
This material comes from Hansen’s Probability and Statistics for Economists (PSE) and Len
Goff’s lecture notes along with some of my own comments.

Central Limit Theorem

PSE 8.1
In the previous set of notes, we showed that a large class of estimators is consistent for their

target population parameters and discussed tools for establishing the consistency of estimators. But,
often, we will need to know the entire sampling distribution. For this set of notes, our aim is to
understand (or at least get a reasonable approximation) of the sampling distribution of estimators,
particularly using large sample approximations. We will make heavy use of knowing an entire
sampling distribution very soon, but for now, let’s just say that we are in interested in high-level goals
like assessing the accuracy of our estimator or in testing whether or not some theory is “compatible”
with the sample that we have, and that (approximately) knowing the sampling distribution of an
estimator will be useful for these goals.

Let’s start with an easy case. Suppose that we somehow knew that Xi were normally distributed.
In this case, it immediately follows that X̄ ∼ N(µ, σ2

n ); this just follows by properties of normal
distributions, particularly that the sum of independent, normally distributed random variables is
also normally distributed. This implies that we would know the entire sampling distribution of X̄

in this case.
Unfortunately, as we discussed earlier, it is not reasonable to assume that many variables in

economics follow a normal distribution. In this case, it is generally much harder (or impossible) to
derive the sampling distribution of X̄.

In cases where it is unreasonable to assume that the Xi follow a normal distribution, the most
common way to derive a sampling distribution for estimators is for the case where the researcher
has a “large” sample. These arguments are called asymptotic approximations and amount
to deriving properties of the sampling distribution of (a transformed version of) an estimator as
n → ∞.

Convergence in Distribution

PSE 8.2
As a step in this direction, we need to think some about what it even means to think about a

sampling distribution as n → ∞. In my view, consistency is fairly easy to wrap your mind around.
When n gets big, it is fairly intuitive that a sample average converges to it population counterpart.
Its also straightforward to consider other possible behaviors of various quantities that depend on
the sample as n → ∞. Many of these would converge to 0 or diverge (i.e., go to ±∞) as n → ∞;
for example 1/n → 0 as n → ∞ or n itself → ∞. In this section, we’ll introduce an alternative
notion of convergence where a sequence of random variables neither converges to 0 nor diverges, but
instead behaves like a draw from some distribution as n → ∞.
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Before defining this notion of convergence, following the textbook, let’s use Gn to denote the
sampling distribution of the sequence Zn and G to denote the sampling distribution of some random
variable Z.

Definition. Let Zn be a sequence of random variables with distribution Gn(u) := P(Zn ≤ u).
Then, Zn is said to converge in distribution to Z as n → ∞ if, for all u at which G(u) := P(Z ≤ u)
is continuous, Gn(u) → G(u).

There are couple of points worth briefly mentioning. First, in economics, we typically use the
terminology “convergence in distribution”, but you might sometimes here the same concept referred
to as “weak convergence”. Second, it is common to refer to G(u) as the “asymptotic distribution”
or “limiting distribution” of Zn. Third, the caveat “for all u at which G(u) is continuous” is not
practically important for any of the results that we’ll show this semester or next the most common
limiting distributions (e.g., normal, chi-square) are continuous. Fourth, convergence in distribution is
a weaker concept than convergence in probability (i.e., convergence in probability =⇒ convergence
in distribution, but not the other way around). In particular, if Zn

p−→ c, then Zn
d−→ Z where Z is

the “degenerate” random variable that takes the value c with probability 1.

Sample Mean

PSE 8.3
Now, let’s think about trying to establish the asymptotic distribution of X̄. We know from

the weak law of large numbers that X̄
p−→ E[X]. This implies that X̄

d−→ E[X]. However, this is
not very useful for thinking about the sampling distribution of X̄ because it is degenerate. Recall
that var(X̄) = σ2

n , where σ2 = var(X). The reason for the asymptotic distribution of X̄ itself being
degenerate is due to the n in the denominator causing the variance to go to 0 as n → ∞. This
suggests normalizing X̄ by a function of n so that the variance doesn’t converge to 0 as n → ∞. In
particular, consider

Zn =
√

n(X̄ − µ)

Notice that E[Zn] = 0 and var(Zn) = nvar(X̄) = σ2. Thus, the variance of Zn doesn’t converge to
0 here. Further, notice that multiplying by

√
n is “just right” in the sense that, if you multiplied

by something that grows slower than
√

n (say: n1/3), then the variance would converge to 0;
alternatively, if you were to choose something that grows faster than

√
n (say: n), then the variance

would diverge. Also, notice that we have subtracted off µ; without subtracting µ, E[
√

nX̄] =
√

nE[X]
which will diverge as n → ∞. All this to say, it seems at least possible that this particular sequence
Zn may not converge to 0 nor diverge as n → ∞ which suggests that it might have a useful,
non-trivial limiting distribution.
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Central Limit Theorem

PSE 8.4-8.6
The next large sample property of an estimator that we will consider is asymptotic normality.

Definition. An estimator θ̂ of a parameter θ is asymptotically normal if
√

n(θ̂−θ) d−→ Z ∼ N(0, Vθ)
as n → ∞.

The main tool for establishing the limiting distribution of an estimator is the central limit
theorem. It will be particularly useful for recovering the limiting distribution of normalized terms
like Zn above.

Central Limit Theorem: If Xi are iid and E[X2] < ∞, then

√
n(X̄ − E[X]) d−→ N(0, σ2)

where σ2 = var(X).

We had previously established that
√

n(X̄ − µ) had mean 0 and variance σ2. The central limit
theorem additionally implies that, in large samples,

√
n(X̄ −E[X]) (approximately) follows a normal

distribution. This will be an extremely useful tool for us as we will soon exploit that we know a lot
about the properties of normally distributed random variables.

The central limit theorem is quite remarkable. It says that whatever the distribution of Xi is,
the limiting distribution of X̄n (recentered by µ and rescaled by

√
n) will be a normal distribution.

This striking result will pave the way for us to perform inference on the expectation of a random
variable, without knowing its full distribution.

The practical value of the CLT is that it delivers an approximation to the distribution of X̄.
For large n, we know that

√
n(X̄ − µ) has approximately the distribution N(0, σ2). An alternative,

equivalent way to write the CLT is that (under the same conditions)

√
n(X̄ − µ)

σ
d−→ N(0, 1)

This implies that, in order to get a good guess of the distribution of
√

n(X̄ − µ)/σ, we only need to
have estimates of µ and σ which is feasible for us to do in applications, even in applications where
we are unwilling to make distributional assumptions on the Xi.

Despite the usefulness of the central limit theorem, an intuition for the central limit theorem
is harder to come by, especially relative to, say, the law of large numbers; in fact, the textbook
even uses the word “mysterious” to describe the central limit theorem. For example, given our
earlier discussion, you can think of

√
n and (X̄ − µ) “fighting” against each other. From the law of

large numbers, we know that (X̄ − µ) converges to 0 as n → ∞; on the other hand, multiplying
it by n raised to some positive power involves a term that will go to infinity. Multiplying by

√
n

essentially results in a “tie” so that
√

n(X̄ − µ) neither converges to 0 nor diverges to ±∞. Perhaps
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it is reasonable to think that, in the event of a “tie”, that
√

n(X̄ − µ) would converge in distribution
to something. But, a natural question is: why does it converge to a normal distribution instead of
some other distribution? This is a good question, and, our proofs below will be mostly brute force.
That said, the textbook does have a number of good (though relatively mathematical) explanations
of the central limit theorem; for example the “moment investigation” calculations in Section 8.4 are
tedious but show that the first 6 moments of

√
n(X̄ − µ) as n → ∞ and are the same as the first 6

moments of a random variable that follows a N(0, σ2) distribution. This tentatively suggests that
√

n(X̄ − µ) might converge in distribution to normal.

Side-Comment: These notes focus on the case where the limiting distribution is a normal
distribution. This is by far the leading case, but it is possible that a sequence of random
variables converges in distribution to some other limiting distribution. One other case that we
will see before too long is where some sequence of random variables converges to a Chi-squared
distribution.

Proof of Central Limit Theorem: Preliminary Helpful Results

We will provide a proof of the central limit theorem next. We will start by collecting several helpful
intermediate results/tools before the main proof.

First, we will introduce (or maybe recall as you may have seen this in math for econ or micro
class before) Taylor’s theorem which is useful for approximating a function by a polynomial.

Taylor’s theorem: Let s be a positive integer. If f(x) is s times differentiable at a, then

f(x) = f(a) + f ′(a)(x − a) + f ′′(a)
2 (x − a)2 + · · · + f (s)(a)

s! (x − a)s + h(x)(x − a)s︸ ︷︷ ︸
r(x)

where the last term, r(x), is a remainder term where h(x) → 0 when x → a. Often, this remainder
term is written as r(x) = o(|x − a|s) where the “little-oh” notation can be read as “has lower order
than”, which means that, when x converges to a, then the remainder term goes to 0 faster than
|x − a|s does; for us, this will often mean that we can effectively ignore the last term as it will
converge to 0 faster than the other terms.

Our most common usages of Taylor’s Theorem will be for s = 1 (which amounts to a linear
approximation of the function) or s = 2 (which amounts to a quadratic approximation of the
function). In the next box, I give two closely discuss an alternative form of Taylor’s Theorem and
the closely related mean value theorem. We won’t use either of these in the proof of the CLT, but
this is a good place to mention them as they will be useful later.
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Side-Comment:

Taylor’s Theorem (mean-value form): Let s be a positive integer. If f (s−1)(x) is
continuous on [a, b] and differentiable on (a, b), then there exists a point c ∈ (a, b) such that

f(b) = f(a) + f ′(a)(b − a) + f ′′(a)
2 (b − a)2 + · · · + f (s)(c)

s! (b − a)s

A very useful special case of this result is for s = 1, in which case we get the mean value
theorem, which is

Mean-value Theorem: If f(x) is continuous on [a, b] and differentiable on (a, b) then
there exists a point c ∈ (a, b) such that

f ′(c) = f(b) − f(a)
b − a

In other words, there exists a point between a and b where the slope of f is equal to the

slope of the line connecting a and b. It’s often useful to rearrange the expression in the mean
value theorem so that

f(b) = f(a) + f ′(c)(b − a)

The mean value theorem also (effectively) generalizes to the case where f : Rk → Rl. In this
case, letting a and b denote k × 1 vectors

f(b) = f(a) + ∇f(c)′(b − a)

where c is "between" a and b (this is the part where it is worth being careful in that in the
vector case, we need to do this sort of expansion element-wise so that c can actually vary
by row of ∇f(c) though it will still be in between a and b and therefore this caveat won’t
matter much for us) and where

∇f(c) := ∂f(u)′

∂u

∣∣∣
u=c

which is a k × l matrix of partial derivatives of f ; that is,

f(u) =


f1(u)
f2(u)

...
fl(u)


l×1

and ∂f(u)′

∂u
=


∂f1(u)

∂u1
∂f2(u)

∂u1
· · · ∂fl(u)

∂u1
∂f1(u)

∂u2
∂f2(u)

∂u2
· · · ∂fl(u)

∂u2...
... . . . ...

∂f1(u)
∂uk

∂f2(u)
∂uk

· · · ∂fl(u)
∂uk


k×l
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Next we will cover/review some properties of moment generating functions. Recall that when
we talked about the moment generating function of a random variable X, we noted the property
of moment generating functions that: if two random variables have the same moment generating
function then they follow the same distribution. A related result is the following

Levy’s Continuity Theorem: If E[exp(tZn)] → E[exp(tZ)] for every t ∈ R, then Zn
d−→ Z.

Levy’s continuity theorem implies that, if Mn(t) := E[exp(tZn)] converges to a limit function
M(t) = E[exp(tZ)], then the distribution of Zn will converge to the distribution of Z. The intuition
here is that, if all the moments of Zn converge to all the moments of Z, then Zn will converge in
distribution to Z. This will be the strategy that we use to prove the central limit theorem.

Next, recall that if Z ∼ N(µ, σ2), then its moment generating function is given by

M(t) = exp
(
µt + σ2t2

2
)

If µ = 0, it immediately follows that the mgf is given by

M(t) = exp
(σ2t2

2
)

Further, recall that if X1, . . . , Xn are independent, then

E
[
exp

(
t

(
n∑

i=1
Xi

))]
= E[exp(tX1) exp(tX2) · · · exp(tXn)]

=
n∏

i=1
E[exp(tXi)]

= E[exp(tX)]n

where the first equality holds by properties of exp, the second by independence of Xi, and the third
because Xi are identically distributed.

Finally, recall that exp(x) (can be) defined as

exp(x) = lim
n→∞

(
1 + x

n

)n

Proof of Central Limit Theorem

Now, let’s write the proof. We will start with the moment generating function of Zn =
√

n(X̄ − µ)
(notice that Zn =

∑n

i=1(Xi−µ)√
n

) and we are aiming to show that this converges to the moment
generating function of a normally distributed random variable with mean 0 and variance σ2. First,
notice that
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MZn(t) = E [exp (tZn)]

= E
[
exp

(
t

∑n
i=1(Xi − µ)√

n

)]
=
(
E
[
exp

(
t√
n

(X − µ)
)])n

where the first equality holds by the definition of mgf, the second by the definition of Zn, and the
third because Xi are iid (and by the related discussion in the previous section).

For the inside term, notice that E
[
exp

(
t√
n

(X − µ)
)]

= M(X−µ)
(

t√
n

)
, and therefore, using a

second order Taylor expansion, we have that

M(X−µ)

(
t√
n

)
= M(X−µ)(0) + M ′

(X−µ)(0)
(

t√
n

− 0
)

+
M ′′

(X−µ)(0)
2

(
t√
n

− 0
)2

+
(

t√
n

− 0
)2

h

(
t√
n

)

To be clear here, t/
√

n is playing the role of x, 0 is playing the role of a, and s = 2 in Taylor’s
Theorem, and where h(t/

√
n) → 0 when t/

√
n → 0 (which will happen as n → ∞). Now, we

need to provide the expressions for M(X−µ)(0), M ′
(X−µ)(0), and M ′′

(X−µ)(0); but these are easy:
M(X−µ)(0) = 1, and M ′

(X−µ)(0) = E[X − µ] = 0 (as the derivative of the mgf evaluated at t = 0
is equal to the first moment), M ′′

(X−µ)(0) = E[(X − µ)2] = σ2 (as the second moment of the mgf
evaluated at t = 0 is equal to the second moment). Thus, we have that

M(X−µ)

(
t√
n

)
= 1 + 0

(
t√
n

)
+ σ2

2
t2

n
+ o(t2/n)

= 1 + σ2 t2

2n
+ o(t2/n)

Thus, from plugging this back into the mgf of Zn above, we have that

MZn(t) =
(
1 + σ2 t2

2n
+ o(t2/n)

)n

Moreover,

lim
n→∞

MZn(t) = lim
n→∞

(
1 + σ2 t2

2n
+ o(t2/n)

)n

= lim
n→∞

(
1 + σ2 t2

2n

)n

= exp
(

σ2t2

2

)
= MZ(t)

where Z is a random variable that follows a normal distribution with mean 0 and variance σ2 and
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where the second equality holds because the lower order terms vanish as n → ∞ (see box below for
a more detailed discussion), the third equality holds by the definition of exp(x) from the previous
section, and the last equality holds by recalling the moment generating function of a normally
distribution random variable. This completes the proof. We have shown that the moment generating
function of Zn converges to the moment generating function of Z ∼ N(0, σ2). From Levy’s continuity
theorem, this implies that Zn

d−→ Z; or, in other words, that
√

n(X̄ − E[X]) d−→ N(0, σ2) where
σ2 = var(X), which is what we were trying to prove.
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Side-Comment: If we can ignore the o(t2/n) term then we are done. To show that this
term indeed does not contribute in the limit, consider taking the natural logarithm of both
sides of the above equation (since the log is continuous function, it preserves limits):

lim
n→∞

log
{(

1 + σ2t2

2n
+ o(t2/n)

)n}
= lim

n→∞
n · log

(
1 + σ2t2

2n
+ o(t2/n)

)

= lim
n→∞

n ·
(

σ2t2

2n
+ o(t2/n)

)
= lim

n→∞

(
σ2t2

2 + o(t2)
)

·

= σ2t2

2 (SC-1)

where, for the second equality, we’ve used Taylor’s theorem for the natural logarithm; in
particular, Taylor’s theorem implies that that

f(z) = f(0) + f ′(0)(z − 0) + o(z)

Taking f(z) = log(1 + z), we have that

log(1 + z) = log(1 + 0) + 1
1 + 0(z − 0) + o(z)

= z + o(z)

Taking z = σ2t2

2n + o(t2/n), we have that

log
(

1 + σ2t2

2n
+ o(t2/n)

)
= σ2t2

2n
+ o(t2/n)︸ ︷︷ ︸

=z

+ o(t2/n)︸ ︷︷ ︸
=o(z)

= σ2t2

2n
+ o(t2/n)

where the last term holds just by combining the o(t2/n) terms (since they will “behave” the
same as n → ∞). This is the expression for going from the first equality to the second
equality above.
To finish this off, we just need to “unwind” the logarithm that we took at the very beginning;
taking the exponential of both sides of Equation (SC-1), we have that

lim
n→∞

(
1 + σ2 t2

2n
+ o(t2/n)

)n
= exp

(
σ2t2

2

)

as we wanted.

As a last comment, the proof above relied on moment generating functions existing, which may
not always be the case. Essentially the same argument as above can go through for the characteristic
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function (which always exists) replacing the moment generating function.

Multivariate Central Limit Theorem

Also, the central limit theorem also holds in the case where X is a random vector under essentially
the same conditions.

Multivariate Central Limit Theorem: If Xi ∈ Rk are iid and E||X||2 < ∞, then

√
n(X̄ − E[X]) d−→ N(0, V)

where V = var(X) = E[(X − E[X])(X − E[X])′] (which is a k × k matrix).

(Extended) Continuous Mapping Theorem

PSE 8.9
Next, we consider a version of the continuous mapping theorem for convergence in distribution

Extended Continuous Mapping Theorem: If Zn
d−→ Z and h(·) has the set of discontinuity

points Dh such that P (Z ∈ Dh) = 0, then h(Zn) d−→ h(Z) as n → ∞.

The extended continuous mapping theorem says that applying a continuous function to a sequence
of random variables preserves convergence in distribution. The condition about discontinuity points
allows for the function to not be strictly continuous, but that the probability of being at a
discontinuous point being equal to 0 — this would typically be a discrete set of discontinuity points.

Example:The book gives the example of h(u) = u−1. This function is discontinuous at u = 0
but continuous everywhere else. But, if, for example, Zn

d−→ Z, then the probability Z = 0 is
0, then this function satisfies the conditions of the extended continuous mapping theorem. In
particular, it implies that Z−1

n
d−→ Z−1.

Example: Let Zn =
√

n(X̄n − µ). Then by the CLT and CMT: Z2
n = n

σ2

(
X̄n − µ

)2 d→
Z · Z ∼ χ2

1, where Z ∼ N(0, 1) and χ2
1 is the chi-squared distribution with one degree of

freedom (this is the distribution of a standard normal N(0, 1) random variable squared).

There are several special cases of the extended continuous mapping theorem that are so common
that they are grouped together and called Slutsky’s Theorem.

Slutsky’s Theorem: If Zn
d−→ Z and Yn

p−→ c, then

1. Zn + Yn
d−→ Z + c

2. ZnYn
d−→ Zc
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3. Zn
Yn

d−→ Z
c

These cover the most common operations that we’ll encounter for sequences of random variables.

The Delta Method

PSE 8.9
Now consider the case where we are interested in developing the limiting distribution of the

plug-in estimator β̂ = h(θ̂). Earlier we showed that the continuous mapping theorem implied that
β̂

p−→ β. For this section, we will be interested in establishing the limiting distribution of
√

n(β̂ − β).
In some cases (i.e., for some types of functions), the extended continuous mapping theorem

can be directly used to establish the limiting distribution of
√

n(β̂ − β). However, this approach
does not work all the time: Even if we have that

√
n(θ̂ − θ) d−→ N(0, σ2), the extended continuous

mapping theorem does not directly provide the limiting distribution of
√

n(β̂ − β); notice that, in
general,

√
n(β̂ − β) ̸= h(

√
n(θ̂ − θ)) (particularly, when h is a nonlinear function) which implies we

cannot just apply the extended continuous mapping theorem.
To establish the limiting distribution of

√
n(β̂ − β), we will use an approach that is called the

delta method.

Delta Method: If
√

n(θ̂ − θ) d−→ Z and h(u) is continuously differentiable in neighborhood of θ,
then

√
n(β̂ − β) =

√
n(h(θ̂) − h(θ)) d−→ h′(θ)Z

where h′(θ) = d h(u)
du

∣∣∣
u=θ

.

The most common case for us will be when Z ∼ N(0, σ2). In this case, given that h′(θ) is a
constant, then we would have that

√
n(β̂ − β) d−→ N(0, h′(θ)2σ2)

The version of the Delta method above is for the case where θ is scalar and h : R → R. But
it will generalize to the case where θ is a k × 1 vector and h : Rk → Rl. I’ll just cover the most
common case where we know that

√
n(θ̂ − θ) d−→ N(0, V) for some k × k variance matrix V. In this

case,

√
n(β̂ − β) d−→ N(0, ∇h(θ)′V∇h(θ))

where

∇h(θ) := ∂h(u)′

∂u

∣∣∣
u=θ
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which is a k × l matrix. To conclude this section, let’s provide a proof of the Delta method; because
its not much more complicated, we will let θ be a k × 1 vector and h : Rk → Rl; and we’ll focus on
the case where

√
n(θ̂ − θ) d−→ N(0, V) which is by far the leading case.

Proof: The key step is to use the mean value theorem to write

h(θ̂) = h(θ) + ∇h(θ∗)′(θ̂ − θ)

for some θ∗ between θ̂ and θ. Thus, we can write

√
n(β̂ − β) =

√
n(h(θ̂) − h(θ))

= ∇h(θ∗)′√n(θ̂ − θ)

where the second equality holds by just re-arraning the mean value theorem argument from the
previous display. Now, we have that

√
n(θ̂ − θ) d−→ N(0, V) (by assumption), we also have that

θ∗ p−→ θ because it is between θ̂ and θ and θ̂
p−→ θ, thus, by the continuous mapping theorem (and

because h is continuously differentiable by assumption), we have that ∇h(θ∗) p−→ ∇h(θ); finally, by
the extended continuous mapping theorem, we therefore have that

√
n(β̂ − β) d−→ ∇h(θ)′Z

where Z ∼ N(0, V), and, therefore,
√

n(β̂ − β) d−→ N(0, ∇h(θ)′V∇h(θ)).
As a side-comment, to see how to go from

√
n(β̂ − β) d−→ ∇h(θ)′Z, we have that Z follows a

normal distribution and ∇h(θ)′ is non-random. Therefore, ∇h(θ)′Z will follow a normal distribution,
and we just need to figure out its mean and variance. Its mean is 0 because E[Z] = 0. To
calculate the variance, ∇h(θ)′ can come outside the variance because it is non-random but needs
to be "squared" (pre- and post-multiplying is the matrix version of "squaring" here), so that
var
(
∇h(θ)′Z) = ∇h(θ)′var(Z)∇h(θ) = ∇h(θ)′V∇h(θ), which is what we have above.

Covariance Matrix Estimation

PSE 8.12
In practice, the limiting distributions that we have established depend on (unknown) population

quantities. For example, we just showed that
√

n(β̂−β) d−→ N(0, ∇h(θ)′V∇h(θ)), but the asymptotic
variance, ∇h(θ)′V∇h(θ) depends on θ and V which are population quantities. To conserve on
notation, let’s define Vβ = ∇h(θ)′V∇h(θ). The natural estimator of Vβ is

V̂β = ∇h(θ̂)′V̂∇h(θ̂)

12



where (given θ = E[g(X)]),

θ̂ = 1
n

n∑
i=1

g(Xi) and V̂ = 1
n

n∑
i=1

(
g(Xi) − θ̂

)(
g(Xi) − θ̂

)′
and, for example, in the simpler case when θ = E[X], the expression for V̂ would simplify to

V̂ = 1
n

n∑
i=1

(
Xi − X̄

)(
Xi − X̄

)′
In general, this estimator of V will be biased, so you could alternatively divide by n − 1 to get an
unbiased estimator, though this may not matter much when n is large.

Stochastic Order Symbols

PSE 8.14
Earlier in the notes, for some non-random sequence an, we used the “little oh” notation

an = o(f(n)) to indicate that f(n)−1an → 0 as n → ∞. The most common versions of f(n) are (i):
f(n) = 1 so that an = o(1) which just means that the sequence converges to 0 or (ii) n−1/2 so that
an = o(n−1/2) which means that the sequence converges to 0 faster than n−1/2 does (i.e.,

√
nan → 0

as n → ∞).
A related notation is “big oh” notation an = O(f(n)) to indicate that f(n)an is uniformly

bounded in n. In the same two common cases as above, an = O(1) indicates that the sequence is
uniformly bounded (for this case you can think of this as meaning that the sequence does not diverge
as n → ∞). If an = O(n−1/2), it would indicate that

√
nan = O(1) (i.e., is uniformly bounded).

Its sometimes useful to have a similar notation for random vectors. We will sometimes write

Zn = op(1)

to indicate that Zn
p−→ 0, and you would say that Zn is “little oh P one”. Similarly, Zn = op(n−1/2)

indicates that
√

nZn
p−→ 0, or, equivalently,

√
nZn = op(1).

Similarly, we will sometimes write

Zn = Op(1)

which is said “big oh P one” to indicate that Zn is “bounded in probability” (you can see the
textbook for a formal definition, but you can think of this as saying that extremely large values of Zn

are very rare). As you would expect, we would write Zn = Op(n−1/2) to indicate that
√

nZn = Op(1).
One important thing to remember here is that, if Zn converges in distribution, then it is Op(1).

There are useful rules for working with random sequence that are Op(1) and/or op(1). The
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textbook provides a number of these, but here are probably the two most useful:

Op(1) + op(1) = Op(1) and Op(1)op(1) = op(1)

The intuition for the first one is that if you add something that is bounded in probability to
something else that converges in probability to 0, then their sum will be bounded in probability.
For the second one, if you multiply something that is bounded in probability to something that
converges in probability to 0, then their product will converge to 0. These rules are implications of
the continuous mapping theorem.

This sort of notation is often useful for keeping track of “leftover” terms that may be complicated
but end up converging to 0.

Monte Carlo Simulations

Let’s return to our previous example of flipping a coin and try to see the law of large numbers,
central limit theorem, and continuous mapping theorem in practice.

First, let’s consider estimating

p = E[X] and β = p2

by

p̂ = 1
n

n∑
i=1

Xi and β̂ = p̂2

Furthermore, we have from the CLT and CMT (and because X is Bernoulli) that

√
n(p̂ − p) d−→ N(0, p(1 − p)) and

√
n(β̂ − β) d−→ N(0, V )

where V = (2p)2p(1 − p) = 4p3(1 − p) (this holds because β = h(p) = p2 =⇒ h′(p) = 2p).
I am going to bring in some of the functions we used previously for simulating coin flips.

# load packages
library(ggplot2)

library(dplyr)

set.seed(1234)

p <- 0.5 # prob of heads

# function to flip a coin with probability p
flip <- function(p) {
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sample(c(0,1), size=1, prob=(c(1-p,p)))

}

# function to generate a sample of size n
generate_sample <- function(n,p) {

Y <- c()

for (i in 1:n) {

Y[i] <- flip(p)

}

Y

}

# function to carry out Monte Carlo simulations
# returns a vector of length nsims
# containing standardized versions of phat or bhat
# (depending on the argument `which_est`) from
# each simulation that come from, for example,
# sqrt(n)(phat-p)/sqrt(V)
mc <- function(n, p=0.5, nsims=1000, which_est="p") {

phat <- c() # vector to hold estimated p
bhat <- c() # vector to hold estimated beta
for (i in 1:nsims) {

Y <- generate_sample(n,p)

phat[i] <- mean(Y)

bhat[i] <- phat[i]ˆ2

}

# subtract mean and multiply by sqrt(n)
p_stand <- sqrt(n)*(phat-p)/sqrt(p*(1-p))

b_stand <- sqrt(n)*(bhat-pˆ2)/sqrt(4*pˆ3*(1-p))

if (which_est == "p") {

return(p_stand)

} else {

return(b_stand)

}

}

# function to make plots of our simulation results
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# note: in the plot we report the fraction of
# observations in a "bin" divided by the bin
# width. This is for approximating a pmf using
# a type of histogram; to instead get the pmf,
# you can just divide the heights of each bar by
# the bin width (in that case the bars will sum
# to 1) but what we are doing here mimics: f(x) =
# d/dx (F(x)) where the bin width plays the role of
# dx.
plot_sim_results <- function(sim_results) {

plot_df <- data.frame(sim=sim_results)

sep <- .26 # this is the bin width below
ggplot(plot_df, aes(x=sim)) +

xlim(c(-3,3)) +

geom_histogram(aes(x=sim, y=..density..),

binwidth=sep) +

stat_function(fun=dnorm,

n=101,

args=list(mean=0, sd=1),

color="green",

linetype="dashed",

size=1.1) +

theme_bw() +

ylab("") + xlab("")

}

# show results for phat for different values of n
# (plots include an overlay of N(0,p(1-p)))

# n=1
mc1 <- mc(1)

plot_sim_results(mc1)
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# n=2
mc2 <- mc(2)

plot_sim_results(mc2)
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# n=5
mc5 <- mc(5)

plot_sim_results(mc5)
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# n=10
mc10 <- mc(10)

plot_sim_results(mc10)
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# n=50
mc50 <- mc(50)

plot_sim_results(mc50)

0.0

0.1

0.2

0.3

0.4

−2 0 2

# n=1000
mc1000 <- mc(1000)

plot_sim_results(mc1000)
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From the above results, we can see that (as we would expect) the normal approximation is not
working well at all when n = 1; in fact, there are only two possible values that

√
n(p̂ − p) can take

in this case: 0.5 or -0.5. For larger values of n, the normal approximation starts to work better; for
n = 50, it seems to be working reasonably well.

To conclude this section, let’s do a smaller version of this for estimating β.

# n=10
mcb10 <- mc(10, which_est="b")

plot_sim_results(mcb10)
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# n=50
mcb50 <- mc(50, which_est="b")

plot_sim_results(mcb50)
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These are fairly interesting results. When n = 10 the normal approximation is not working too
well; moreover, you can seemingly see some bias here (this is expected as β = p2 is a nonlinear
function of p and, therefore, β̂ is consistent for β but not unbiased). However, by n = 50, again the
normal approximation seems to work pretty well.

As a final comment: Thought experiments like this simulation experiment are useful for getting
intuition about the CLT. Accoringly, you often hear descriptions of the CLT along the lines of: “the
sample mean becomes normal as the sample gets bigger and bigger”. This isn’t wrong, but can be a
little misleading. A given real-world sample never gets bigger: it always has a single finite size n!
Similarly, the sample size n never “goes to infinity”–though we can get pretty close by simulating a
sequence of samples on a computer! Imagining an infinite sequence of samples having means X̄1,
X̄2, and so on, is just a useful abstraction.
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