
These notes come from Chapter 10 of the textbook and provide an introduction to resampling
methods for conducting inference, particularly the bootstrap.

Resampling Methods

H: 10.1
Our approach to inference so far has been to establish the limiting distribution of some parameter

of interest; for example,
√𝑛( ̂𝜃 − 𝜃) 𝑑−→ 𝑁(0, V𝜃), and then to construct an estimate of V𝜃. Given

this estimate, we could construct a test statistic, for example a t-statistic for some ℍ0, or construct
a confidence interval, etc.

The idea of the resampling methods that we’ll study in this section are, essentially, to substitute
computational power for the (potentially complex) mathematical calculations that we have been
using before. Resampling methods are popular in many applications. For example, the bootstrap
is popular in quantile regression applications (which we’ll talk about if we have time this semester)
where (i) it is relatively complicated to figure out the asymptotic distribution and (ii) even after
you derive the asymptotic distribution, it is relatively hard to estimate it.

The book talks briefly about two resampling methods that I’ll just briefly mention here. The
jackknife is the distribution from 𝑛 leave-one-out estimators (e.g., taking turns estimating 𝜃 using
all observations except one). Sub-sampling is like the boostrap that we’ll talk about below except
that you draw subsamples of the original data (with less than 𝑛 observations) without replacement.

The Bootstrap Algorithm

H: 10.6
There are several variations of the bootstrap, but let’s start with the most common one, which

is typically called either the nonparametric bootstrap or the empirical bootstrap.
Step 1: Construct a bootstrap sample by making 𝑛 iid draws, with replacement, from the

original sample. We’ll denote particular draws by (𝑌 ∗
𝑖 , 𝑋∗

𝑖 ), and the entire bootstrap sample by
{𝑌 ∗

𝑖 , 𝑋∗
𝑖 }𝑛

𝑖=1.
Step 2: Construct the bootstrap estimate ̂𝜃∗ by applying whatever approach you originally used

to estimate ̂𝜃 to the bootstrap sample. For example, if you are interested in the linear projection
model, you would estimate ̂𝛽∗ by the linear regression of 𝑌 ∗

𝑖 on 𝑋∗
𝑖 .

Steps 1 and 2 give us an estimate from the distribution of estimates obtained by iid sampling
from the original data. However, the real usefulness of the bootstrap, is that (unlike our original
sample from the population), we can repeat this process a large number of times. In particular, let
𝐵 denote the number of bootstrap samples that we draw; then, for 𝑏 = 1, … , 𝐵, we can draw new
bootstrap samples and calculate ̂𝜃∗

𝑏, where the subscript indicates that it is the bootstrap estimate
from the 𝑏𝑡ℎ bootstrap sample.
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Other Types of Bootstrap Procedures

The nonparametric bootstrap procedure above is the most common one, but there are other varia-
tions that are worth mentioning.

The weighted bootstrap involves perturbing (i.e., causing it to vary) the objective function
for some particular estimation procedure. For example, if you were trying to estimate 𝔼[𝑌 ], the
bootstrap estimate would be given by

̂𝜇∗ = arg min
𝑚

1
𝑛

𝑛
∑
𝑖=1

𝑤𝑖(𝑌𝑖 − 𝑚)2

where 𝑤𝑖 are iid weights (in particular, they are weights that are independent of each other and
independent of the original data) that satisfy 𝔼[𝑤] = 1 and var(𝑤) = 1. A leading choice is to make
iid draws from an exponential distribution with mean 1 (in R, you can run rexp(n)). After solving
this, you would get

̂𝜇∗ = ( 1
𝑛

𝑛
∑
𝑖=1

𝑤𝑖)
−1

1
𝑛

𝑛
∑
𝑖=1

𝑤𝑖𝑌𝑖

Similarly, if you were to compute bootstrap estimates of 𝛽 from a regression, it would amount
to computing

̂𝛽∗ = arg min
𝑏

1
𝑛

𝑛
∑
𝑖=1

𝑤𝑖(𝑌𝑖 − 𝑋′
𝑖𝑏)2

If you solve this, you will get

̂𝛽∗ = ( 1
𝑛

𝑛
∑
𝑖=1

𝑤𝑖𝑋𝑖𝑋′
𝑖)

−1
1
𝑛

𝑛
∑
𝑖=1

𝑤𝑖𝑋𝑖𝑌𝑖

Side-Comment: The nonparametric bootstrap is actually quite related to the weighted
bootstrap. In fact, you can write, for example, a nonparametric bootstrap estimate of ̂𝛽∗ by

̂𝛽∗ = ( 1
𝑛

𝑛
∑
𝑖=1

𝑤𝑖𝑋𝑖𝑋′
𝑖)

−1
1
𝑛

𝑛
∑
𝑖=1

𝑤𝑖𝑋𝑖𝑌𝑖

which is the same expression as for the weighted bootstrap. In this case (𝑤1, 𝑤2, … , 𝑤𝑛) are
drawn from a multinomial distribution with parameter 𝑛 and probabilities (1/𝑛, 1/𝑛, … , 1/𝑛).
These weights have mean 1, but they are not independent (for example, if the weight on the
first observation is large, it implies that the weight on other units is more likely to be small).

Another common approach is the multiplier bootstrap (sometimes this is called the score

2



bootstrap). In this case, bootstrap draws are constructed by perturbing the “score”/“influence
function” (i.e., the part of the asymptotically linear representation of the estimator). For example,
if we go back to the regression setup, we would compute bootstrap estimates by

̂𝛽∗ = ̂𝛽 + ( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑋′
𝑖)

−1
1
𝑛

𝑛
∑
𝑖=1

𝑤𝑖𝑋𝑖 ̂𝑒𝑖

where 𝑤𝑖 are iid weights with 𝔼[𝑤] = 0 (note that this is different from the weighted bootstrap) and
var(𝑤) = 1. Common choices are (i) 𝑊 ∼ 𝑁(0, 1) or (ii) 𝑊 = 1 with probability 1/2 and 𝑊 = −1
with probability 1/2.

There are other variations of the bootstrap that we’ll not cover; if you are interested, H: 10.29
covers the wild bootstrap, which is another popular version of the bootstrap and is commonly used
in the context of nonparametric regression.

Bootstrap Variance and Standard Errors

H: 10.7
Once we have a large number of bootstrap estimates, we can estimate features of the bootstrap

distribution of ̂𝜃∗
𝑏. The bootstrap estimate of the asymptotic variance of ̂𝜃 is given by

V̂𝑏𝑜𝑜𝑡
𝜃 = 1

𝐵
𝐵

∑
𝑏=1

𝑛 ( ̂𝜃∗
𝑏 − ̄𝜃∗) ( ̂𝜃∗

𝑏 − ̄𝜃∗)
′

where

̄𝜃∗ = 1
𝐵

𝐵
∑
𝑏=1

̂𝜃∗
𝑏

When ̂𝜃 is a scalar, the bootstrap standard error is given by

ŝ.e.𝑏𝑜𝑜𝑡
̂𝜃 =

√V̂𝑏𝑜𝑜𝑡
̂𝜃√𝑛

As in the previous set of notes, it would be very common in applications to report ̂𝜃 and ŝ.e.𝑏𝑜𝑜𝑡
̂𝜃 .

Moreover, bootstrap standard errors can be used to construct confidence intervals; e.g.,

𝐶𝑛𝑏 = [ ̂𝜃 ± 1.96 ŝ.e.𝑏𝑜𝑜𝑡
̂𝜃 ]

where (I think) “nb” stands for “normal approximation bootstrap” (and comes from the notation
in the textbook).

As an additional comment, although one would typically choose 𝐵 to be a large number, it is still
finite. This means that all bootstrap statistics, e.g., V̂𝑏𝑜𝑜𝑡

𝜃 are estimates and therefore are random.
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In particular, this means that its value will change if you were to compute them more than once.
This is to be expected, though typically they should be “close” if you were to compute them more
than once.

The Bootstrap Distribution

H: 10.9
The remaining question that we should answer is: Why does the bootstrap work?
The book mainly talks about the nonparametric bootstrap. I strongly recommend reading H

10.9 which provides an explanation for the reason why the nonparametric bootstrap works. To
very briefly summarize these arguments: First, our inference procedures come down to learning
about the sampling distribution of our estimator, e.g., ̂𝜃. The validity of the bootstrap basically
comes down to, ̂𝐹 (the empirical cdf of the observed data) should be “close” to 𝐹 (the actual cdf
of (𝑌 , 𝑋)), and this approximation should get better for large 𝑛. The idea of the bootstrap is to
(i) sample from ̂𝐹 and then (ii) repeatedly simulate from this distribution. Given a large sample,
this should be “similar” to repeatedly sampling from the population.

Bootstrap Asymptotics

H: 10.12
I am going to focus on understanding why the bootstrap works for the weighted bootstrap, as I

think this is slightly easier to understand than the nonparametric bootstrap.
What we would like to show is something like that, at least asymptotically,

√𝑛( ̂𝜇∗− ̂𝜇) follows the
same limiting distribution as

√𝑛( ̂𝜇 − 𝜇) or that
√𝑛( ̂𝛽∗ − ̂𝛽) follows the same limiting distribution

as
√𝑛( ̂𝛽 − 𝛽). This would provide a justification for, say, repeatedly calculating

√𝑛( ̂𝛽∗ − ̂𝛽) (which
is feasible) and using its distribution to learn about the distribution of

√𝑛( ̂𝛽 − 𝛽).
To start with, an important conceptual issue worth emphasizing is that, when we construct

bootstrap estimates, the data is fixed; what is random are the weights 𝑤𝑖. Thus, we will be
interested in features of the distribution of bootstrap estimates conditional on the observed data.
I’ll follow the notation used in the textbook and denote expecations/variances conditional on the
observed data by 𝔼∗ and var∗. And, just to give an example, when we condition on the data,
𝔼∗[𝑤𝑖𝑌𝑖] = 𝔼[𝑤]𝑌𝑖 = 𝑌𝑖. In other words, (i) conditioning on the observed data, we treat 𝑌𝑖 as
a constant so that it can come out of the expectation, (ii) 𝑤𝑖 is independent of the observed
data and identically distributed with mean one which implies that 𝔼∗[𝑤𝑖] = 𝔼[𝑤𝑖] = 1. Similarly,
var∗(𝑤𝑖𝑌𝑖) = var(𝑤𝑖)𝑌 2

𝑖 = 𝑌 2
𝑖 .

There are bootstrap versions of all our key asymptotic tools: the law of large numbers, the central
limit theorem, the continuous mapping theorem, and the delta method. This often means that
establishing the validity of a bootstrap procedure is similar to establishing the limiting distribution
of the estimator. I am just going to heuristically explain the bootstrap version of the weak law of
large numbers and central limit theorem next.
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Bootstrap WLLN Let ̄𝑌 ∗ = 1
𝑛

𝑛
∑
𝑖=1

𝑤𝑖𝑌𝑖, and consider 𝑖𝑖𝑑 weights 𝑤 satisfying 𝔼[𝑤] = 1 and

var(𝑤) = 1. If 𝑌𝑖 are iid and 𝔼|𝑌 | < ∞, then ̄𝑌 ∗ 𝑝∗

−→ 𝔼[𝑌 ] where
𝑝∗

−→ denotes “convergence in
bootstrap probability”.

What is happening here is two things: first, given a large number of observations 1
𝑛

𝑛
∑
𝑖=1

𝑤𝑖𝑌𝑖

should be close to its mean (conditional on the data) of ̄𝑌 ; second ̄𝑌 should be close to 𝔼[𝑌 ].
Taken together, these suggest that, given a large enough sample, ̄𝑌 ∗ should be close to 𝔼[𝑌 ].

The proof of the bootstrap WLLN is very similar to the proof of the WLLN (see Theorem
10.2 in the textbook). The main difference is that, conditional on the observed data, 𝑤𝑖𝑌𝑖 are
independent but not identically distributed (as discussed above, 𝔼∗[𝑤𝑖𝑌𝑖] = 𝑌𝑖 and var∗(𝑤𝑖𝑌𝑖) = 𝑌 2

𝑖 ,
which implies that the conditional distribution of 𝑤𝑖𝑌𝑖 depends on 𝑌𝑖). That said, this is not too
challenging to deal with and arguments that mainly use Chebyshev’s inequality go through here.

Bootstrap CLT Consider iid weights 𝑤 that satisfy 𝔼[𝑤] = 1 and 𝑣𝑎𝑟(𝑤) = 1, if 𝑌𝑖 are iid,

𝔼||𝑌 ||2 < ∞, and ΣΣΣ ∶= var(𝑌 ) > 0, then
√𝑛 ( 1

𝑛
𝑛

∑
𝑖=1

𝑤𝑖(𝑌𝑖 − ̄𝑌 )) 𝑑∗
−→ 𝑁(0,ΣΣΣ) where

𝑑∗
−→ denotes

“convergence in bootstrap distribution”.

Notice that the bootstrap CLT centers at ̄𝑌 rather than 𝔼[𝑌 ]. I am not going to go into much
technical detail here, but let me sketch the argument for this result. At first glance, the result for
the bootstrap CLT may seem somewhat surprising especially because 𝔼∗[𝑤𝑖(𝑌𝑖 − ̄𝑌 )] = (𝑌𝑖 − ̄𝑌 )
which, in general, is not equal to 0 (and seems to suggest that we ought to be careful trying to

apply some type of CLT here). However, notice that 0 = 1
𝑛

𝑛
∑
𝑖=1

(𝑌𝑖 − ̄𝑌 ). This implies that

1√𝑛
𝑛

∑
𝑖=1

𝑤𝑖(𝑌𝑖 − ̄𝑌 ) = 1√𝑛
𝑛

∑
𝑖=1

𝑤𝑖(𝑌𝑖 − ̄𝑌 ) − 1√𝑛
𝑛

∑
𝑖=1

(𝑌𝑖 − ̄𝑌 ) = 1√𝑛
𝑛

∑
𝑖=1

(𝑤𝑖 − 1)(𝑌𝑖 − ̄𝑌 )

and now notice that 𝔼∗[(𝑤𝑖 − 1)(𝑌𝑖 − ̄𝑌 )] = 𝔼[(𝑤 − 1)](𝑌𝑖 − ̄𝑌 ) = 0. This suggests that we
might be able to apply a central limit theorem to this sort of term. As for the bootstrap WLLN,
the main complication is that (𝑤𝑖 − 1)(𝑌𝑖 − ̄𝑌 ) is not identically distributed; var∗((𝑤𝑖 − 1)(𝑌𝑖 −

̄𝑌 )) = var(𝑤 − 1)(𝑌𝑖 − ̄𝑌 )2 = (𝑌𝑖 − ̄𝑌 )2, which is not constant across 𝑖. This means that we
cannot use the “Lindeberg-Levy” CLT that we have often used. Instead, however, we can use
what the textbook calls the “Lindeberg” CLT. This CLT allows for independent but not identically
distributed observations though it comes at the cost of requiring extra technical conditions (see
Section 9.2 in Bruce Hansen’s probability and statistics textbook for more details). Here, the

Lindeberg CLT implies that Σ̂ΣΣ
−1/2 1√𝑛

𝑛
∑
𝑖=1

𝑤𝑖(𝑌𝑖 − ̄𝑌 ) 𝑑∗
−→ 𝑁(0, I) [where the multiplication by Σ̂ΣΣ

−1/2

arises because Σ̂ΣΣ = 1
𝑛

𝑛
∑
𝑖=1

var∗((𝑤𝑖 −1)(𝑌𝑖 − ̄𝑌 )) = 1
𝑛

𝑛
∑
𝑖=1

(𝑌𝑖 − ̄𝑌 )2]. Then, because Σ̂ΣΣ
𝑝
−→ ΣΣΣ, it implies
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the result.
The above explanation is mathematical, so let me take one more paragraph and explain the

intuition for the bootstrap CLT in words. Like the Bootstrap WLLN, the right intuition to have

here is a sort of two part argument. First, as 𝑛 → ∞,
√𝑛 ( 1

𝑛
𝑛

∑
𝑖=1

𝑤𝑖(𝑌𝑖 − ̄𝑌 )) should behave like

a draw from 𝑁(0, v̂ar(𝑌 )); second v̂ar(𝑌 ) should get close to var(𝑌 ) as 𝑛 → ∞. Thus, in large

samples,
√𝑛 ( 1

𝑛
𝑛

∑
𝑖=1

𝑤𝑖(𝑌𝑖 − ̄𝑌 )) should behave like a draw from a 𝑁(0,ΣΣΣ) distribution. This is

potentially useful because (i) it is the same distribution as
√𝑛( ̄𝑌 − 𝔼[𝑌 ]) follows, and (ii) we can

use simulation to repeatedly calculate
√𝑛 ( 1

𝑛
𝑛

∑
𝑖=1

𝑤𝑖(𝑌𝑖 − ̄𝑌 )).

Let’s conclude this section by explaining why the weighted bootstrap works for approximating
the limiting distribution of

√𝑛( ̂𝜇 − 𝜇) (as we mentioned hoping for earlier in the notes). To start
with, notice that

̂𝜇∗ = ( 1
𝑛

𝑛
∑
𝑖=1

𝑤𝑖)
−1

1
𝑛

𝑛
∑
𝑖=1

𝑤𝑖𝑌𝑖

= ̂𝜇 + ( 1
𝑛

𝑛
∑
𝑖=1

𝑤𝑖)
−1

1
𝑛

𝑛
∑
𝑖=1

𝑤𝑖(𝑌𝑖 − ̄𝑌 )

where the second line uses 𝑌𝑖 = ̂𝜇 + (𝑌𝑖 − ̄𝑌 ) (sorry for mixing notation: notice that ̂𝜇 = ̄𝑌 so this
equation is a trivial one). This implies that

√𝑛( ̂𝜇∗ − ̂𝜇) = ( 1
𝑛

𝑛
∑
𝑖=1

𝑤𝑖)
−1

1√𝑛
𝑛

∑
𝑖=1

𝑤𝑖(𝑌𝑖 − ̄𝑌 ) 𝑑∗
−→ 𝑁(0,ΣΣΣ)

where the convergence result holds because (i) 1
𝑛

𝑛
∑
𝑖=1

𝑤𝑖
𝑝∗

−→ 𝔼[𝑊] = 1, (ii) 1√𝑛
𝑛

∑
𝑖=1

𝑤𝑖(𝑌𝑖 − ̄𝑌 ) 𝑑∗
−→

𝑁(0,ΣΣΣ) by the bootstrap CLT, (iii) combining these terms using the bootstrap CMT (which we
didn’t actually discuss above but works the same way as the CMT that we are used to).

Bootstrap Regression Asymptotic Theory

H: 10.28
To conclude this section, let’s consider why the bootstrap works for approximating the limiting
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distribution of
√𝑛( ̂𝛽∗ − ̂𝛽) where ̂𝛽 comes from the regression of 𝑌 on 𝑋. Recall that

̂𝛽∗ = ( 1
𝑛

𝑛
∑
𝑖=1

𝑤𝑖𝑋𝑖𝑋′
𝑖)

−1
1
𝑛

𝑛
∑
𝑖=1

𝑤𝑖𝑋𝑖𝑌𝑖

= ( 1
𝑛

𝑛
∑
𝑖=1

𝑤𝑖𝑋𝑖𝑋′
𝑖)

−1
1
𝑛

𝑛
∑
𝑖=1

𝑤𝑖𝑋𝑖(𝑋𝑖 ̂𝛽 + ̂𝑒𝑖)

= ̂𝛽 + ( 1
𝑛

𝑛
∑
𝑖=1

𝑤𝑖𝑋𝑖𝑋′
𝑖)

−1
1
𝑛

𝑛
∑
𝑖=1

𝑤𝑖𝑋𝑖 ̂𝑒𝑖

which implies that

√𝑛( ̂𝛽∗ − ̂𝛽) = ( 1
𝑛

𝑛
∑
𝑖=1

𝑤𝑖𝑋𝑖𝑋′
𝑖)

−1
1√𝑛

𝑛
∑
𝑖=1

𝑤𝑖𝑋𝑖 ̂𝑒𝑖

First, from the bootstrap WLLN, it follows that

1
𝑛

𝑛
∑
𝑖=1

𝑤𝑖𝑋𝑖𝑋′
𝑖

𝑝∗

−→ 𝔼[𝑋𝑋′]

where the intuition is that (i) 𝑛−1 ∑𝑛
𝑖=1 𝑤𝑖𝑋𝑖𝑋′

𝑖 converges to its “population” mean 𝑛−1 ∑𝑛
𝑖=1 𝑋𝑖𝑋′

𝑖
and (ii) 𝑛−1 ∑𝑛

𝑖=1 𝑋𝑖𝑋𝑖 converges to the actual population mean 𝔼[𝑋𝑋′].
Second, notice that

1√𝑛
𝑛

∑
𝑖=1

𝑤𝑖𝑋𝑖 ̂𝑒𝑖 = 1√𝑛
𝑛

∑
𝑖=1

𝑤𝑖 (𝑋𝑖 ̂𝑒𝑖 − 𝑛−1
𝑛

∑
𝑖=1

𝑋𝑖 ̂𝑒𝑖)
𝑑∗
−→ ΩΩΩ = 𝔼[𝑋𝑋′𝑒2]

where the first equality holds because 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖 ̂𝑒𝑖 = 0 which is a property of running a regression

(and I included this just to make it clear that we can apply the bootstrap CLT to this term), and
the convergence in bootstrap distribution holds by the bootstrap CLT. Further, from the bootstrap
continuous mapping theorem, we have that

√𝑛( ̂𝛽∗ − ̂𝛽) 𝑑∗
−→ 𝑁(0, V)

where V = 𝔼[𝑋𝑋′]−1ΩΩΩ𝔼[𝑋𝑋′]−1 which is the same as the limiting distribution for
√𝑛( ̂𝛽 − 𝛽).
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