
This material comes from Hansen’s Probability and Statistics for Economists (PSE) and Len
Goff’s lecture notes along with some of my own comments.

Law of Large Numbers

So far, we have primarily focused on the mean and variance of estimators, particularly X̄. One
thing that is worth pointing out here is that, in order to derive these properties, we did not need to
impose any strong conditions (either on the distribution of Xi or on the number of observations
that we have access to). But we will often want to learn more about the sampling distribution of θ̂

or X̄ than just its mean and variance.
One way to proceed would be to make additional distributional assumptions about Xi; the most

common one would be to assume that Xi are normally distributed. In this case (which I’ll talk
about briefly in the next set of lecture notes), we could derive the full sampling distribution of X̄.
However, these sorts of distributional assumptions are often implausible in economics applications.
Previously we have considered examples where X is a person’s years of education or income. Neither
of these variables follow a normal distribution. Years of education is discrete which implies that
it does not follow a normal distribution. Income cannot be negative which implies that it doesn’t
follow a normal distribution (as the support of a normally distributed random variable is the entire
real line); moreover, the income distribution is skewed and has a “fat” right tail (i.e., the fraction of
people with “very high” incomes is too large relative to a normal distribution) which also implies
non-normality.

Therefore, in this set of notes, we will start to consider “large sample” properties of estimators.
These will amount to properties of estimators that hold in cases where we have a large sample and
will be derived using asymptotic arguments where n → ∞. The two main large sample properties of
estimators are consistency and asymptotic normality. Consistency amounts to a guarantee that,
given a large enough sample, our estimate should be “close” to the population parameter of interest.
Asymptotic normality involves a transformed version of our estimator behaving like a draw from a
normal distribution, given that we have a large sample. Asymptotic normality will be useful for
(roughly) developing measures of the accuracy of our estimator and for hypothesis testing (this is
essentially that we have some theory about a population quantity of interest and want to learn
whether or not the data that we have is “compatible” with that theory or not). This set of notes
considers consistency and the main tools for showing that an estimator is consistent. The next set
of notes concern asymptotic normality.

Convergence in probability

PSE 7.1-7.4
Consider a sequence of random variables or random vectors Z1, Z2, . . . which we’ll denote by Zn.

This is a general notion, but I think a good example to keep in mind is X̄n = 1
n

∑n
i=1 Xi (usually I

don’t include the subscript n on X̄, but I think it is helpful to include it at the moment). We are
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going to think about “convergence” of sequences of random variables. Notice that the distribution
of Zn can change depending on n. For example, for X̄n, the variance depends on n. The first notion
of convergence of the sequence Zn that we will consider is called convergence in probability:

Definition. We say that Zn converges in probability to c if for any ϵ > 0:

lim
n→∞

P(|Zn − c| < ϵ) = 1

In words, convergence in probability means that, as in n → ∞, Zn becomes arbitrarily close to
c. An alternative equivalent definition is that limn→∞ P(|Zn − c| ≥ ϵ) = 0. The second version says
that the probability that Zn is “not close” to c (you can define whatever you “not close” to mean
based on choosing different values of ϵ) goes to 0 as n → ∞

Notation: When Zn converges in probability to c, we write this as Zn
p→ c, or alternatively

plim(Zn) = c. We say that c is the probability limit of the sequence Zn.

Weak law of large numbers

PSE 7.5
The first large sample property of an estimator that we will consider is consistency

Definition. An estimator θ̂ of a parameter θ is consistent if θ̂
p−→ θ as n → ∞.

Consistency is a good property for an estimator to have. In fact, all the estimators that we’ll
consider this semester or next semester will be consistent. Consistency says that, given a large
enough sample, θ̂ will be arbitrarily close to θ.

The main tool for showing that an estimator is consistent is the weak law of large numbers.

Weak Law of Large Numbers: If Xi are iid and E|X| < ∞, then

X̄ = 1
n

n∑
i=1

Xi
p−→ E[X]

The weak law of large numbers says that, given a large enough sample (under iid sampling),
sample averages should be close to population averages. In my view, this is quite intuitive and not
all that surprising: if you flip lots of coins, it does not seem surprising that the fraction of heads
should be very close to 0.5. The notation in the theorem above indicates that X is scalar, but the
weak law of large numbers immediately applies in the case where X is a vector.

Proof: Recall Chebyshev’s inequality says that, for some random variable Z,

P(|Z − E[Z]| ≥ δ) ≤ var(Z)
δ2
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Then, applying Chebyshev’s inequality to X̄ (and recalling that E[X̄] = E[X] and var(X̄) =
var(X)/n), we have that

P(|X̄ − E[X]| ≥ δ) ≤ var(X̄)
δ2

= 1
n

var(X)
δ2

→ 0 as n → ∞

Thus, P(|X̄ − E[X]| ≥ δ) → 0 as n → ∞ which implies that X̄
p−→ E[X].

One thing that is worth briefly mentioning is that, in the proof, we (implicity) used the slightly
stronger condition that E[X2] < ∞ (so that var(X) exists). The weak law of large numbers actually
holds when only the first moment exists (as stated in the theorem) though the proof is more technical
in this case. If you are interested in this case, then you can check the textbook.

So far, we have talked about three properties of estimators: bias, sampling variance, and
consistency. I don’t think you will get sampling variance confused with consistency, but it is worth
being clear about what the differences are between unbiasedness and consistency. First, bias is a
finite sample property while consistency is a large sample property. For example, our results on
the unbiasedness of X̄ for E[X] did not depend on the number of observations (n could be equal
to 1 or 5 or 1000). Consistency, on the other hand, is a property of an estimator given that one
has a large sample. Along these lines, if you know that an estimator is unbiased, given a particular
sample and therefore a particular estimate, the estimate could still, in principle, be far from the
target population parameter. On the other hand, a consistent estimator will be close to the target
population parameter given a large enough sample. Second, unbiasedness involves the expected
value of an estimator where the expectation is in the repeated sampling thought experiment that we
have previously considered where one repeatedly draws random samples of size n and re-estimates θ̂

with each new sample. On the other hand, consistency is a property of having one large sample.
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Example: Along the lines of the discussion above, I think it is helpful to have some examples
of simple estimators and whether they are unbiased and/or consistent. Below, we’ll consider
four estimators of E[X].

(1) X̄. This is unbiased (we have shown before that E[X̄] = E[X]) and consistent (this
follows immediately from the weak law of large numbers).

(2) µ̂1 = X1 (i.e., this is the estimator that we have talked about before that just uses
the first observation). This is unbiased because E[X1] = E[X], but it is not consistent
because, even if you have a large sample, this estimator just throws away all observations
except the first one.

(3) µ̂λ = λX̄ for some constant λ > 0. This is biased, unless λ = 1, because E[λX̄] = λE[X].
It is also not consistent because λX̄

p−→ λE[X] ̸= E[X] unless λ = 1.

(4) µ̂c = X̄ + c
n for a constant c. This is biased because E[X̄ + c

n ] = E[X] + c
n ≠ E[X], but

it is consistent because X̄ + c
n

p−→ E[X] + 0 = E[X] which holds because c/n → 0 as
n → ∞ because c is constant.

Although some of these examples are obviously strange/poor ways to estimate E[X] (par-
ticularly (2) and (4)), they do show that its possible for an estimator to be both, either, or
neither unbiased and consistent.

A couple of last things to point out. First, note that we stated the weak law of numbers for Xi,
but it immediately applies to functions of random variables. That is, supposing that Xi are iid and
E|g(X)| < ∞, then 1

n

∑n
i=1 g(Xi)

p−→ E[g(X)]. This immediately implies that the class of analogue
estimators are consistent. Finally, for the weak law of large numbers, the weak law of large numbers
held under the conditions that Xi are iid and that E|X| < ∞. There exist other versions of the
law of large numbers that can hold under certain violations of iid sampling. I am not planning on
covering these in any detail, but it is worth noting that they exist and this can be relevant under
alternative sampling schemes. The condition about the first moment of X existing is a “regularity
condition” — that is, it is not really something that you can test in a particular application, but it
should not be considered a strong assumption and one can reasonably expect that the first moment
of the vast majority of variables in economics will exist.

Continuous Mapping Theorem

PSE 7.10
The weak law of large numbers provides a direct way to show that sample averages are consistent

for population means. We’ll often want to consider more complicated estimators, particularly, the
class of plug-in estimators; i.e., for the case where we are interested in β = h(θ), θ is a population
mean such as E[X], and where we estimate β by β̂ = h(θ̂). Next, we’ll consider a main tool for
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establishing consistency of more complicated functionals than just sample averages.

Definition. A function h(x) is continuous at x = c if for all ϵ > 0 there exists a δ > 0 such that
||x − c|| ≤ δ implies that ||h(x) − h(c)|| ≤ ϵ

This definition probably corresponds to your intuition of what it means for a function to be
continuous. For values of x that are very close to c, then h(x) should be close to h(c). It may also
be helpful think about a discontinuous function and how it would violate this sort of condition.

Continuous Mapping Theorem: If Zn
p−→ c and h(·) is continuous at c, then h(Zn) p−→ h(c).

Proof: For some ϵ > 0, since h(x) is continuous at c it means that there exists a δ > 0 such that
||x − c|| ≤ δ =⇒ ||h(x) − h(c)|| ≤ ϵ. Taking x = Zn, this implies that

P
(
||h(Zn) − h(c)|| ≤ ϵ

)
≥ P

(
||Zn − c|| ≤ δ)

→ 1 as n → ∞

where this last line holds because Zn
p−→ c. Thus, P

(
||h(Zn) − h(c)|| ≤ ϵ

)
→ 1 as n → ∞ which

implies that h(Zn) p−→ h(c). Also note that the direction of the inequality in the first line holds
because, if ||Zn − c|| ≤ δ, then it must be the case that ||h(Zn) − h(c)|| ≤ ϵ. A longer explanation is
provided in the box below.

Side-Comment: Here is a longer explanation of the direction of the inequality in the proof
of the continuous mapping theorem. First, note that we can write

P
(

||Zn − c|| ≤ δ
)

= P
(

||Zn − c|| ≤ δ, ||h(Zn) − h(c)|| ≤ ϵ
)

+ P
(

||Zn − c|| ≤ δ, ||h(Zn) − h(c)|| > ϵ
)

︸ ︷︷ ︸
=0 because h continuous

(1)

Similarly, notice that

P
(

||h(Zn) − h(c)|| ≤ ϵ
)

= P
(

||h(Zn) − h(c)|| ≤ ϵ, ||Zn − c|| ≤ δ
)

+ P
(

||h(Zn) − h(c)|| ≤ ϵ, ||Zn − c|| > δ
)

= P
(

||Zn − c|| ≤ δ
)

+ P
(

||h(Zn) − h(c)|| ≤ ϵ, ||Zn − c|| > δ
)

≥ P
(

||Zn − c|| ≤ δ
)

where the second line holds by plugging in from Equation 1 above, and the inequality holds
because both the probabilities in the previous line are positive.

Here are some important examples of the continuous mapping theorem. If Zn
p−→ c and for some

constant a, then

• Zn + a
p−→ c + a
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• aZn
p−→ ac

• Z2
n

p−→ c2

To conclude, let’s use the continuous mapping theorem to establish the consistency of the class
of plugin estimators.

Theorem: If Xi are iid, E||g(X)|| < ∞ and h(u) is continuous at u = θ = E[g(X)], then for

β = h(θ), θ̂ = 1
n

n∑
i=1

g(Xi), and β̂ = h(θ̂), β̂
p−→ β

This result holds immediately by the continuous mapping theorem and weak law of large numbers.
In particular, the weak law of large numbers implies that θ̂

p−→ θ, and then the continuous mapping
theorem implies (due to h being continuous at θ) that h(θ̂) p−→ h(θ) which is equivalent to β̂

p−→ β.
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