = 1 − Gk(W )

which is the probability of getting a test statistic as large as the W we actually calculated if H0

were true. Here Gk is the cdf of a chi-square random variable with k degrees of freedom.
As mentioned above, because the distribution of W under H0 depends on the degrees of freedom

k (i.e., the number of restrictions being tested), it is harder to “just remember” critical values. That
said, it is easy to compute the p-value above in R using the function pchisq (which computes the
cdf of a chi-square random variable). For example, suppose that you calculate W = 7 and that
k = 2. Then, the p-value can be calculated as

p <- 1 - pchisq(7,df=2)

round(p,4)

## [1] 0.0302

so that the p-value is about 0.03 (indicating that you would reject H0 at the 5% significance
level).

Monte Carlo Simulations
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library(ggplot2)

library(dplyr)

set.seed(1234)

p <- 0.5 # prob of heads

# function to flip a coin with probability p
flip <- function(p) {

sample(c(0,1), size=1, prob=(c(1-p,p)))

}

# function to generate a sample of size n
generate_sample <- function(n,p) {

Y <- c()

for (i in 1:n) {

Y[i] <- flip(p)

}

Y

}

# function to carry out Monte Carlo simulations
# returns a vector of length nsims
# containing standardized versions of phat or bhat
# (depending on the argument `which_est`) from
# each simulation that come from, for example,
# sqrt(n)(phat-p)/sqrt(V)
mc2 <- function(n, H0=0.5, nsims=1000) {

phat <- c() # vector to hold estimated p
tstat <- c() # vector to hold estimated beta
rej <- c() # vector to hold whether or not we reject H0
for (i in 1:nsims) {

Y <- generate_sample(n,p)

phat[i] <- mean(Y)

tstat[i] <- sqrt(n)*(phat[i]-H0)/sqrt(var(Y))

rej[i] <- 1*(abs(tstat[i]) > qnorm(.975))

}

data.frame(phat=phat, tstat=tstat, rej=rej)
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}

plot_t_results <- function(sim_results) {

ggplot(sim_results, aes(x=tstat)) +

geom_histogram(aes(y=..density..),

bins=20) +

theme_bw() +

ylab("") + xlab("")

}

# show results for phat for different values of n
# and p

# n=25
mc_res1 <- mc2(25)

plot_t_results(mc_res1)

0.0

0.2

0.4

0.6

−4 −2 0 2 4
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mean(mc_res1$rej)

## [1] 0.043

# n=100
mc_res2 <- mc2(100)

plot_t_results(mc_res2)

0.0

0.1

0.2

0.3

0.4

−2 0 2 4

mean(mc_res2$rej)

## [1] 0.063

# change p to be 0.9
p <- 0.9

mc_res3 <- mc2(100)

plot_t_results(mc_res3)
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mean(mc_res3$rej)

## [1] 1

# change p to be 0.55
p <- 0.55

mc_res4 <- mc2(100)

plot_t_results(mc_res4)

14



0.0

0.1

0.2

0.3

0.4
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mean(mc_res4$rej)

## [1] 0.201

# change p to be 0.55 and n=500
p <- 0.55

mc_res5 <- mc2(500)

plot_t_results(mc_res5)
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mean(mc_res5$rej)

## [1] 0.635
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