
These notes come from Chapters 22 and 25 of the textbook and provide an introduction to
nonlinear models, particularly binary outcome models.

Binary Choice Models

H: 25.1, H 25.2
So far this semester, the examples that we have considered have all been for the case where the

outcome is continuous. Now, let’s consider the case where the outcome is binary; that is, 𝑌 ∈ {0, 1}.
Typically, in this case, one would be interested in either

• The response probability of 𝑌 conditional on 𝑋 = 𝑥, that is, P(𝑥) ∶= P(𝑌 = 1|𝑋 = 𝑥)

• The partial effect or marginal effect:

𝜕P(𝑥)
𝜕𝑥1

which is the the partial effect with respect to the first element of 𝑥. As we did earlier in the
semester, one could also consider partial effects of discrete and/or binary regressors. Notice that,
in general, the partial effect depends on the values of all the regressors. You could report this for
particular values of the regressors of interest; alternatively, you might want to aggregate this into
something lower-dimensional (and, therefore, easier to report).

• The average partial effect

𝔼 [𝜕P(𝑋)
𝜕𝑥1

]

The average partial effect, well, averages the partial effects across the distribution of the covariates.
This is a single number. The R package margins is useful for computing partial effects.

As earlier in the semester, one motivation for thinking about partial effects is that, under un-
confoundedness conditions, they correspond to causal effects — these arguments continue to go
through in this case.

Another thing that is worth pointing out: when 𝑌 is binary,

𝔼[𝑌 |𝑋 = 𝑥] = ∑
𝑦∈{0,1}

𝑦P(𝑌 = 𝑦|𝑋 = 𝑥)

= 0 × P(𝑌 = 0|𝑋 = 𝑥) + 1 × P(𝑌 = 1|𝑋 = 𝑥)
= P(𝑌 = 1|𝑋 = 𝑥)
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where the first equality holds from the definition of expectation when 𝑌 is discrete. This means
that the response probability is equal to the conditional expectation.

Models for the Response Probability

H: 25.3
One common way to estimate 𝑃(𝑥) is by imposing/assuming a linear probability model. That

is, P(𝑥) = 𝔼[𝑌 |𝑋 = 𝑥] = 𝑥′𝛽. One can estimate 𝛽 by just running a regression of 𝑌 on 𝑋. This
is exactly the same as we have done many times before (and just amounts to essentially ignoring
that 𝑌 is binary). This is quite common in applications.

One advantage of this approach is that it is very simple. In this case, unless there are interactions
and/or higher order terms, the partial effect of 𝑋1 is 𝛽1 which does not vary across different values
of the regressors.

A main drawback of this approach is that the linear probability model does not respect that
probabilities must be between 0 and 1. The textbook gives the example of the probability of being
married conditional on age. When this is estimated with CPS data, the estimated probability of
being married is increasing in age and greater than 1 for ages over 67 – which does not make any
sense. A related drawback is that the partial effects are constant (e.g., the partial effect of 𝑋1 is
equal to 𝛽1 regardless of the values of the other covariates). In many applications, this is unrealistic.
In the same application as above, it seems unlikely that the partial effect of age on marital status
is likely to be much different at 25 than at 65. And, just to be clear, this is a general “issue” here;
in most applications, you would think that partial effects are likely to be smaller at values of the
covariates where P(𝑥) is close to 0 or 1 than when P(𝑥) is, say, close to 0.5.

A next class of models are single-index models where one would impose/assume that P(𝑥) =
𝐺(𝑥′𝛽) where 𝐺 is called a link function and 𝑥′𝛽 is a linear index. The link function is chosen
to be a cdf so that 0 ≤ 𝐺(𝑢) ≤ 1 for all possible 𝑢. This means that P(𝑥) cannot be outside of
[0, 1].

In this case, the partial effect and average partial effect of 𝑋1 are given by

𝜕P(𝑥)
𝜕𝑥1

= 𝑔(𝑥′𝛽)𝛽1 and 𝐴𝑃𝐸1 = 𝔼[𝑔(𝑋′𝛽)𝛽1]

respectively and where the expression for the partial effect follows from the chain rule and where 𝑔
is the derivative of 𝐺. Notice that the partial effects depend on the covariates in this case.

The two most common single-index models are

• Probit — in this case, P(𝑥) = Φ(𝑥′𝛽) where Φ is the cdf of a standard normal random
variable, and 𝜕P(𝑥)

𝑥1
= 𝜙(𝑥′𝛽)𝛽1 where 𝜙 is the pdf of a standard normal random variable.

• Logit — in this case, P(𝑥) = Λ(𝑥′𝛽) where Λ(𝑢) = exp(𝑢)
1+exp(𝑢) which is the logistic cdf, and

𝜕P(𝑥)
𝑥1

= 𝜆(𝑥′𝛽) where 𝜆(𝑢) = exp(𝑢)
(1+exp(𝑢))2 .
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Maximum Likelihood Estimation

Maximum likelihood estimation is a major class of estimation strategies. In general, these involve
imposing/assuming parametric models that completely specify the (conditional) pdf of the data.
Often, maximum likelihood estimation involves relatively strong assumptions, but typically results
in efficient estimators. An example is the normal regression model that we skipped in chapter 5 of
the textbook.

The likelihood is the joint density of the observed data viewed as a function of the parameters.
The maximum likelihood estimator is the value of the parameter which maximizes the likelihood
function. The likelihood function is given by

𝐿𝑛( ̃𝜃) = 𝑓(𝑌1, … , 𝑌𝑛|𝑋1, … , 𝑋𝑛; ̃𝜃) =
𝑛

∏
𝑖=1

𝑓(𝑌𝑖|𝑋𝑖; ̃𝜃)

where the second equality holds under iid data. It is common to work with the log-likelihood
function which is just the log of the previous likelihood function and is given by

𝑙𝑛( ̃𝜃) = log(𝐿𝑛( ̃𝜃)) =
𝑛

∑
𝑖=1

log(𝑓(𝑌𝑖|𝑋𝑖; ̃𝜃))

For the notes below, I’ll focus on probit, but the arguments are very similar for logit. Because
𝑌 is binary note that its conditional pmf can be written as

𝑓(𝑦|𝑥) = P(𝑌 = 1|𝑋 = 𝑥)𝑦(1 − P(𝑌 = 1|𝑋 = 𝑥))(1−𝑦) for 𝑦 ∈ {0, 1}

This is just the pmf for a Bernoulli random variable — and, notice that, when 𝑦 = 1, 𝑓(1|𝑥) =
P(𝑌 = 1|𝑋 = 𝑥), and when 𝑦 = 0, 𝑓(0|𝑥) = 1 − P(𝑌 = 1|𝑋 = 𝑥). Now, plugging in the probit
model, we have that

𝑓(𝑦|𝑥; 𝑏) = Φ(𝑥′𝑏)𝑦(1 − Φ(𝑥′𝑏))(1−𝑦) for 𝑦 ∈ {0, 1}

Using this expression, we have that

̂𝛽 = argmax
𝑏

𝑙𝑛(𝑏)

= argmax
𝑏

𝑛
∑
𝑖=1

log (Φ(𝑋′
𝑖𝑏)𝑌𝑖(1 − Φ(𝑋′

𝑖𝑏))(1−𝑌𝑖))

= argmax
𝑏

𝑛
∑
𝑖=1

𝑌𝑖 log(Φ(𝑋′
𝑖𝑏)) + (1 − 𝑌𝑖) log(1 − Φ(𝑋′

𝑖𝑏))

In other words, we are aiming to estimate 𝛽 in the probit model by choosing the value of 𝑏 that
maximizes the likelihood of observing the data that we have conditional on that value of the
parameter.
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Unlike the regression estimators that we have talked about this semester, this is not a problem
that has an explicit solution. That said, this turns out to be an easy problem for the computer to
solve.

To estimate a probit model in R, you can run the following sort of code glm(Y~X,
family=binomial(link="probit")). If your professor asks you to write the code manually
for this, then you need to actually get the computer to maximize the above function. In this case,
a helpful function is the optim function.

For optimizing this kind of function (and conducting inference), it is often helpful to know the
vector of first derivatives of the log likelihood function (the “score”). For probit, these are given by

𝑆𝑛(𝑏) ∶= 𝜕𝑙𝑛(𝑏)
𝜕𝑏

=
𝑛

∑
𝑖=1

(𝑌𝑖
𝜙(𝑋′

𝑖𝑏)
Φ(𝑋′

𝑖𝑏)𝑋𝑖 − (1 − 𝑌𝑖)
𝜙(𝑋′

𝑖𝑏)
1 − Φ(𝑋′

𝑖𝑏)𝑋𝑖)

=
𝑛

∑
𝑖=1

(𝑌𝑖 − Φ(𝑋′
𝑖𝑏))𝜙(𝑋′

𝑖𝑏)
Φ(𝑋′

𝑖𝑏)(1 − Φ(𝑋′
𝑖𝑏)) 𝑋𝑖 (1)

M-estimators

H 22.1 - H 22.6
Next, we’d like to establish the limiting distribution of

√𝑛( ̂𝛽 − 𝛽) for probit. To do this, I am
going to follow the traditional approach (well, at least this is what it does in the book and what
my professor taught me in graduate school) of considering the more general class of M-estimators.
M-estimators are estimators that come from minimizing some function. So this class of functions
includes the least squares regression estimators that we have talked about extensively. Noting that
you can maximize a function by minimizing the negative of the function, the maximum likelihood
estimators we have been talking about above also fit into this class.

For this part, I am just going to sketch the argument showing why M-estimators are asymptoti-
cally normal. [As a side-comment, the textbook also seems to slightly change notation at this point.
I’m going to follow the discussion in the textbook below, but try to use notation similar to what
we have used throughout the semester (as well as bit less overall notation)].

̂𝜃 = argmin
̃𝜃∈Θ

𝑀𝑛( ̃𝜃)

where 𝑀𝑛( ̃𝜃) = 1
𝑛

𝑛
∑
𝑖=1

𝜌(𝑌𝑖, 𝑋𝑖, ̃𝜃)

where 𝑀𝑛( ̃𝜃) is called the objective function. For maximum likelihood estimation, 𝜌(𝑌𝑖, 𝑋𝑖, ̃𝜃) =
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− log 𝑓(𝑌𝑖|𝑋𝑖; ̃𝜃). Likewise, the population parameter 𝜃 solves

𝜃 = argmin
̃𝜃∈Θ

𝑀( ̃𝜃)

where 𝑀(𝜃) = 𝔼[𝜌(𝑌 , 𝑋, ̃𝜃)]

Following the textbook, define the following notation

𝜓(𝑌 , 𝑋, ̃𝜃) ∶= 𝜕𝜌(𝑌 , 𝑋, ̃𝜃)
𝜕 ̃𝜃

which is a 𝑘×1 vector (where 𝑘 is the dimension of 𝜃). The first order condition for ̂𝜃 that minimizes
𝑀𝑛( ̃𝜃) is

0 = 1
𝑛

𝑛
∑
𝑖=1

𝜓(𝑌𝑖, 𝑋𝑖, ̂𝜃)

This is just like solving for ̂𝛽 in the context of regression; however, here it would typically be the
case that we cannot come up with an explicit solution for ̂𝜃. From a mean value theorem type
of argument (similar to what we have used before in the context of the delta method) where ̄𝜃 is
between ̂𝜃 and 𝜃,

0 = 1√𝑛
𝑛

∑
𝑖=1

𝜓(𝑌𝑖, 𝑋𝑖, ̂𝜃) = 1√𝑛
𝑛

∑
𝑖=1

𝜓(𝑌𝑖, 𝑋𝑖, 𝜃) + ( 1
𝑛

𝑛
∑
𝑖=1

𝜕𝜓(𝑌𝑖, 𝑋𝑖, ̄𝜃)
𝜕 ̃𝜃′

) √𝑛( ̂𝜃 − 𝜃0)

where 𝜕𝜓(𝑌𝑖,𝑋𝑖, ̄𝜃)
𝜕 ̃𝜃′ is a 𝑘 × 𝑘 matrix. Re-arranging terms implies that

√𝑛( ̂𝜃 − 𝜃) = − ( 1
𝑛

𝑛
∑
𝑖=1

𝜕𝜓(𝑌𝑖, 𝑋𝑖, ̄𝜃)
𝜕 ̃𝜃′

)
−1

1√𝑛
𝑛

∑
𝑖=1

𝜓(𝑌𝑖, 𝑋𝑖, 𝜃)

= −Q−1 1√𝑛
𝑛

∑
𝑖=1

𝜓(𝑌𝑖, 𝑋𝑖, 𝜃) + 𝑜𝑝(1) (2)

where Q ∶= 𝔼 [𝜓(𝑌 ,𝑋,𝜃)
𝜕 ̃𝜃′ ]; to see the second equality, you can show that 1

𝑛
𝑛

∑
𝑖=1

𝜕𝜓(𝑌𝑖, 𝑋𝑖, ̄𝜃)
𝜕 ̃𝜃′

𝑝
−→ Q

(this is not surprising since ̄𝜃 is between ̂𝜃 and 𝜃, but there are some technical details omitted
here on uniform convergence of this term; these complications arise because it is an average of a
function (𝑌𝑖, 𝑋𝑖) and ̄𝜃). Next, since 𝜃 minimizes 𝑀( ̃𝜃) = 𝔼[𝜌( ̃𝜃)], the first order condition for this

minimization problem is 0 = 𝔼[𝜓(𝑌 , 𝑋, 𝜃)]. Thus, the 1√𝑛
𝑛

∑
𝑖=1

𝜓(𝑌𝑖, 𝑋𝑖, 𝜃) term in Equation 2 is a

sum of iid terms that have mean 0, and we can therefore apply the CLT. It converges to 𝑁(0,ΩΩΩ)
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where ΩΩΩ ∶= 𝔼[𝜓(𝑌 , 𝑋, 𝜃)𝜓(𝑌 , 𝑋, 𝜃)′]. Thus,

√𝑛( ̂𝜃 − 𝜃0) 𝑑−→ 𝑁(0, V)

where V = Q−1ΩΩΩQ−1 (note that the negative in front of Q in Equation 2 cancels in the expression
for the asymptotic variance).

Now, returning to probit, the previous results hold; we just need to figure out expressions for ΩΩΩ
and Q. Using essentially the same arguments as around Equation 1, it follows that

𝜓(𝑌 , 𝑋, 𝑏) = −(𝑌 − Φ(𝑋′𝑏))𝜙(𝑋′𝑏)
Φ(𝑋′𝑏)(1 − Φ(𝑋′𝑏)) 𝑋𝑖

where the negative sign arises because we are maximizing the likelihood (to fit into the theory of
M-estimation above, we minimize the negative of the likelihood function). Thus,

ΩΩΩ = 𝔼 [((𝑌 − Φ(𝑋′𝛽))𝜙(𝑋′𝛽)
Φ(𝑋′𝛽)(1 − Φ(𝑋′𝛽)) )

2
𝑋𝑋′]

= 𝔼 [(𝑌 − 2𝑌 Φ(𝑋′𝛽) + Φ(𝑋′𝛽)2)𝜙(𝑋′𝛽)2

Φ(𝑋′𝛽)2(1 − Φ(𝑋′𝛽))2 𝑋𝑋′]

= 𝔼 [(Φ(𝑋′𝛽) − Φ(𝑋′𝛽)2)𝜙(𝑋′𝛽)2

Φ(𝑋′𝛽)2(1 − Φ(𝑋′𝛽))2 𝑋𝑋′]

= 𝔼 [ 𝜙(𝑋′𝛽)2

Φ(𝑋′𝛽)(1 − Φ(𝑋′𝛽))𝑋𝑋′]

where the second equality holds mainly because 𝑌 = 𝑌 2 due to 𝑌 being binary, the third equality
by the law of iterated expectations (and then recalling that 𝔼[𝑌 |𝑋] = Φ(𝑋′𝛽)) and canceling terms,
the fourth equality by factoring and canceling in the numerator and denominator.

Next, for Q, you can show that

Q = 𝔼 [ 𝜙(𝑋′𝛽)2

Φ(𝑋′𝛽)(1 − Φ(𝑋′𝛽))𝑋𝑋′]

Although it seems like it would be quite tedious to calculate Q (because 𝜓(𝑌 , 𝑋, 𝑏) is highly
nonlinear and 𝑏 shows up in four places), it is very helpful to notice that the expected value of
most of the terms that arise from the derivative are equal to 0 which holds by the law of iterated
expectations and because 𝔼[𝑌 |𝑋] = Φ(𝑋′𝛽) (this means that the only derivative term that ends
up being non-zero is the first one in the numerator and that is where the expression for Q comes
from). Next, notice that Q = ΩΩΩ. Thus, V = (ΩΩΩ)−1ΩΩΩ(ΩΩΩ)−1 = ΩΩΩ−1 = 𝔼 [ 𝜙(𝑋′𝛽)2

Φ(𝑋′𝛽)(1−Φ(𝑋′𝛽))𝑋𝑋′]
−1

.
That Q = ΩΩΩ is actually a property of correctly specified maximum likelihood estimators; it is called
information matrix equality.
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To conduct inference, you can estimate ΩΩΩ by

Ω̂ΩΩ = 1
𝑛

𝑛
∑
𝑖=1

𝜙(𝑋′
𝑖 ̂𝛽)2

Φ(𝑋′
𝑖 ̂𝛽)(1 − Φ(𝑋′

𝑖 ̂𝛽))
𝑋𝑖𝑋′

𝑖

and use this to construct V̂ = Ω̂ΩΩ
−1

, and use this to get standard errors, t-statistics, confidence
intervals, Wald statistics, etc. in the usual way.
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