
Generalized Method of Moments

These notes provide an introduction to Generalized Method of Moments (GMM) estimation. GMM
is a very popular estimation method. It was invented (at least to some extent) by economists in the
early 1980s. I think that the reason for this is because economists often like only partially specifying
the model (e.g., most of our arguments this semester have relied on moment conditions and asymp-
totic arguments rather than making distributional assumptions). In fact, many of the approaches
that we have talked about this semester are actually special cases of GMM (see discussion below).
GMM is discussed in Chapter 13 of the textbook.

GMM is basically an approach to estimate some population parameter, 𝜃, when it is known that
some moments that depend on the parameter are equal to 0. For example, 𝔼[𝑔(𝑋, 𝑌 ; 𝜃)] = 0 where
𝑔 returns an 𝑙 × 1 vector and 𝜃 is a 𝑘 × 1 vector. The case we will emphasize in these notes is
when 𝑙 > 𝑘, so that there are more moment conditions than there are parameters to estimate. In
principle, this should be useful; more moment conditions is generally better than fewer moment
conditions. But it does create some additional issues that we will at least need to think through.
It will also give us some opportunities.

I am mainly going to teach GMM with respect to a couple of examples: over-identified instrumen-
tal variables and difference-in-differences with multiple periods and variation in treatment timing.
That said, GMM is a general framework for estimating parameters when there are more moment
conditions than there are parameters to estimate.

Moment Conditions

H. 12.1-12.6
To start with, let me provide a brief introduction to instrumental variables (you will see much

more about this next semester). For both linear projection and linear CEF models, we have typically
written 𝑌 = 𝑋′𝛽 + 𝑒 and have that

𝛽 = argmin
𝑏

𝔼[(𝑌 − 𝑋′𝑏)2]

which implied that 𝛽 = 𝔼[𝑋𝑋′]−1𝔼[𝑋𝑌 ]. Plugging in the model for 𝑌 into this expression, it also
follows that 𝔼[𝑋𝑒] = 0.

It is also possible to “invert” this type of argument. A traditional way to motivate linear regression
is to suppose that a researcher is interested in a “structural” model

𝑌 = 𝑋′𝛽 + 𝑒

where we allow for the possibility that 𝔼[𝑋𝑒] ≠ 0. In this case, you would say that 𝑋 (or at least
some component(s) of 𝑋) is endogenous.

You might ask: How can this happen? Isn’t 𝔼[𝑋𝑒] = 0 a property of linear projection? If you are
asking these questions, you have a good point; indeed, pretty much without loss of generality, you
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can consider the linear projection of 𝑌 on 𝑋, and it will be the case that 𝑋 will be uncorrelated
with the projection error.

However, please recall our example of omitted variable bias earlier in the semester. In that case,
we were interested in 𝛽 from the following projection model (or CEF model):

𝑌 = 𝑋′𝛽 + 𝑊 ′𝛾 + 𝑢

For example, here you might be willing to interpret 𝛽1 as the causal effect of 𝑋1 on 𝑌 if you could
control for 𝑋2, … , 𝑋𝑘 and 𝑊 ; or, alternatively, you might think of 𝛽 as being “deep, structural”
parameters that you would like to estimate and then take to some other setting. In this case, and
if 𝑊 were not observed, you would have 𝔼[𝑋𝑢] = 0, but this might not be so useful for recovering
𝛽. And, in particular, if you put everything that you don’t observe in the error term (define
𝑒 = 𝑊 ′𝛾 + 𝑢), you would have that,

𝔼[𝑋𝑒] = 𝔼[𝑋𝑊 ′]𝛾 + 𝔼[𝑋𝑢] = 𝔼[𝑋𝑊 ′]𝛾

where the last term is not, in general, equal to 0, unless 𝑋 and 𝑊 are uncorrelated (or 𝛾 = 0 so
that there is no effect of 𝑊 on the outcome); see our previous discussion on omitted variable bias
for more details.

Given this discussion, let’s continue to think of 𝑌 = 𝑋′𝛽 + 𝑒 as a structural model. Let’s first
think through the case where 𝔼[𝑋𝑒] = 0. This is going to be a simple case, and in this case, you
would say that 𝑋 is exogenous. 𝔼[𝑋𝑒] = 0 is an example of a moment equation. To say more
clearly what we mean by this, notice that you can equivalently write 𝔼[𝑋(𝑌 −𝑋′𝛽)] = 0 by plugging
in for 𝑒. This is 𝑘 × 1 vector of moment conditions. Since we are interested in the 𝑘 × 1 vector of
parameters 𝛽, it seems reasonable to hope that we can solve the system of equations to recover 𝛽.
And, in fact, under some conditions, we can,

0 = 𝔼[𝑋𝑌 ] − 𝔼[𝑋𝑋′]𝛽 ⟹ 𝛽 = 𝔼[𝑋𝑋′]−1𝔼[𝑋𝑌 ]

where the main requirement is a familiar one: that 𝔼[𝑋𝑋′] is invertible. This is a familiar expression
for 𝛽 and suggests estimating 𝛽 from the regression of 𝑌 on 𝑋 (as we have done many times before).

Now, let’s move back to the more challenging case where 𝔼[𝑋𝑒] ≠ 0. A leading case here would
be that 𝑋 includes one endogenous variable, say 𝑋1, while the other variables are exogenous. To
give an example, suppose that 𝑋1 is years of education, 𝑋2 is age, we include an intercept as 𝑋3,
and we are worried about the omitted variable 𝑊 that is a person’s “ability”. In this case, it might
be reasonable to think that 𝔼[𝑋1𝑒] ≠ 0 (because years of education is correlated with ability), but
𝔼[𝑋2𝑒] = 𝔼[𝑋3𝑒] = 0. You can immediately see that we don’t have enough information from these
moment conditions to recover the parameters. Here there are three parameters, 𝛽1, 𝛽2, and 𝛽3, but
we only have two moment equations. This is like trying to solve for three unknowns in a system of
two equations. This is sometimes referred to as being under-identified or that it fails the order
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condition (where the order condition is that, at a minimum, there need to be as many moment
equations as there are parameters to recover). More generally, following the textbook’s notation,
let’s partition 𝑋 into 𝑋1 and 𝑋2 into the regressors which are endogenous (𝑋1) and the regressors
which are exogenous (𝑋2), and where these are 𝑘1 × 1 and 𝑘2 × 1 vectors.

One possibility is to find another 𝑘 × 1 random vector that satisfies 𝔼[𝑍𝑒] = 0, even if it doesn’t
hold that 𝔼[𝑋𝑒] = 0. As above, it is helpful to partition 𝑍 into 𝑍1 and 𝑍2 where 𝑍2 = 𝑋2 includes
the exogenous variables in 𝑋 and 𝑍1 are variables that are not in 𝑋. 𝑍1 is referred to as an
instrumental variable. This is an extremely important concept and one that will be covered
extensively next semester. In general, it’s challenging to find convincing instruments, but, for now,
let’s just suppose that we have an instrument. If 𝑍 is 𝑘 × 1 and 𝔼[𝑍𝑒] = 0, this suggests that we
could at least hope to recover 𝛽. In this case, we have that

0 = 𝔼[𝑍𝑒] = 𝔼[𝑍(𝑌 − 𝑋′𝛽)] = 𝔼[𝑍𝑌 ] − 𝔼[𝑍𝑋′]𝛽 ⟹ 𝛽 = 𝔼[𝑍𝑋′]−1𝔼[𝑍𝑌 ]

This implies that, if we can invert 𝔼[𝑍𝑋′], then we can recover 𝛽. Note that 𝔼[𝑍𝑋′] will be
invertible if rank(𝔼[𝑍𝑋′]) = 𝑘 (i.e., that 𝔼[𝑍𝑋′] has full rank). Therefore, this condition is often
referred to as the rank condition or relevance condition. The intuition for this condition is
that the instrument needs to be correlated with the endogenous regressor. This is the condition
that prevents you from using random numbers as instruments. By construction, random numbers
with satisfy the exogeneity condition, 𝔼[𝑍𝑒] = 0, but they fail the rank condition.

Side-Comment: I am not going to cover it here, but it would be good practice to think
through how to estimate 𝛽 using the above expression and to be able to show that it is
consistent and asymptotically normal.

Overidentification

H. 13.2-13.4, 13.5-13.10
Now, let’s suppose that 𝑍 is 𝑙 × 1 where 𝑙 > 𝑘. In other words, we have more instruments than

endogenous regressors. This seems like good news, but notice that the previous strategy does not
work any more. In particular, 𝔼[𝑍𝑋′] is now an 𝑙 × 𝑘 matrix. Since 𝑙 > 𝑘, 𝔼[𝑍𝑋′] is not square
and, therefore, not invertible.

What should we do here? One idea is to just throw away some of the “extra” 𝑍’s. In practice,
this could work, but it is an unsatisfactory solution as we would potentially throw away useful
information if we proceeded this way. We still have that

𝔼[𝑍𝑋′]𝛽 = 𝔼[𝑍𝑌 ]
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Even in this is true, however, in the over-identified case, in general, is not possible to find a ̂𝛽 such
that

0 = 1
𝑛

𝑛
∑
𝑖=1

𝑍𝑖𝑌𝑖 − 1
𝑛

𝑛
∑
𝑖=1

𝑍𝑖𝑋′
𝑖 ̂𝛽

holds exactly. It is a bit little tricky to understand this because, if 𝔼[𝑍𝑒] = 0, then it would be the
case that 0 = 𝔼[𝑍𝑌 ]−𝔼[𝑍𝑋′]𝛽, but, even if that’s true, because we have to estimate the population
expectations, in the sample, we generally won’t be able to find an exact solution. It is also worth
pointing out that this is an example of a moment condition, as we discussed above.

Instead, an alternative idea is to set ̂𝛽 to be the value of 𝑏 that makes 1
𝑛

𝑛
∑
𝑖=1

𝑍𝑖𝑌𝑖 − 1
𝑛

𝑛
∑
𝑖=1

𝑍𝑖𝑋′
𝑖𝑏

as close to 0 as possible. This is the idea of GMM. Re-writing this in terms of “data matrices”, we
are going to try to choose a value 𝑏 to make Z′Y − Z′X𝑏 as close to 0 (and, therefore, as close to
satisfying the moment condition) as we can.

A natural way to do this is to minimizing the (weighted) Euclidean distance between the 𝑙 × 1
vector above and 0; that is,

̂𝛽 = argmin
𝑏

(Z′Y − Z′X𝑏)
′
Ŵ(Z′Y − Z′X𝑏)

where Ŵ is an 𝑙 × 𝑙 “weighting matrix” that allows us to put more weight on some moments than
others (we will return to this issue below).

The above discussion is for the case where we want to estimate the parameters of linear model
where (i) there is endogeneity and (ii) there is over-identification in the sense of that 𝑙 > 𝑘. But
these arguments apply more generally. Let’s briefly return to our more generic setup discussed
above where 0 = 𝔼[𝑔(𝑌 , 𝑋; 𝜃)]. In this case, the GMM estimator of 𝜃 is

̂𝜃 = argmin
𝜗

( 1
𝑛

𝑛
∑
𝑖=1

𝑔(𝑌𝑖, 𝑋𝑖; 𝜗))
′

Ŵ ( 1
𝑛

𝑛
∑
𝑖=1

𝑔(𝑌𝑖, 𝑋𝑖; 𝜗))

which minimizes the (weighted) Euclidean distance between the sample analogue of the moment
condition and 0.

Let’s return to previous case (which is arguably the leading case…and is the one emphasized in
the textbook) of an over-identified linear model. One additional line of algebra shows that

̂𝛽𝐺𝑀𝑀 = argmin
𝑏

Y′ZŴZ′𝑌 − 2𝑏′X′ZŴZ′Y + 𝑏′X′ZŴZ′X𝑏

where I’ve put a “GMM” subscript on ̂𝛽𝐺𝑀𝑀 to indicate that this is the GMM estimator of 𝛽
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(there are other possible estimators here). The first order condition is given by

0 = −X′ZŴZ′Y + X′ZŴZ′X ̂𝛽𝐺𝑀𝑀

⟹ ̂𝛽𝐺𝑀𝑀 = (X′ZŴZ′X)−1X′ZŴZ′Y

This expression is rather long, but supposing that Ŵ
𝑝
−→ W, you can use very similar arguments

to the ones that we have used before to show that ̂𝛽𝐺𝑀𝑀
𝑝
−→ 𝛽 and that

√𝑛( ̂𝛽𝐺𝑀𝑀 − 𝛽) 𝑑−→ 𝒩(0, V)

under the sort of conditions that you would expect (see Assumption 12.2 in the textbook) and
where

V ∶= (𝔼[𝑋𝑍′]W𝔼[𝑍𝑋′])−1𝔼[𝑋𝑍′]W�W𝔼[𝑍𝑋′](𝔼[𝑋𝑍′]W𝔼[𝑍𝑋′])−1

There are a few things left to discuss. First, this discussion begs the question of how we should
actually choose the weighting matrix W in practice. Let’s talk intuition first. Generally, we would
probably like to put more weight on the “precise” moments and less weight on the “imprecise”
moments. We also would probably like to take into account the correlation between different
moments, and, in general, put less weight on highly correlated moments (as they contain similar
information to each other). This information on precision of moments and correlation of moments is
contained in the variance of the moment conditions: ΩΩΩ ∶= var(𝑍𝑒) = 𝔼[𝑍𝑍′𝑒2]. And, in particular,
the arguments above suggest weighting by the inverse of the variance matrix; that is, ΩΩΩ−1 =
𝔼[𝑍𝑍′𝑒2]−1.

This intuition turns out to be correct. I will not provide full details here, but it turns out the
setting W = ΩΩΩ−1 results in what is called efficient GMM. You can check the arguments in Section
13.8 (in particular, Theorem 13.5 and Exercise 13.4). These arguments are not that complicated,
and you will be able to understand them. I am just omitting them because we are running out of
time for the semester. In addition, under this choice for the weighting matrix, the expression for

̂𝛽𝐺𝑀𝑀 changes to

̂𝛽𝑜
𝐺𝑀𝑀 = (X′ZΩ̂ΩΩ

−1
Z′X)−1X′ZΩ̂ΩΩ

−1
Z′Y

where I have included an “o” subscript to indicate that this is the efficient (or “optimal”) GMM,
and the expression for the asymptotic variance simplifies to

V0 = (𝔼[𝑋𝑍′]ΩΩΩ−1𝔼[𝑍𝑋′])−1

Notice that, the expression for ̂𝛽𝑜
𝐺𝑀𝑀 requires an estimate of ΩΩΩ. This is typically done by starting

out with a consistent, but possible inefficient estimator of 𝛽. For example, the most common choice
would be to set Ŵ = (Z′Z)−1. Making this choice actually results in the two-stage least squares
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estimator (TSLS) ̂𝛽2𝑠𝑙𝑠 (which you may be familiar with from other classes, and will be discussed
in more detail next semester). Setting Ŵ = I𝑙 also works. Given some preliminary estimate of 𝛽,

that we’ll call ̂𝛽, you can compute ̂𝑒𝑖 = 𝑌𝑖 − 𝑋′
𝑖 ̂𝛽, and then estimate Ω̂ΩΩ = 1

𝑛
𝑛

∑
𝑖=1

𝑍𝑖𝑍′
𝑖 ̂𝑒2

𝑖 and then

plug this to estimate ̂𝛽𝑜
𝐺𝑀𝑀 .

Over-identification Tests

H. 12.31, 13.21
In most applications with over-identification, it is common to report an over-identification test.

I’ll continue to think about the case of a linear model with endogeneity that we have been discussing
above, but similar arguments to the ones below apply to the more general moment conditions that
we have also mentioned above. In Section 12.31, the textbook provides an example where 𝑘 = 1
and 𝑙 = 2 that gives a rough intuition of over-identification tests. In this setting, there are two
moment conditions: 0 = 𝔼[𝑍1𝑒] = 𝔼[𝑍1(𝑌 − 𝑋1𝛽)] and 0 = 𝔼[𝑍2𝑒] = 𝔼[𝑍2(𝑌 − 𝑋1𝛽)]. It is possible
to recover 𝛽 if you use either moment condition. But, suppose that you use the first moment
condition to recover 𝛽, then, as long as the second moment condition is actually true, you should
be able to plug in the recovered 𝛽 and the moment condition still hold. If not, then that would
indicate that at least one of the moment conditions does not hold. We will formalize this argument
below and account for issues relating to sampling variance that make the arguments above not hold
exactly (though they should still be close to holding) once we move from the population to the
sample.

Define 𝐽(𝑏) = 𝑛( 1
𝑛Z′Y − 1

𝑛Z′X𝑏)
′
Ω̂ΩΩ

−1
( 1

𝑛Z′Y − 1
𝑛Z′X𝑏) which is the GMM criteria function

that we minimized above to estimate 𝛽 (here, we use Ω̂ΩΩ as the we weighting matrix and we also
multiply by 𝑛; both of these matter for the arguments in this section). We will test ℍ0 ∶ 𝔼[𝑍𝑒] = 0
vs ℍ1 ∶ 𝔼[𝑍𝑒] ≠ 0, and we will consider the test statistic 𝐽( ̂𝛽𝑜

𝐺𝑀𝑀). Let’s consider it’s behavior
under ℍ0. First, notice that,

𝐽( ̂𝛽𝑜
𝐺𝑀𝑀) = 𝑛 ( 1

𝑛Z′Y − 1
𝑛Z′X ̂𝛽𝑜

𝐺𝑀𝑀)
′
Ω̂ΩΩ

−1/2
Ω̂ΩΩ

1/2
Ω̂ΩΩ

−1
Ω̂ΩΩ

1/2
⏟⏟⏟⏟⏟

=I𝑙

Ω̂ΩΩ
−1/2

( 1
𝑛Z′Y − 1

𝑛Z′X ̂𝛽𝑜
𝐺𝑀𝑀)

= 𝑛 [Ω̂ΩΩ
−1/2

( 1
𝑛Z′Y − 1

𝑛Z′X ̂𝛽𝑜
𝐺𝑀𝑀)]

′
Ω̂ΩΩ

−1/2
( 1

𝑛Z′Y − 1
𝑛Z′X ̂𝛽𝑜

𝐺𝑀𝑀)
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Next, notice that,

Ω̂ΩΩ
−1/2

( 1
𝑛Z′Y − 1

𝑛Z′X ̂𝛽) = Ω̂ΩΩ
−1/2

( 1
𝑛Z′e − 1

𝑛Z′X( ̂𝛽𝑜
𝐺𝑀𝑀 − 𝛽))

= Ω̂ΩΩ
−1/2

( 1
𝑛Z′e − 1

𝑛Z′X( 1
𝑛X′ZΩ̂ΩΩ

−1 1
𝑛Z′X)

−1 1
𝑛X′ZΩ̂ΩΩ

−1 1
𝑛Z′e)

= (I − Ω̂ΩΩ
−1/2 1

𝑛Z′X( 1
𝑛X′ZΩ̂ΩΩ

−1 1
𝑛Z′X)

−1 1
𝑛X′ZΩ̂ΩΩ

−1
Ω̂ΩΩ

1/2
)Ω̂ΩΩ

−1/2 1
𝑛Z′e

= (I − Ω̂ΩΩ
−1/2 1

𝑛Z′X( 1
𝑛X′ZΩ̂ΩΩ

−1 1
𝑛Z′X)

−1 1
𝑛X′ZΩ̂ΩΩ

−1/2
)Ω̂ΩΩ

−1/2 1
𝑛Z′e

where the first equality plugs in Y = X𝛽 + e, the second equality plugs in for ̂𝛽𝑜
𝐺𝑀𝑀 − 𝛽 (which is

straightforward to derive given the earlier expression for ̂𝛽𝑜
𝐺𝑀𝑀), the third equality is a little tricky

as it treats the first term and second term asymmetrically (the first one just factors everything to
the right while the second term keeps Ω̂ΩΩ

−1/2
on the left while multiplying by I = Ω̂ΩΩ

1/2
Ω̂ΩΩ

−1/2
on the

right). The last equality follows immediately.
If we define R ∶= ΩΩΩ−1/2𝔼[𝑍𝑋′], and noticing that Ω̂ΩΩ

−1/2 1
𝑛Z′X

𝑝
−→ R, and that Ω̂ΩΩ

−1/2 1√𝑛Z′e
𝑑−→

𝑢 ∼ 𝒩(0, I𝑙) (to see this, note that 1√𝑛Z′e
𝑑−→ 𝒩(0,ΩΩΩ)), then it follows that

√𝑛Ω̂ΩΩ
−1/2

( 1
𝑛Z′Y − 1

𝑛Z′X ̂𝛽) = (I − R(R′R)−1R′)Ω̂ΩΩ
−1/2 1

𝑛Z′e + 𝑜𝑝(1)
𝑑−→ (I − R(R′R)−1R′)𝑢

This implies that, under ℍ0,

𝐽( ̂𝛽𝑜
𝐺𝑀𝑀) 𝑑−→ 𝑢′(I − R(R′R)−1R′)

′
(I − R(R′R)−1R′)𝑢

= 𝑢′(I − R(R′R)−1R′)𝑢 ∼ 𝜒2
𝑙−𝑘

where the equality holds because (I − R(R′R)−1R′) is idempotent and symmetric. That this

converges to 𝜒2
𝑙−𝑘 holds because 𝑢 ∼ 𝒩(0, I𝑙) and because tr(I − R(R′R)−1R′) = 𝑙 − 𝑘. This

establishes the behavior of 𝐽( ̂𝛽𝑜
𝐺𝑀𝑀) under ℍ0.

On the other hand, under ℍ1,

1
𝑛Z′Y − 1

𝑛Z′X ̂𝛽𝑜
𝐺𝑀𝑀 ↛𝑝 0

and, therefore, 𝐽( ̂𝛽𝑜
𝐺𝑀𝑀) → ∞ under ℍ1.

Panel Data Examples

We have motivated GMM using the traditional IV approach, but having more moment conditions
than parameters to estimate can occur in other settings as well. In this section, we will consider es-
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timating group-time average treatment effects in a difference-in-differences framework using GMM.
The discussion in this section loosely follows Marcus and Sant’Anna (JAERE, 2021).

I am going to consider the smallest scale, non-trivial version of this setting. In particular, let’s
suppose that there are two time periods, 𝑡 = 1 and 𝑡 = 2. Let’s also suppose that there are three
groups, 𝑔 = 2, 𝑔 = 3, and the never-treated group (𝑈 = 1) — this is somewhat awkward as we are
saying that we somehow know that some units will become treated in period 3 while others will
remain untreated even though we don’t actually observe outcomes in period 3. That said, let’s just
go with it, and you can think of this as a device to keep the problem in this section simple.

Under parallel trends, there are two non-redundant moment conditions here:

𝔼[Δ𝑌2|𝐺 = 2] − 𝔼[Δ𝑌2|𝑈 = 1] − 𝐴𝑇 𝑇 (2, 2) = 0
𝔼[Δ𝑌2|𝐺 = 3] − 𝔼[Δ𝑌2|𝑈 = 1] = 0

The first one says that 𝐴𝑇 𝑇 (2, 2) is equal to mean path of outcomes for group 2 relative to the
mean path of outcomes for the never-treated group. The second one says that the mean path of
outcomes for group 3 is the same as the mean path of outcomes for the untreated group. In this
setting, the moment condition 𝔼[Δ𝑌2|𝐺 = 2]−𝔼[Δ𝑌2|𝐺 = 3]−𝐴𝑇 𝑇 (2, 2) = 0 is redundant because
it is linear combination of the two above moment conditions. For estimation, it will be helpful to
re-write these conditional expectations as unconditional expectations; that is,

𝔼 [(𝟙{𝐺 = 2}
𝑝2

− 𝑈
𝑝𝑈

) Δ𝑌2] − 𝐴𝑇 𝑇 (2, 2) = 0

𝔼 [(𝟙{𝐺 = 3}
𝑝3

− 𝑈
𝑝𝑈

) Δ𝑌2] = 0

(for simplicity, we are going to treat the 𝑝𝑔 terms as being known). This fits into the GMM frame-
work as there are two moment conditions, but there is only one parameter to estimate, 𝐴𝑇 𝑇 (2, 2).

Let’s define

𝑌𝑖 = ⎛⎜
⎝

(𝟙{𝐺𝑖=2}
𝑝2

− 𝑈𝑖
𝑝𝑈

) Δ𝑌𝑖2

(𝟙{𝐺𝑖=3}
𝑝3

− 𝑈𝑖
𝑝𝑈

) Δ𝑌𝑖2

⎞⎟
⎠

and Y = ⎛⎜⎜⎜
⎝

𝑌 ′
1
⋮

𝑌 ′
𝑛

⎞⎟⎟⎟
⎠

and 1 = ⎛⎜⎜⎜
⎝

1
⋮
1

⎞⎟⎟⎟
⎠

and R = (1
0)

so that Y is a 𝑛×2 matrix, 1 is an 𝑛×1 vector of ones, and R is a 2×1 vector (in bigger settings, you
would need to make this a more complicated matrix). Given this notation, our moment conditions
amount to

𝔼[𝑌 − R𝛼] = 0
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and notice that we can write down the sample analogue of the moment conditions as

1
𝑛Y′1 − R𝛼 ≈ 0

where we define 𝛼 = 𝐴𝑇 𝑇 (2, 2) (to keep the notation more concise below, and this is a scalar here),
and the ≈ is because it is unlikely that this equation is exactly equal to 0.

Given some weighting matrix Ŵ, we can estimate 𝐴𝑇 𝑇 (2, 2) by

̂𝛼 = argmin
𝑎

( 1
𝑛Y′1 − R𝑎)

′
Ŵ ( 1

𝑛Y′1 − R𝑎)

= argmin
𝑎

1
𝑛2 1′YŴY′1 − 2

𝑛𝑎′R′ŴY′1 + 𝑎′R′ŴR𝑎

Taking the first order condition (and slightly re-arranging terms), we have that

R′Ŵ 1
𝑛Y′1 = R′ŴR ̂𝛼

⟹ ̂𝛼 = (R′ŴR)
−1

R′Ŵ 1
𝑛Y′1

If you take Ŵ = I2 (which is a natural choice…at least to start with), notice that R′ŴR = R′R = 1.
And,

R′Ŵ 1
𝑛Y′1 = 1

𝑛
𝑛

∑
𝑖=1

(𝟙{𝐺𝑖 = 2}
𝑝2

− 𝑈𝑖
𝑝𝑈

) Δ𝑌𝑖2

i.e., due to the nature of R and Ŵ being the identity matrix, we estimate 𝐴𝑇 𝑇 (2, 2) as the average
path of outcomes for group 2 relative to the untreated group. It’s interesting that we get this
simplification (and perhaps surprising) — group 3 played no role here even though, under the
parallel trends assumption, it seems as though we could have used group 3 as the comparison
group. It turns out that the reason we are getting this result comes down to our choice of weighting
matrix.

Let’s now move to computing the efficient GMM estimator and see what happens. To do this,
we need to first compute an estimate of the variance of the moment conditions. Given the above
moment conditions, the population version of the variance is ΩΩΩ = 𝔼[(𝑌 − R𝛼)(𝑌 − R𝛼)′], and,
given our preliminary estimate ̂𝛼, we can estimate ΩΩΩ by

Ω̂ΩΩ = 1
𝑛

𝑛
∑
𝑖=1

(𝑌𝑖 − R ̂𝛼)(𝑌𝑖 − R ̂𝛼)′ = 1
𝑛 ê′ê

where ê ∶= Y − 1 ⊗ ̂𝛼′R′ (which just subtracts ̂𝛼′R′ from each row of Y; “⊗” is the Kronecker
product which we have used a handful of times before. To be clear, this is just the data matrix
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version of calculating 𝑌𝑖 − R ̂𝛼 for all 𝑛 units.). Then, we can compute

̂𝛼𝑜
𝑔𝑚𝑚 = (R′Ω̂ΩΩ

−1
R)

−1
R′Ω̂ΩΩ

−1 1
𝑛Y′1

This is the efficient GMM estimate of 𝐴𝑇 𝑇 (2, 2). In this case, 𝐴𝑇 𝑇 (2, 2) combines information
from both 𝐺 = 3 and 𝑈 = 1 for the path of outcomes absent the treatment.

Finally, in order to be able to conduct inference, let’s derive the asymptotic distribution of√𝑛( ̂𝛼 − 𝛼). I’ll focus on the case with a general weighting matrix Ŵ
𝑝
−→ W, but the arguments

immediately specialize to the efficient GMM case discussed above. Given the expression for ̂𝛼 above,
we can re-write it as

̂𝛼 = (R′ŴR)
−1

R′Ŵ 1
𝑛

𝑛
∑
𝑖=1

𝑌𝑖

= (R′ŴR)
−1

R′Ŵ 1
𝑛

𝑛
∑
𝑖=1

(R𝛼 + 𝑒𝑖)

= 𝛼 + (R′ŴR)
−1

R′Ŵ 1
𝑛

𝑛
∑
𝑖=1

𝑒𝑖

where (as is implicit in the discussion above), we define 𝑒𝑖 ∶= 𝑌𝑖 − R𝛼. This implies that

√𝑛( ̂𝛼 − 𝛼) = (R′ŴR)
−1

R′Ŵ 1√𝑛
𝑛

∑
𝑖=1

𝑒𝑖

= (R′WR)
−1

R′W 1√𝑛
𝑛

∑
𝑖=1

𝑒𝑖 + 𝑜𝑝(1)

= 𝑑−→ 𝒩(0, V)

where we define (as above) ΩΩΩ = 𝔼[𝑒𝑒′] = 𝔼[(𝑌 − R𝛼)(𝑌 − R𝛼)′], and

V = (R′WR)
−1

R′WΩΩΩW(R′WR)
−1

In the case where we choose the optimal weighting matrix, Ŵ = Ω̂ΩΩ
−1

, the asymptotic variance
matrix simplifies to

V0 = (R′ΩΩΩ−1R)
−1

and the natural way to estimate it is by

V̂0 = (R′Ω̂ΩΩ
−1

R)
−1

Earlier, we discussed estimating ΩΩΩ. In practice, I think that, for inference, you should re-compute
the residuals using ê ∶= Y − 1 ⊗ ̂𝛼𝑜′

𝑔𝑚𝑚R′ (relative to the previous discussion, here we use ̂𝛼𝑜
𝑔𝑚𝑚
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rather than the preliminary estimate ̂𝛼.). Given these re-computed residuals, we can estimate
Ω̂ΩΩ = 1

𝑛 ê′ê. Finally, given that we have an estimate of V0, we can compute our whole set of test
statistics, confidence intervals, etc. which we have done many times before.
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