
Random Variables

PSE 2.1-2.3
It will often be convenient to have a numerical representation of random outcomes. This is the

idea of a random variable — in fact, throughout the rest of the semester, the “fundamental object”
that we’ll be working with are random variables.

A formal definition of a random variable is that it is a function from the sample space S to
the real numbers R. We’ll typically denote random variables by capital letters such as X and Y .
Based on the definition above, for some s ∈ S, we can write X = X(s) (i.e., the random variable is
a function of an element of the sample space) though we will typically drop the explicit dependence
on s.

Sometimes the random outcomes are already numeric (e.g., the outcome of rolling a die); other
times, we will make some (typically simple) conversion from outcomes to numeric values. For
example, for flipping a coin, S = {H,T}, which is not numeric, but it might be natural to define a
random variable as:

X =

1 if H

0 if T

in other words, we define X to be equal to 1 if a heads is flipped and X to be equal to 0 if a tails is
flipped. Let’s do a non-trivial example next.

Example: Let X = the number of heads in 3 coin flips. Here S = {HHH,HHT,HTH, ...} and
X = X(s), so, for example, X({HHH}) = 3 (i.e., there are three heads flipped when you flip
HHH).

We can also define probabilities for random variables. Let us do this formally for now (though
we’ll typically simplify the notation once we get used to this): P(X = x) = P({s ∈ S : X(s) = x}).
In words: this is the probability of outcomes in the sample space such that X(s) takes the value x
(as a side-comment: we will typically use lowercase letters like x to denote particular values that a
random variable could take).

This all may seem unduly technical and perhaps somewhat tedious, but I think it is helpful
to briefly relate this to the previous example of flipping three coins. In that case, P(X = 3) =
P({HHH}) = 1/8 (as all combinations of flips are equally likely and there are 8 possible combina-
tions). But P(X = 2) = P({HHT,HTH, THH}) = 3/8 (as these are all combinations of flips that
result in exactly two heads).

Next, we’ll start to study the properties of random variables.
The support of a random variable X is the set of possible values that it can take. We will use

the notation X for the support of the random variable X.
It will be helpful to distinguish between discrete random variables and continuous random

variables. A set X is said to be discrete if it has a finite or countably infinite number of elements.
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A formal definition of a discrete random variable is one such that there exists a discrete set X such
that P(X ∈ X ) = 1. For example, the support of a roll of a die is discrete, X = {1, 2, 3, 4, 5, 6}.

The distribution of a random variable

PSE 2.3, 2.7-2.8
Random variables have distributions. What this means is that, although random variables are

(well. . . ) random, that isn’t as strong as saying that all possible outcomes are equally likely. For
example, in our example of flipping three coins, although X (the number of heads) is random, not all
values of X are equally likely. Intuitively, you can think of the distribution of a random variable as
containing the information about how likely different outcomes are. There are two main ways to fully
summarize the distribution of a random variable. We will start with the cumulative distribution
function (cdf) and then move to the probability density function and probability mass
function.

Definition. The cumulative distribution function of X is the function FX(x) := P(X ≤ x) (where
":=" indicates "is defined as").

Note that we could more formally define FX(x) = P({s ∈ S : X(s) ≤ x}), but we are moving
towards the simpler and more common notation used above. Next, notice that FX(x) is a function
from R to the unit interval [0, 1], that is FX(x) is defined for all x ∈ R and FX(x) is always between
zero and one. The following properties can be proven to hold for any random variable X:

• FX(x) is a weakly increasing function; that is FX(x′) ≥ FX(x) if x′ > x

• limx↓−∞ FX(x) = 0

• limx↑∞ FX(x) = 1

• FX(x) is right-continuous, i.e. FX(x) = limε↓0 FX(x+ ε)

As a side-comment, when the context is clear, we often denote a cdf as F(x) rather than FX(x)
(the subscript indicates which particular random variable’s cdf we are writing). However, when we
have multiple random variables like X and Y , we may need the notation FX(x) and FY (y) to be
clear about which variable we are referring to.

Here is an example, it is the cdf of a six-sided die:
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CDF of the number on a die

A few things to notice: first, the open/closed dots at e.g. x = 1 indicate the F(1) is equal to 1/6,
and not 0 (although it is equal to 0 for x arbitrarily close but to the left of 1). We see from this
graph why cdfs are right-continuous but not necessarily left-continuous. Second, at each point in its
support {1, 2, 3, 4, 5, 6}, the cdf for the die jumps by P (X = x), or 1/6. “Jumps” are typical features
of cdfs of discrete random variables (though, in other cases, (e.g., a person’s years of education), the
jumps would be unlikely to be the same size). When X is a discrete random variable, its cdf ends
up looking like a staircase: flat everywhere except at each x in its support, where it “jumps” up by
an amount P(X = x).

The cdf provides all information about the distribution of a random variable. And, in particular,
from the cdf, we can derive any feature of the distribution of a random variable that we would like
to know. An example along this line is that, given that we know the cdf of a random variable X,
we can recover the probability that X would take a value in a particular range as in the following
proposition.

Proposition: For any numbers a and b such that b ≥ a, P(a < X ≤ b) = F(b)− F (a), (note: the
distinction between < and ≤ can matter especially when X is discrete).

Proof: First, notice that

P(a < X ≤ b) = 1− P(X ≤ a or X > b)

Next, because the sets {x ∈ R : x ≤ a} and {x ∈ R : x > b} are disjoint, we have that
P(X ≤ a or X > b) = P(X ≤ a) + P(X > b). Thus:

P(a < X ≤ b) = 1−
(
P(X ≤ a) + P(X > b)

)
= P(X ≤ b)− P(X ≤ a) = F(b)− F(a)

where the second equality used that P(X ≤ b) = 1− P(X > b). This completes the proof.

Earlier, we briefly defined discrete random variables. Let’s formally define discrete and continuous
random variables in terms of cdfs now.
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Definition. A random variable X is continuous if FX(x) is a continuous function of x. X is
discrete if FX(x) is a step-function of x.

It is worth briefly mentioning that not all random variables are either exactly continuous or
discrete; and this is especially true in economics. One example is a person’s earnings (for example,
a non-trivial fraction of people have exactly 0 earnings though is arguably otherwise continuous).

Probability mass and density functions

Next, we’ll consider alternative ways to fully describe the distribution of a random variable; these
will be more convenient in some cases and can sometimes be more intuitive. For this part, we’ll
provide separate treatments for discrete and continuous random variables.

Case 1: Discrete random variables and the probability mass function

Definition. The probability mass function (pmf) of a discrete random variable X is the
function π(x) = P(X = x)

This is a very natural way to describe the distribution of a discrete random variable. Like the
cdf, it provides a complete summary of the distribution of a random variable. And, in particular,
given the cdf we can recover the pmf, and vice versa.

Let’s do that now. First, a little additional notation. For a discrete random variable, we can
express the pmf alternatively as a sequence, rather than a function. Label the points in the support
of X as {x1, x2, x3, . . . }, in increasing order so that x1 < x2 < x3 . . .. Let xj denote the jth value in
this sequence. For any j, let πj = π(xj) = P(X = xj).

• Obtaining the pmf from the cdf: For a given support point xj : πj = F(xj) − F(xj−1), and
π(x) = 0 otherwise. In words, this is the height of the “jump” as you move from xj−1 to xj .

• Obtaining the cdf from the pmf: F(x) =
∑

j:xj≤x
πj . In words, this just adds up the pmf for all

values less than or equal to x.

A useful thing to note about pmfs (and one that follows from the previous expression), is that,
since limx→∞ F (x) = 1, we must have that ∑j πj = 1; that is, probability mass functions sum to
one when the sum is taken across all support points j.

Case 2: Continuous random variables and the probability density function

The pmf above is, in my view, the way that is natural for people to think about the distribution
of a random variables. And, although it works great for discrete random variables, defining a
similar notion for continuous random variables is trickier. The reason for this is that, if X really is
continuous, then P(X = x) = 0 for any particular value x; that is, the probability that X takes
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exactly the value x is equal to 0. To deal with this complication, we’ll instead define the probability
density function:

Definition. The probability density function (pdf) of a continuous random variable X is
given by fX(x) = d

dxFX(x).

As a side-comment, we are using the slightly stronger requirement for a continuous random
variable here that its cdf is differentiable (recall that for a function to be differentiable, it must be
continuous; thus, the cdf of a continuous random variable must be continuous, lacking any jumps
like those that characterize the cdf of a discrete random variable, but it does not necessarily have to
be differentiable). However, we’ll ignore this complication here.

Like the cdf (both continuous and discrete random variables) and the pmf (for discrete random
variables), the pdf fully describes the distribution of a random variable. The above definition of the
pdf describes how to convert from a cdf to a pdf for a continuous random variable. The definition
also suggests how to recover the cdf from the pdf. In particular,

FX(x) =
∫ x

−∞
fX(t) dt

In fact, this is sometimes taken as the definition of the pdf. The two statements are equivalent
due to the fundamental theorem of calculus (recall: the fundamental theorem of calculus is what
connects the operations of differentiation and integration). Moreover, it is worth mentioning the
similarities between converting between pmfs and cdfs; notice that, essentially, we are just replacing
integrals and summations, and deriviates and finite differences.

It immediately follows that the probability that X lies in any interval [a, b] can be obtained by
integrating over the density function:

P(a ≤ X ≤ b) =
∫ b

a
f(x) dx

Intuitively, this gives us the area under the curve f(x) between points a and b, as depicted below.
Note that

∫ b
a f(x) dx = F(b)− F(a), because the cdf is the anti-derivative of the pdf.

a b

f
(x
)

P (X ∈ [a, b])

x

Probability density function f(x)

a b
0

F (a)

F (b)

1

P (X ∈ [a, b])

x

Cumulative distribution function F (x)
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In the figure, the left panel depicts an example of the pdf f(x) of a random variable X. The
probability that a ≤ X ≤ b is given by the area under the f(x) curve between x = a and x = b.
P(a ≤ X ≤ b) is also equal to F(b)− F(a), the difference in the cdf of X evaluated at x = b and at
x = a, as depicted in the right panel.

The above result is also useful for interpreting the “shape” of a plot of the pdf. Recall that, for
a continuous random variable, P(X = x) = 0 for a continuous random variable; rather f(x) can
be interpreted as telling us the probability that X is close to x, in the following sense. Consider a
point x and some small ε > 0. Recall the definition of f(x) as the derivative of F (x):

f(x) = d

dx
F(x) = lim

ε→0

F(x+ ε)− F(x)
ε

= lim
ε→0

P(x ≤ X ≤ x+ ε)
ε

Thus f(x) is limit of the ratio of the probability that X lies in a small interval that begins at x, and
the width ε of that interval. Thus, the pdf will tend to be larger for values of x that are “relatively
more common” and the pdf will be smaller for values of x that are “relatively less common”. This
intuition is similar to that of the pmf for discrete random variables.

Additional Properties of pmfs:

1.
∫∞
−∞ f(x)dx = 1. In words: pdfs integrate to 1. This holds because

∫∞
−∞ f(x)dx = F(∞) −

F(−∞) = 1− 0 = 1. This property is analogous to pmfs summing up to 1.

2. f(x) is positive everywhere; that is f(x) ≥ 0 for all x. This holds because FX(x) is increasing
and fX(x) is its derivative. This property is analogous to pmfs being positive.

Expected value

PSE 2.5, 2.13, 2.16-2.17
While cdfs, pdfs, and pmfs fully describe the distribution of a random variable, they can be

complicated to report (especially in cases that we’ll be interested in soon where there are multiple
random variables). An alternative summary of the distribution of a random variable is its expectation.
The expectation of a random variable is its average value and is denoted by E[X]. The expected
value is a measure of the central tendency of a random variable (other measures of central tendency
are the median and mode, but we will stick to the expectations mainly). Unlike cdfs, pdfs, and pmfs,
the expected value is not a full summary of the distribution of a random variable, but the tradeoff
here is that it is a single number (and hence easier to report / comprehend). The expectation is also
arguably the most important single summary measure of a distribution (that is, if you could only
have one number to summarize the distribution of a random variable, most people would choose to
know its expectation (i.e., mean)).

To motivate how E[X] will be defined, think of task of computing the average of a list of numbers.
For example, the average of the numbers 1, 2, 2, and 4 is (1 + 2 + 2 + 4)/4 = 2. Notice that the
number 2 occurred twice in the series, so we added 2 to the sum two times. We could thus have
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written the averaging calculation as 1
4(1 · 1 + 2 · 2 + 4 · 1), where each number is multiplied by the

number of times it occurs in the list. The general formula could be written

average of a list of numbers =
∑
j

(jth distinct number )·# times jth distinct number occurs in the list
length of the list︸ ︷︷ ︸

wj

where notice that “weight” wj on the jth distinct number sums to one over all j, i.e. ∑j wj = 1.
The definition of E[X] for a discrete random variable is exactly analogous to this formula, where

we average over the values x that X can take, and use as “weights” the probabilities P(X = x):

E[X] =
∑
x∈X

x · π(x)

where π(x) = P(X = x) is the pmf and recall that the π(x) sum to one.
When X is continuous, the expectation is defined by replacing the sum with an integral and the

pmf with the pdf; that is:

E[X] =
∫ ∞
−∞

x fX(x) dx

When working with expectations of random variables, we have to be somewhat careful to make
sure that the expectation actually exists, i.e., that it is finite. An expectation, E[X], is said to
exist if E|X| <∞ (where | · | is absolute value). For the most part, it is reasonable to think that
expectations should exist, though there are some cases where an expectation may not exist; these
would arise in cases where the pdf does not “go to zero” fast enough (which amounts to extremely
large values of X being common enough that the mean may not be finite). A classic example is when
X follows a Cauchy distribution, which has a pdf rather like a normal distribution but with “fatter”
tails. Another example with of a discrete random variable that does not have a finite expectation is
provided in PSE 2.6.
Example (Rolling a die): Note that, in this case,

fX(x) =


1
6 if x = 1, 2, 3, 4, 5, 6

0 otherwise

Then,

E[X] =
6∑
j=1

jfX(j) =
6∑
j=1

j
(1

6
)

= 3.5

Example (Exponential random variable): Suppose X follows an exponential distribution with
parameter λ, written X ∼ exp(λ); in other words, X is continuously distributed with fX(x) =
1
λ exp(−x/λ) for 0 ≤ x < ∞ and λ > 0 (you can verify that this is a valid pdf, but we’ll just
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calculate the expectation here). Then,

E[X] =
∫
X
xfX(x) dx

=
∫ ∞

0
x

1
λ

exp(−x/λ) dx

We will use integration by parts here; i.e.,
∫
u dv = uv −

∫
v du. In our case, we will set u = x and

dv = 1
λ exp(−x/λ) dx and, thus, du = dx and v = − exp(−x/λ). Then,

E[X] = −x exp(−x/λ)
∣∣∣∞
0

+
∫ ∞

0
exp(−x/λ) dx

= lim
x→∞

− x

exp(x/λ) + 0− λ exp(−x/λ)
∣∣∣∞
0

= lim
x→∞

−1
1
λ exp(x/λ)︸ ︷︷ ︸

=0

−λ · 0 + λ = λ

where, the third equality uses L’Hopital’s rule. Thus, when X follows an exponential distribution,
its mean is equal to λ.

Here are two practice questions:

• Consider a Bernoulli random variable X which is one that takes a value 1 with probability p
and 0 with probability 1− p. Find E[X].

• Consider a uniform[0, 1] random variable, that is a continuous random variable with density
f(x) = x for all 0 ≤ x ≤ 1, and f(x) = 0 everywhere else. Find E[X].

A key property of the expectation operator that is very useful is that it is linear. It’s actually
“linear” in a few distinct senses, but for now we’ll mention one version of linearity of expectations:
for two constants a and b, E[a + bX] = a + bE[X]. This holds for both discrete and continuous
random variables (and even more general random variables), but we’ll provide the proof for the case
where X is continuous — it basically follows from properties of integrals.

Proof:

E[a+ bX] =
∫
X

(a+ bx)fX(x) dx

=
∫
X
afX(x) dx+

∫
X
bxfX(x) dx

= a

∫
X
fX(x) dx︸ ︷︷ ︸

=1

+b
∫
X
xfX(x) dx︸ ︷︷ ︸
=E[X]

= a+ bE[X]
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This is a very useful property and essentially says that you can move constants outside of
expectations.

Besides the mean, probably the next most useful feature of the distribution of a random variable
is its variance. The variance of a random variable is a measure of its “spread”, and it is defined
as var(X) := E[(X − E[X])2]. You can think of this as the average “distance” between X and its
expectation; in particular, taking the difference between two numbers and squaring it is one of the
most common measures of distance between them and we will use this frequently.

Practice: Use the linearity of the expectation operator to prove the following (very useful)
alternative expression for the variance: var(X) = E[X2]− (E[X])2.

The variance of a random variable shows up naturally in many expressions in statistics. However,
it is somewhat difficult to interpret as it is “squared units” — that is, if X is a person’s income in
dollars, then its variance is in dollars squared, which is likely to be unfamiliar and hard to interpret.
Therefore, it is fairly common to instead report the standard deviation of a random variable
which is defined as s.d.(X) =

√
var(X).

A useful property of variance is the following

var(a+ bX) = b2var(X)

This property says that the variance does not change due to additive shifts, and that constants can
come out of the variance but ought to be squared first.

Proof:

var(a+ bX) = E
[(

(a+ bX)− E[a+ bX]
)2]

= E
[(
b(X − E[X])

)2]
= E[b2(X − E[X])2]

= b2E[(X − E[X])2]

= b2var(X)

where the first equality comes from the definition of variance, the second equality cancels a and
rearranges, the third equality squares the entire inside term, the fourth equality pulls the constant
b2 outside of the expectation, and the last equality holds from the definition of variance.

In some cases, expectations of other functions of X could be of interest. The mth moment of
X is defined as E[Xm]. The mth central moment of X is defined as E[(X − E[X])m].
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Some useful inequalities

PSE 2.18-2.19 and 7.4
Next, I want to briefly mention Jensen’s inequality, which is useful for showing a number of

results that will be useful for us later in the semester. Recall that a function g is said to be convex
if for any λ ∈ [0, 1] and for all x and y, g(λx+ (1−λ)y) ≤ λg(x) + (1−λ)g(y). Similarly, a function
g is said to be concave if g(λx + (1 − λ)y) ≥ λg(x) + (1 − λ)g(y). Intuitively, convex functions
are “cup” shaped ∪; examples include g(x) = x2 and g(x) = exp(x). On the other hand, concave
functions are “cap” shaped ∩; examples include g(x) = x1/2 and g(x) = log(x).

Jensen’s Inequality. For any random variable X, if g(x) is a convex function, then g(E[X]) ≤
E[g(X)]. If g(x) is a concave function, then g(E[X]) ≥ E[g(X)].

There is a proof of Jensen’s inequality in Theorem 2.9 in the textbook. It is not too complicated,
but I am going to skip the proof and instead just explain the intuition for the case where g is convex.
g(E[X]) amounts to evaluating the function at the average value of X (a point “in the middle” of
the possible values of X); while E[g(X)] amounts to computing g(x) at all values of X and then
averaging. Because the function is convex, evaluating g(x) at a middle point tends to be smaller
than averaging the function (with weights given by the value of the pdf) across all possible values of
X.

One useful implication of Jensen’s inequality is that |E[X]| ≤ E|X|. This holds because |x| is a
convex function and then by applying Jensen’s inequality. The textbook calls this the expectation
inequality.

Another useful implication of Jensen’s inequality is Lyapunov’s inequality. This says that,
for any random variable X and any 0 < r ≤ p,

(
E|X|r

)1/r ≤ (E|X|p)1/p. Just to be clear on the
notation: for example, E|X|r := E[|X|r] rather than E[|X|]r. (and, if you want, you can add some
extra brackets to make the notation more clear)
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Proof: Take g(x) = xp/r which is a convex function for x > 0 because p ≥ r. Let Y = |X|r. Then,

g(E[Y ]) ≤ E[g(Y )]

⇐⇒
(
E
[
|X|r

]) p
r ≤ E

[(
|X|r

) p
r

]
⇐⇒

(
E
[
|X|r

]) p
r ≤ E

[(
|X|p

)]
⇐⇒

(
E
[
|X|r

]) 1
r ≤ E

[(
|X|r

)] 1
p

where the first line holds by Jensen’s inequality, the second line holds by the definitions of g and Y ,
the third line holds by canceling r and 1/r on the RHS of the inequality, and the last line holds by
raising both sides of the inequality on the right hand side to the 1/p power.

An implication of Lyapunov’s inequality is that, if we know that a higher order moment exists
(say, E[X2]), it implies that lower order moments also exist (say, E[X]). To see this, notice that, for
0 < r ≤ p,

E|X|r =
((
E|X|r

)1/r)r
≤
((
E|X|p

)1/p)r
=
(
E|X|p

)r/p
≤ E|X|p ≤ ∞

where the first inequality comes from Lyapunov’s inequality, the second inequality holds because
r/p ≤ 1, and the last inequality holds when E[Xp] exists.

The next inequalities are Markov’s inequality and Chebyshev’s inequality. These will be useful
in proving the law of large numbers later in the semester.

Markov’s Inequality. Suppose X is a non-negative random variable, then for any a > 0,
P(X ≥ a) ≤ E[X]

a .

Proof:

E[X] =
∫ ∞

0
xfX(x) dx

=
∫ a

0
xfX(x) dx+

∫ ∞
a

xfX(x) dx

≥
∫ ∞
a

xfX(x) dx

≥ a
∫ ∞
a

fX(x) dx

= a(1− FX(a))

11



where the first equality holds because X is non-negative, the second equality holds by splitting
the integral into two parts, the next inequality holds because (by construction) both integrals are
positive from the previous line, the next inequality holds because the integration region is from a

to ∞ and x ≥ a in that region, and the last equality holds by the previously discussed connection
between pdfs and cdfs. Recalling that P(X > a) = 1− FX(a) and rearranging terms completes the
proof.

Chebyshev’s Inequality. For any random variable X and any δ > 0, P(|X −E[X]| ≥ δ) ≤ var(Y )
δ2 .

Proof: Let Y = (X − E[X])2. Then, Markov’s inequality implies that

P(Y ≥ a) ≤ E[Y ]
a

Taking a = δ2, we have that

P
(
(X − E[X])2 ≥ δ2) ≤ E[(X − E[X])2]

δ2

⇐⇒ P(|X − E[X]| ≥ δ) ≤ var(X)
δ2

where the last line uses the definition of variance.

Moment generating functions

PSE 2.23, 2.25
To conclude this section, let’s mention one more way to fully describe the distribution of a

random variable, the moment generating function (mgf). The mgf of a random variable X is
defined as MX(t) = E[exp(tX)].

Properties of moment generating functions

1. If two random variables have the same mgf for all t in an interval around 0, then they follow
the same distribution

2. The kth moment of X is equal to the kth derivative (w.r.t. t) of its mgf evaluated at t = 0,
that is, E[Xk] = dk

dtk
MX(t)

∣∣∣
t=0

.
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In order to see the second property, notice that

d

dt
MX(t) = d

dt
E[exp(tX)]

= d

dt

∫
exp(tx)fX(x) dx

=
∫

d

dt
exp(tx)fX(x) dx

=
∫
x exp(tx)fX(x) dx

If you evaluate, this at t = 0, you get
∫
xfX(x) dx = E[X]. Similarly, notice that

d2

dt2
MX(t) = d

dt

( d
dt
MX(t)

)
=
∫
x
d

dt
exp(tx)fX(x) dx

=
∫
x2 exp(tx)fX(x) dx

Again, evaluating this at t = 0, you get
∫
x2fX(x) = E[X2]. You can keep going along these lines

for higher order derivatives of the mgf.
mgf’s may not exist for for all random variables, so it is common to instead consider the

characteristic function E[exp(itX)] where i =
√
−1. The characteristic function always exists,

but for simplicity, (whenever mgfs come up) we’ll stick to cases where it exists this semester.

Example: income and education in the U.S.

To conclude this set of notes, let’s run through some of the above topics using an actual example
where the random variables are income (a continuous random variable) and education (a discrete
random variable) of people in the United States. For this section, I’ll use data from the U.S. Census
Bureau from 2019; in practice, this is actually a sample (though its a fairly large one) rather than
the actual population, but we’ll pretend that its the full population for now.

# load useful packages

library(haven)

library(dplyr)

library(ggplot2)

# load data

load("us_data.RData")

# plot pmf of education

ggplot(data=us_data, aes(x=educ, y=..density..)) +
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geom_histogram(binwidth=1) +

xlab("Years of Education") +

ylab("pmf") +

theme_bw()
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Figure 1: pmf of U.S. education

There are some things that are perhaps worth pointing out here. The most common amount
of education in the U.S. appears to be exactly 12 years — corresponding to graduating from high
school; about 32% of the population has that level of education. The next most common number
of years of education is 16 — corresponding to graduating from college; about 24% of individuals
have this level of education. Other relatively common values of education are 13 years (14% of
individuals) and 18 (13% of individuals). About 1% of individuals report 0 years of education. It’s
not clear to me whether or not that is actually true or reflects some individuals mis-reporting their
education. Next, we’ll make a plot of the cdf of education.

ggplot(data=us_data, aes(x=educ)) +

stat_ecdf() +

xlab("Years of education") +

ylab("cdf") +

theme_bw()

You can see that the cdf is increasing in the years of education. And there are big “jumps” in
the cdf at values of years of education that are common such as 12 and 16.
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Figure 2: cdf of U.S. educ

Next, let’s switch to yearly income. The cdf is plotted in the next figure.

ggplot(data=us_data, aes(x=incwage)) +

stat_ecdf() +

xlim(c(0,200000)) +

xlab("Wage Income") +

ylab("cdf") +

theme_bw()

From the figure, we can see that about 24% of working individuals in the U.S. earn $20,000 or
less per year, 61% of working individuals earn $50,000 or less, and 88% earn $100,000 or less. Next,
we’ll plot the pdf.

dens <- density(us_data$incwage, bw=5000, from=0, to=200000)

plot_df <- data.frame(incwage=dens$x, dens=dens$y)

ggplot(data=plot_df, aes(x=incwage,y=dens)) +

geom_line() +

geom_ribbon(data=subset(plot_df, incwage>=50000 & incwage<=100000),

aes(ymax=dens),

ymin=0,
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Figure 3: cdf of U.S. wage income

fill="red",

alpha=.5) +

geom_ribbon(data=subset(plot_df, incwage>=150000),

aes(ymax=dens),

ymin=0,

fill="green",

alpha=.5) +

xlim(c(0,200000)) +

xlab("Wage Income") +

ylab("pdf") +

theme_bw()

From the figure, we can see that the most common values of yearly income are around $25-30,000
per year. Notice that this corresponds to the steepest part of the cdf from the previous figure. The
right tail of the distribution is also long. This means that, while incomes of $150,000+ are not
common, there are some individuals who have incomes that high.

Moreover, we can use the properties of pdfs/cdfs above to calculate some specific probabilities.
In particular, we can calculating probabilities by calculating integrals (i.e., regions under the curve)
/ relating the pdf to the cdf. First, the red region above corresponds to the probability of a person’s
income being between $50,000 and $100,000. This is given by F (100, 000) − F (50000). We can
compute this in R using the ecdf function. In particular,
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Figure 4: pdf of U.S. wage income

incwage_cdf <- ecdf(us_data$incwage)

round(incwage_cdf(100000) - incwage_cdf(50000),3)

## [1] 0.27

The green region in the figure is the probability of a person’s income being above $150,000.
Using the above properties of cdfs, we can calculate it as 1− F (150000) which is

round(1-incwage_cdf(150000), 3)

## [1] 0.052

One might also be interested in calculating the mean, variance, and standard deviation of income
in the U.S. We can compute this by

round(mean(us_data$incwage),3)

## [1] 58605.75

round(var(us_data$incwage),3)

## [1] 4776264026
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round(sd(us_data$incwage),3)

## [1] 69110.52
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