
This material comes from Hansen Appendix A.

Linear Regression Notes 1: Review of Matrix Algebra

H A.1
A vector 𝑎 is a 𝑘 × 1 list of numbers. We will follow the convention of (primarily) using column

vectors. That is,

𝑎 =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑎1
𝑎2
⋮

𝑎𝑘

⎞⎟⎟⎟⎟⎟⎟
⎠

If 𝑘 = 1, then 𝑎 is a scalar. A matrix A is a 𝑘 × 𝑟 rectangular array of numbers which we will
write as

A =
⎡
⎢
⎢
⎢
⎣

𝑎11 𝑎12 ⋯ 𝑎1𝑟
𝑎21 𝑎22 ⋯ 𝑎2𝑟

⋮ ⋮ ⋱ ⋮
𝑎𝑘1 𝑎𝑘2 ⋯ 𝑎𝑘𝑟

⎤
⎥
⎥
⎥
⎦

I will typically capitalize and use bold-font to indicate a matrix in the course notes and will underline
it on the board, e.g., 𝐴 (since it is hard to write in bold on the board).

The transpose of a matrix, which will denote by A′ is obtained by flipping the matrix on its
diagonal. That is,

A′ =
⎡
⎢
⎢
⎢
⎣

𝑎11 𝑎21 ⋯ 𝑎𝑘1
𝑎12 𝑎22 ⋯ 𝑎𝑘2

⋮ ⋮ ⋱ ⋮
𝑎1𝑟 𝑎2𝑟 ⋯ 𝑎𝑘𝑟

⎤
⎥
⎥
⎥
⎦

Notice that A′ is an 𝑟 × 𝑘 matrix. For a 𝑘 × 1 vector 𝑎, its tranpose, 𝑎′, is a 1 × 𝑘 vector. For a
scalar 𝑎, 𝑎 = 𝑎′.

A matrix is square if 𝑘 = 𝑟. A square matrix is symmetric if A = A′. A square matrix is
diagonal if the off-diagonal elements are all zero. The identity matrix is the diagonal matrix
where all the elements on the diagonal are equal to 1. It is common to denote the 𝑘 × 𝑘 identity
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matrix by

I𝑘 =
⎡
⎢
⎢
⎢
⎣

1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

⎤
⎥
⎥
⎥
⎦

Matrix Addition

H A.3
If two matrices A = (𝑎𝑖𝑗) and B = (𝑏𝑖𝑗) (here the notation just means that 𝑎𝑖𝑗 and 𝑏𝑖𝑗 are

elements of each matrix) have the same dimension, then they can be added, and

A + B = (𝑎𝑖𝑗 + 𝑏𝑖𝑗)

Matrix addition is commutative, that is, A + B = B + A. It is also associative: A + (B + C) =
(A + B) + C.

Matrix Multiplication

H A.4
Let 𝑐 denote a scalar, then (we define) A𝑐 = 𝑐A = (𝑎𝑖𝑗𝑐). If 𝑎 and 𝑏 are both 𝑘 × 1 vectors, then

their inner product is

𝑎′𝑏 = 𝑎1𝑏1 + 𝑎2𝑏2 + ⋯ + 𝑎𝑘𝑏𝑘 =
𝑘

∑
𝑗=1

𝑎𝑗𝑏𝑗

Further, notice that 𝑎′𝑏 = 𝑏′𝑎. 𝑎 and 𝑏 are said to be orthogonal if 𝑎′𝑏 = 0.
If A is 𝑘 × 𝑟 and B is 𝑟 × 𝑠 (that is, the number of columns of A is the same as the number of

rows of B), then A and B are said to be conformable and the matrix produce AB is defined as

AB =
⎡
⎢
⎢
⎢
⎣

𝑎′
1

𝑎′
2
⋮

𝑎′
𝑘

⎤
⎥
⎥
⎥
⎦

[𝑏1 𝑏2 ⋯ 𝑏𝑠] =
⎡
⎢
⎢
⎢
⎣

𝑎′
1𝑏1 𝑎′

1𝑏2 ⋯ 𝑎′
1𝑏𝑠

𝑎′
2𝑏1 𝑎′

2𝑏2 ⋯ 𝑎′
2𝑏𝑠

⋮ ⋮ ⋱ ⋮
𝑎′

𝑘𝑏1 𝑎′
𝑘𝑏2 ⋯ 𝑎′

𝑘𝑏𝑠

⎤
⎥
⎥
⎥
⎦

where, for example, 𝑎′
1 = (𝑎11, 𝑎12, … , 𝑎1𝑟) (which is the first row of A) and 𝑏1 = (𝑏11, 𝑏21, … , 𝑏𝑟1)′

is the first column of B. Notice that the product is a 𝑘 × 𝑠 matrix.
Matrix multiplication is not commutative, i.e., in general, AB ≠ BA. But it is associative:

A(BC) = (AB)C. And it is distributive: A(B + C) = AB + AC.
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Trace

H A.5
The trace of 𝑘 × 𝑘 square matrix A is the sum of its diagonal elements:

tr(A) =
𝑘

∑
𝑖=1

𝑎𝑖𝑖

Here are some useful properties of trace (where A and B are square matrices and 𝑐 is a scalar):

1. tr(𝑐A) = 𝑐tr(A)
2. tr(A′) = tr(A)
3. tr(A + B) = tr(A) + tr(B)
4. tr(I𝑘) = 𝑘

Another useful property is that if A is 𝑘 × 𝑟 and B is 𝑟 × 𝑘, then tr(AB) = tr(BA). Unlike the
previous results, this one is not obvious, so let’s provide a quick proof:

tr(AB) = tr
⎡
⎢
⎢
⎢
⎣

𝑎′
1𝑏1 𝑎′

1𝑏2 ⋯ 𝑎′
1𝑏𝑘

𝑎′
2𝑏1 𝑎′

2𝑏2 ⋯ 𝑎′
2𝑏𝑠

⋮ ⋮ ⋱ ⋮
𝑎′

𝑘𝑏1 𝑎′
𝑘𝑏2 ⋯ 𝑎′

𝑘𝑏𝑘

⎤
⎥
⎥
⎥
⎦

=
𝑘

∑
𝑖=1

𝑎′
𝑖𝑏𝑖

=
𝑘

∑
𝑖=1

𝑏′
𝑖𝑎𝑖

= tr(BA)

Rank and Inverse

H A.6
The rank of a 𝑘 × 𝑟 matrix (with 𝑟 ≤ 𝑘)

A = [𝑎1 𝑎2 ⋯ 𝑎𝑟]

written rank(A), is the number of linearly independent columns of A. A is said to have full rank
if rank(A) = 𝑟. Linear independence means that there is no non-zero 𝑘 × 1 vector 𝑐 such that
A′𝑐 = 0. For example,

rank [1 2
2 4] = 1, rank [1 2

2 3] = 2
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so that the second matrix has full rank but the first matrix does not (notice that the second column
equals the first column times 2 so that they are not linearly independent; alternatively, you can
notice that A′𝑐 = 0 for 𝑐 = (2, −1)′).

A square 𝑘 × 𝑘 matrix A is nonsingular if rank(A) = 𝑘 (i.e., if it has full rank). If A is
nonsingular, then it has an inverse A−1 that satisfies

AA−1 = A−1A = I𝑘

For two non-singular matrices A and C, another useful property is that

(A−1)′ = (A′)−1

that is, for a nonsingular matrix, you can swap the order of transpose and inverse. Another useful
property is that

(AC)−1 = C−1A−1

These properties are the ones that we’ll use often though Appendix A.6 has several additional
properties of nonsingular matrices that may be useful as a reference at some point.

Positive definite matrices

H A.10
A 𝑘 × 𝑘 symmetric matrix A is said to be positive semi-definite if 𝑐′A𝑐 ≥ 0 for any non-zero,

𝑘 × 1 vector 𝑐; this is often written A ≥ 0. A is said to be positive definite if 𝑐′A𝑐 > 0 for any
non-zero, 𝑘 × 1 vector 𝑐; this is often written A > 0.

The textbook lists a number of properties of a positive definite matrix. One of these that we will
use is that, if A > 0, then A is nonsingular, A−1 exists, and A−1 > 0.

Another is that, if A is positive definite, then we can find a square root matrix A1/2 such that
A = A1/2A1/2 where A1/2 is itself positive definite and symmetric.

Idempotent Matrices

H A.11
A 𝑘 × 𝑘 square matrix A is idempotent if AA = A.

Matrix Calculus

H A.20
For this section, let 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑘)′ denote a 𝑘 × 1 vector and 𝑔(𝑥) ∶ ℝ𝑘 → ℝ. Now, let’s

consider taking the partial derivatives of the function 𝑔 with respect to each variable in 𝑥; in
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particular,

𝜕𝑔(𝑥)
𝜕𝑥 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜕𝑔(𝑥)
𝜕𝑥1

𝜕𝑔(𝑥)
𝜕𝑥2

⋮
𝜕𝑔(𝑥)
𝜕𝑥𝑘

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

I will typically follow the convention of taking vector derivatives like the previous one “down” (as
above), but it is also useful to have a notation for taking vector derivatives “across” as in

𝜕𝑔(𝑥)
𝜕𝑥′ = (𝜕𝑔(𝑥)

𝜕𝑥1
𝜕𝑔(𝑥)
𝜕𝑥2

⋯ 𝜕𝑔(𝑥)
𝜕𝑥𝑘

)

Sometimes, we will also take second derivatives, which are given by

𝜕2𝑔(𝑥)
𝜕𝑥𝜕𝑥′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜕2𝑔(𝑥)
𝜕𝑥2

1

𝜕2𝑔(𝑥)
𝜕𝑥1𝜕𝑥2

⋯ 𝜕2𝑔(𝑥)
𝜕𝑥1𝜕𝑥𝑘

𝜕2𝑔(𝑥)
𝜕𝑥1𝜕𝑥2

𝜕2𝑔(𝑥)
𝜕𝑥2

2
⋯ 𝜕2𝑔(𝑥)

𝜕𝑥2𝜕𝑥𝑘

⋮ ⋮ ⋱ ⋮
𝜕2𝑔(𝑥)

𝜕𝑥1𝜕𝑥𝑘
𝜕2𝑔(𝑥)

𝜕𝑥2𝜕𝑥𝑘
⋯ 𝜕2𝑔(𝑥)

𝜕𝑥2
𝑘

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Notice that this is a 𝑘 × 𝑘 matrix which is symmetric and arises from taking the partial derivatives
“down” and then “across”.

Here are some examples (we will consider the case where 𝑎 is a 𝑘 × 1 vector and A is a 𝑘 × 𝑘
symmetric matrix):

• 𝜕
𝜕𝑥(𝑎′𝑥) = 𝜕

𝜕𝑥(𝑥′𝑎) = 𝑎

• 𝜕
𝜕𝑥′ (A𝑥)𝑘×1 = A and 𝜕

𝜕𝑥(𝑥′A)1×𝑘 = A

• 𝜕
𝜕𝑥(𝑥′A𝑥) = 2A𝑥 and 𝜕

𝜕𝑥′ (𝑥′A𝑥) = 2𝑥′A

• 𝜕2

𝜕𝑥𝜕𝑥′ (𝑥′A𝑥) = 2A

In my view, a main takeaway from the above examples is that matrix calculus behaves very much
like scalar calculus as long as you pay close attention to keeping the dimensions of the matrices
straight (and also pay some attention to where to put transposes).

Vec Operator and Kronecker Product

H A.21
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Write the 𝑘 × 𝑟 matrix A = [𝑎1 𝑎2 ⋯ 𝑎𝑟]. Then, the vec of A is defined as

vec(A) =
⎡
⎢
⎢
⎢
⎣

𝑎1
𝑎2
⋮

𝑎𝑛

⎤
⎥
⎥
⎥
⎦

which is a 𝑘𝑟 × 1 vector that stacks all the columns of A into one long column.
Next, write A = (𝑎𝑖𝑗), then the Kronecker product of A and B is defined as (note that there

are not restrictions on the dimensions of the matrices):

A ⊗ B =
⎡
⎢
⎢
⎢
⎣

𝑎11B 𝑎12B ⋯ 𝑎1𝑟B
𝑎21B 𝑎22B ⋯ 𝑎2𝑟B

⋮ ⋮ ⋱ ⋮
𝑎𝑘1B 𝑎𝑘2B ⋯ 𝑎𝑘𝑟B

⎤
⎥
⎥
⎥
⎦

If the dimension of B is 𝑚 × 𝑛, then the dimension of A ⊗ B is 𝑘𝑚 × 𝑟𝑛. The book provides some
additional properties of Kronecker products.

Vector norms

H A.22
A norm is a function 𝜌 ∶ ℝ𝑘 → ℝ that satisfies the following properties:

1. 𝜌(𝑐𝑎) = 𝑐𝜌(𝑎) for any scalar 𝑐 and 𝑎 ∈ ℝ𝑘

2. 𝜌(𝑎 + 𝑏) ≤ 𝜌(𝑎) + 𝜌(𝑏). This is called the triangle inequality.

3. If 𝜌(𝑎) = 0, then 𝑎 = 0.

The three most common norm functions are

• The Euclidean norm: ||𝑎|| = (𝑎′𝑎)1/2

• The 1-norm: ||𝑎||1 = ∑𝑘
𝑖=1 |𝑎𝑖|

• The sup-norm: ||𝑎||∞ = max{|𝑎1|, … , |𝑎𝑘|}

6


	Linear Regression Notes 1: Review of Matrix Algebra
	Matrix Addition
	Matrix Multiplication
	Trace
	Rank and Inverse
	Positive definite matrices
	Idempotent Matrices
	Matrix Calculus
	Vec Operator and Kronecker Product
	Vector norms


