
These notes come from Chapters 6 and 7 in the textbook and cover the large-sample properties
of least squares.

Linear Regression Notes 5: Asymptotic theory for least squares

Review

H: 6.1-6.7
I’ll take the concepts of convergence in probability and convergence in distribution as being

known (see definitions 6.1 and 6.2 in the textbook)
To start with, we consider the large sample properties (i.e., properties as the sample size gets

large) of general estimators, ̂𝜃, of some population parameter 𝜃. The main two properties that we
will consider are consistency and asymptotic normality

Definition:
An estimator ̂𝜃 of 𝜃 is consistent if ̂𝜃

𝑝
−→ 𝜃 as 𝑛 → ∞.

If ̂𝜃 is consistent, this is a guarantee that, given a large enough sample, ̂𝜃 will be “close” to 𝜃.

The key tool for showing that estimators are consistent is the weak law of large numbers

Theorem: Weak Law of Large Numbers
If 𝑌𝑖 ∈ ℝ𝑘 are iid and 𝔼||𝑌 || < ∞, then as 𝑛 → ∞,

1
𝑛

𝑛
∑
𝑖=1

𝑌𝑖
𝑝
−→ 𝔼[𝑌 ]

Definition:
An estimator ̂𝜃 of 𝜃 is asymptotically normal if (for some V)

√𝑛( ̂𝜃 − 𝜃) 𝑑−→ 𝒩(0, V) as 𝑛 → ∞

If ̂𝜃 is asymptotically normal, it says that the quantity
√𝑛( ̂𝜃 − 𝜃) should behave like a draw

from a normal distribution 𝒩(0, V), given a large enough sample. We will often work towards
establishing this sort of result as a key step in conducting statistical inference.

The key tool for showing asymptotic normality is the central limit theorem.
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Central Limit Theorem:
If 𝑌𝑖 ∈ ℝ𝑘 are iid and 𝔼||𝑌 ||2 < ∞, then as 𝑛 → ∞,

√𝑛 ( 1
𝑛

𝑛
∑
𝑖=1

𝑌𝑖 − 𝔼[𝑌 ]) 𝑑−→ 𝒩(0, V)

where V = var(𝑌 ) = 𝔼[(𝑌 − 𝔼[𝑌 ])(𝑌 − 𝔼[𝑌 ])′]

Let’s cover two more tools that are useful for establishing the large sample properties of estimators:
the continuous mapping theorem and the delta method

Continuous Mapping Theorem:

• For convergence in probability: Let 𝑍𝑛 ∈ ℝ𝑘 and 𝑔(𝑢) ∶ ℝ𝑘 → ℝ𝑞. If 𝑍𝑛
𝑝
−→ 𝑐 as 𝑛 → ∞ and

𝑔(𝑢) is continuous at 𝑐, then 𝑔(𝑍𝑛)
𝑝
−→ 𝑔(𝑐) as 𝑛 → ∞.

• For convergence in distribution: If 𝑍𝑛
𝑑−→ 𝑍 as 𝑛 → ∞ and 𝑔 ∶ ℝ𝑘 → ℝ𝑞 has the set of

discontinuity points 𝐷𝑔 such that P(𝑍 ∈ 𝐷𝑔) = 0, then 𝑔(𝑍𝑛) 𝑑−→ 𝑔(𝑍) as 𝑛 → ∞.

These continuous mapping theorems say that continuous functions are limit preserving. Notice
that the conditions for the convergence in probability version of the CMT are weaker (they only
require 𝑔 to be continuous at the particular point 𝑐) than for the convergence in distribution
version (which essentially requires 𝑔 to be continuous everywhere). The qualification about the set
of discontinuity points is a technical one, but comes up enough cases that it is worth including this
technical condition.

Delta Method:
Let 𝜇 ∈ ℝ𝑘 and 𝑔(𝑢) ∶ ℝ𝑘 → ℝ𝑞. If

√𝑛( ̂𝜇 − 𝜇) 𝑑−→ 𝜉 and 𝑔(𝑢) is continuously differentiable in a
neighborhood of 𝜇, then as 𝑛 → ∞,

√𝑛(𝑔( ̂𝜇) − 𝑔(𝜇)) 𝑑−→ G′𝜉

where G(𝑢) = 𝜕𝑔(𝑢)′

𝜕𝑢 and G = G(𝜇). As a leading example, if 𝜉 ∼ 𝒩(0, V), then as 𝑛 → ∞,

√𝑛(𝑔( ̂𝜇) − 𝑔(𝜇)) 𝑑−→ 𝒩(0, G′VG)

Stochastic Order Symbols:
It will be helpful to sometimes have a notation for random variables that converge in probability

to zero or are stochastically bounded. We write

𝑍𝑛 = 𝑜𝑝(1)
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to mean that 𝑍𝑛
𝑝
−→ 0 as 𝑛 → ∞. And we write

𝑍𝑛 = 𝑂𝑝(1)

to indicate that 𝑍𝑛 is “bounded in probability” – you can see the textbook for a formal definition,
but you should take this to mean that 𝑍𝑛 does not diverge to positive or negative infinity as 𝑛 → ∞.
The textbook provides a number of properties of 𝑜𝑝(1) and 𝑂𝑝(1). I think the most useful ones are
that

𝑂𝑝(1) + 𝑜𝑝(1) = 𝑂𝑝(1) 𝑂𝑝(1)𝑜𝑝(1) = 𝑜𝑝(1)

which say that (i) if you add something that is bounded in probability to something that converges
to 0 then the result will be bounded in probability, and (ii) that if you multiply something bounded
in probability to something that converges in probability to 0 then the result will converge in
probability to 0. These are implications of the continuous mapping theorem.

Asymptotic Theory for Least Squares

The asymptotic theory for least squares applies both to linear projection model and to the linear
CEF model. Therefore, in this section, we only use the weaker assumptions of the linear projection
model. That is, we use the following assumptions throughout this section

Assumption 7.1

1. The variables {(𝑌𝑖, 𝑋𝑖)}𝑛
𝑖=1 are iid

2. 𝔼[𝑌 2] < ∞

3. 𝔼||𝑋||2 < ∞

4. 𝔼[𝑋𝑋′] is positive definite

Consistency of Least Squares Estimator

H: 7.2
Step 1: Weak Law of Large Numbers. Recall that

̂𝛽 = ( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑋′
𝑖)

−1
1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑌𝑖 (1)
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Next, notice that

1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑋′
𝑖

𝑝
−→ 𝔼[𝑋𝑋′]

1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑌𝑖
𝑝
−→ 𝔼[𝑋𝑌 ]

which holds by the weak law of large numbers (which requires the iid assumption and that 𝔼[𝑋𝑋′] <
∞ and 𝔼[𝑋𝑌 ] < ∞, both of which hold by Assumption 7.1)

Step 2: Continuous Mapping Theorem. Next, notice that, we can write

̂𝛽 = 𝑔(𝔼̂[𝑋𝑋′], 𝔼̂[𝑋𝑌 ])

where 𝑔(A, 𝑏) = A−1𝑏. This is a continuous function of A and 𝑏 at all values of the arguments
such that A−1 exists. Assumption 7.1 includes that 𝔼[𝑋𝑋′] is positive definite which implies that
𝔼[𝑋𝑋′]−1 exists. Thus, 𝑔(A, 𝑏) is continuous at A = 𝔼[𝑋𝑋′] and we can apply the “convergence
in probability” version of the CMT; that is,

̂𝛽
𝑝
−→ 𝑔(𝔼[𝑋𝑋′], 𝔼𝑋𝑌 )
= 𝔼[𝑋𝑋′]−1𝔼[𝑋𝑌 ] = 𝛽

Asymptotic Normality

H: 7.3
For this section, we strengthen Assumption 7.1.

Assumption 7.2
In addition to Assumption 7.1

1. 𝔼[𝑌 4] < ∞

2. 𝔼||𝑋||4 < ∞

Next, we will establish the limiting distribution of ̂𝛽. Plugging 𝑌𝑖 = 𝑋′
𝑖𝛽 + 𝑒𝑖 into Equation 1

implies that

̂𝛽 = ( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑋′
𝑖)

−1
1
𝑛

𝑛
∑
𝑖=1

(𝑋𝑖(𝑋′
𝑖𝛽 + 𝑒𝑖))

= 𝛽 + ( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑋′
𝑖)

−1
1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑒𝑖
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Multiplying by
√𝑛 and re-arranging implies that

√𝑛 ( ̂𝛽 − 𝛽) = ( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑋′
𝑖)

−1
1√𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑒𝑖 (2)

Step 1: Central Limit Theorem. First, notice that

1√𝑛
𝑛

∑
𝑖=1

𝑋𝑖𝑒𝑖
𝑑−→ 𝒩(0,ΩΩΩ)

where ΩΩΩ = 𝔼[𝑋𝑒(𝑋𝑒)′] = 𝔼[𝑋𝑋′𝑒2].
Let’s explain carefully why the central limit theorem applies here. First, we have that (𝑌𝑖, 𝑋𝑖)

are iid, which implies that any function of (𝑌𝑖, 𝑋𝑖) is also iid (and this includes 𝑒𝑖 = 𝑌𝑖 − 𝑋′
𝑖𝛽 and

𝑋𝑖𝑒𝑖). Also, notice that 𝔼[𝑋𝑒] = 0 so that the inside term of the summation above has mean 0.
Finally, to invoke the central limit theorem, we need to show that the second moments of 𝑋𝑒 exist;
i.e., that 𝔼||𝑋𝑒||2 < ∞. This argument is technical, but holds under Assumption 7.2; if you are
interested in this, see the Technical Details section below (you will see where we use the fourth
moment conditions in Assumption 7.2). That ΩΩΩ = Var(𝑋𝑒) = 𝔼[𝑋𝑋′𝑒2] is a direct consequence of
applying the central limit theorem.
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Technical Details: Here we show that the second moments of 𝑋𝑒 exist under Assumption
7.2. Below, we use the following inequalities:

Minkowski’s Inequality: For 𝑝 ≥ 1, (𝔼||𝑋 + 𝑌 ||𝑝)1/𝑝 ≤ (𝔼||𝑋||𝑝)1/𝑝 + (𝔼||𝑌 ||𝑝)1/𝑝

Schwarz Inequality: |𝑎′𝑏| ≤ ||𝑎|| ||𝑏||
As a first step, let’s show that Assumption 7.2 implies that 𝔼[𝑒4] < ∞. Notice that,

𝔼[𝑒4]1/4 = 𝔼[(𝑌 − 𝑋′𝛽)4]1/4

≤ 𝔼[𝑌 4]1/4 + 𝔼[(𝑋′𝛽)4]1/4

≤ 𝔼[𝑌 4]1/4 + (𝔼||𝑋||4)1/4||𝛽||
< ∞

where the second line uses Minkowski’s inequality, the third inequality holds by the
Schwarz inequality (to be clear on this part, notice that 𝔼[(𝑋′𝛽)4]1/4 = 𝔼[|𝑋′𝛽|4]1/4 ≤
𝔼[(||𝑋|| ||𝛽||)4]1/4 = 𝔼[||𝑋||4||𝛽||4]1/4 = 𝔼[||𝑋||4]1/4||𝛽|| < ∞), and the last inequality holds
by Assumption 7.2. That 𝔼[𝑒4]1/4 < ∞ implies that 𝔼[𝑒4] < ∞. To show the main result, we
will also use the following two inequalities:

Expectation Inequality: For a random vector 𝑌 ∈ ℝ𝑚 with 𝔼||𝑌 || < ∞, ||𝔼[𝑌 ]|| ≤ 𝔼||𝑌 ||.
Cauchy-Schwarz Inequality: 𝔼||𝑋′𝑌 || ≤ (𝔼||𝑋||2)1/2(𝔼||𝑌 ||2)1/2

To show that the second moments of 𝑋𝑒 exist, we will just directly show that all the elements
of the second moment matrix, ΩΩΩ, are finite. In particular, generically consider the (𝑗, 𝑙)
element of ΩΩΩ which is given by 𝔼[𝑋𝑗𝑋𝑙𝑒2] (we want to show that this is finite). Therefore,
consider

|𝔼[𝑋𝑗𝑋𝑙𝑒2]| ≤ 𝔼|𝑋𝑗𝑋𝑙𝑒2|
= 𝔼[|𝑋𝑗| |𝑋𝑙|𝑒2]
≤ 𝔼[𝑋2

𝑗 𝑋2
𝑙 ]1/2𝔼[𝑒4]1/2

≤ (𝔼[𝑋4
𝑗 ]1/2𝔼[𝑋4

𝑙 ]1/2)1/2 𝔼[𝑒4]1/2

= 𝔼[𝑋4
𝑗 ]1/4𝔼[𝑋4

𝑙 ]1/4𝔼[𝑒4]1/2

< ∞

where the first equality holds by the expectation inequality, the second equality holds because
of the absolute value, the third equality holds by the Cauchy-Schwarz inequality, the fourth
equality holds by applying the Cauchy-Schwarz inequality again, the fifth equality holds
immediately, and the last equality holds by Assumption 7.2 and because 𝔼[𝑒4] < ∞ (which
we showed right before).
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Combining this with Equation 2, we have that

√𝑛( ̂𝛽 − 𝛽) 𝑑−→ 𝔼[𝑋𝑋′]−1 𝒩(0,ΩΩΩ) = 𝒩(0, V𝛽)

where V𝛽 = 𝔼[𝑋𝑋′]−1ΩΩΩ𝔼[𝑋𝑋′]−1 and which holds by the continuous mapping theorem.
V𝛽 is called the asymptotic variance matrix of ̂𝛽. 𝔼[𝑋𝑋′]−1ΩΩΩ𝔼[𝑋𝑋′]−1 is called a “sandwich

form”. It is called this because ΩΩΩ is sandwiched by 𝔼[𝑋𝑋′]−1 (sometimes ΩΩΩ is called the “meat”
and 𝔼[𝑋𝑋′]−1 is called the “bread”). Many asymptotic variance matrices have a similar form.

The previous result is the basis for hypothesis testing/inference, constructing confidence intervals,
etc. To operationalize it, though, we need to construct an estimator of V𝛽. Before doing that, let’s
introduce one relatively common simplification.

Homoskedasticity Assumption:
𝔼[𝑒2|𝑋] = 𝜎2.
Homoskedasticity says that the second moment of the error term does not vary across different

values of 𝑋. This is often constrasted with heteroskedasticity which amounts to just not making
the homoskedasticity assumption. Most applications in economics do not invoke the homoskedas-
ticity assumption mainly because, often, we do not “need” it. That said, as we will see below, it is
useful for simplifying some expressions and serves as a useful benchmark in many cases.

Notice that, under homoskedasticity, we can simplify the expression for ΩΩΩ (I use the notation ΩΩΩ0
to indicate that this is the expression for ΩΩΩ under homoskedasticity):

ΩΩΩ0 = 𝔼[𝑋𝑋′ 𝔼[𝑒2|𝑋]⏟
𝜎2

] = 𝜎2𝔼[𝑋𝑋′]

where the first equality holds by the law of iterated expectations, and the second equality holds
by homoskedasticity. Plugging this back in to the expression for V𝛽, it will also simplify (again, I
switch the notation to indicate the asymptotic variance of

√𝑛( ̂𝛽 − 𝛽) under homoskedasticity):

V0 = 𝜎2𝔼[𝑋𝑋′]−1

which holds by plugging in ΩΩΩ0 into the expression for V𝛽 and cancelling.

Discussion:
What we have shown is that the sampling distribution of quantity

√𝑛( ̂𝛽 − 𝛽) is 𝒩(0, V𝛽), as
long as we have a large sample. In practice, we only have one “draw” from this distribution which
corresponds to the sample that we actually have (and, here, we are ignoring that we do not know
the value of the population parameter 𝛽). What we have shown is that (given a large enough
sample) this “draw” should amount to a draw from 𝒩(0, V𝛽) – we will exploit this heavily when
we discuss inference soon.

One related question is how large the sample needs to be for our results on consistency and
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asymptotic normality of ̂𝛽 to hold. Although you may have heard various rules-of-thumb, my sense
is that there is no general rule here. In particular, one can come up with cases where it would
take an extremely large number of observations before the asymptotic approximation would work
very well (see p.167 for an example). That said, most work in economics uses at least hundreds
of observations. Estimating more complicated models may tend to require more observations for
these approximations to work well.

Consistency of Error Variance Estimators

H: 7.5
As discussed above, in order to use the asymptotic normality result above, we need to consistently

estimate V𝛽. In this section, we consider the simpler case of estimating V0 (i.e., the asymptotic
variance of

√𝑛( ̂𝛽 − 𝛽) under homoskedasticity. Notice that, by the continuous mapping theorem,
we can consistently estimate V0 by consistently estimating 𝜎2 and 𝔼[𝑋𝑋′]. Estimating 𝔼[𝑋𝑋′] is
straightforward – we can just use the analogy principle. On the other hand, estimating 𝜎2 = 𝔼[𝑒2]
is conceptually more challenging, and we consider this next. Using the analogy principle would
suggest estimating 𝜎2 by

1
𝑛

𝑛
∑
𝑖=1

𝑒2
𝑖

but this estimator is infeasible since we do not observe 𝑒𝑖. Instead, let’s consider the estimator

𝜎̂2 = 1
𝑛

𝑛
∑
𝑖=1

̂𝑒2
𝑖

where ̂𝑒𝑖 is the residual that is defined as

̂𝑒𝑖 = 𝑌𝑖 − 𝑋′
𝑖 ̂𝛽

which is the difference between the actual outcome and 𝑋𝑖 ̂𝛽 (the fitted value from the regression).
Notice that, ̂𝑒𝑖 is something that we can actually recover because it depends on the estimated

̂𝛽 rather than, say, the population parameter 𝛽. Notice that, by plugging in 𝑌𝑖 = 𝑋′
𝑖𝛽 into the

expression for ̂𝑒𝑖, we have that

̂𝑒𝑖 = 𝑌𝑖 − 𝑋′
𝑖 ̂𝛽

= 𝑋′
𝑖𝛽 + 𝑒𝑖 − 𝑋′

𝑖 ̂𝛽
= 𝑒𝑖 − 𝑋′

𝑖( ̂𝛽 − 𝛽)

which implies that

̂𝑒2
𝑖 = 𝑒2

𝑖 − 2𝑒𝑖𝑋′
𝑖( ̂𝛽 − 𝛽) + ( ̂𝛽 − 𝛽)′𝑋𝑖𝑋′

𝑖( ̂𝛽 − 𝛽)
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so that

1
𝑛

𝑛
∑
𝑖=1

̂𝑒2
𝑖 = 1

𝑛
𝑛

∑
𝑖=1

𝑒2
𝑖 − 2 ( 1

𝑛
𝑛

∑
𝑖=1

𝑒𝑖𝑋′
𝑖) ( ̂𝛽 − 𝛽) + ( ̂𝛽 − 𝛽) ( 1

𝑛
𝑛

∑
𝑖=1

𝑋𝑖𝑋′
𝑖) ( ̂𝛽 − 𝛽)

Then, since,

1
𝑛

𝑛
∑
𝑖=1

𝑒2
𝑖

𝑝
−→ 𝔼[𝑒2] = 𝜎2

̂𝛽 − 𝛽
𝑝
−→ 0

1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑋′
𝑖

𝑝
−→ 𝔼[𝑋𝑋′]

it follows by the continuous mapping theorem that

𝜎̂2 𝑝
−→ 𝜎2

Moreover, this implies that

V̂0 ∶= 𝜎̂2 ( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑋′
𝑖)

−1
𝑝
−→ 𝜎2𝔼[𝑋𝑋]−1 = V0

so that V̂0 is consistent for V0.

Heteroskedastic Covariance Matrix Estimation

H: 7.7
Next, we consider estimating V𝛽. The natural estimator is

V̂𝛽 = ( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑋′
𝑖)

−1

Ω̂ΩΩ ( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑋′
𝑖)

−1

where Ω̂ΩΩ is an estimate of ΩΩΩ given by

Ω̂ΩΩ = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑋′
𝑖 ̂𝑒2

𝑖

We aim to show that Ω̂ΩΩ is consistent for ΩΩΩ. To this end, notice that

Ω̂ΩΩ = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑋′
𝑖𝑒2

𝑖 + 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑋′
𝑖( ̂𝑒2

𝑖 − 𝑒2
𝑖 )

9



which holds by adding and subtracting terms. Then, notice that

1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑋′
𝑖𝑒2

𝑖
𝑝
−→ 𝔼[𝑋𝑋′𝑒2] = ΩΩΩ

It remains to show be shown that

1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑋′
𝑖( ̂𝑒2

𝑖 − 𝑒2
𝑖 )

𝑝
−→ 0 (3)

Given our earlier result on 𝜎̂2 being consistent for 𝜎2, it is perhaps not surprising that this term
converges to 0 though the arguments are more challenging (if you are interested, please check out
the Technical Details box below).
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Technical Details: Here I show that the claim in Equation 3 is true. To start with, let me
briefly introduce some useful concepts related to matrix norms and useful inequalities for matrix
norms. Below, A and B are notation for matrices.
Frobenius/Matrix Norm ||A|| = ||vec(A)||
Schwarz Inequality ||AB|| ≤ ||A|| ||B||
Triangle Inequality: ||A + B|| ≤ ||A|| + ||B||
Holder’s Inequality: For any 𝑝 > 1 and 𝑞 > 1 such that 1

𝑝 + 1
𝑞 = 1, 𝔼||𝑋′𝑌 || ≤

(𝔼||𝑋||𝑝)1/𝑝(𝔼||𝑌 ||𝑞)1/𝑞

The Frobenius norm is a matrix norm (there are others) that “converts” the matrix into a vector and
then applies the Euclidean norm to that vector. The next two inequalities say that versions of the
Schwarz and triangle inequalities apply to matrices. Next, notice that

∣∣ 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑋′
𝑖( ̂𝑒2

𝑖 − 𝑒2
𝑖 )∣∣ ≤ 1

𝑛
𝑛

∑
𝑖=1

∣∣𝑋𝑖𝑋′
𝑖( ̂𝑒2

𝑖 − 𝑒2
𝑖 )∣∣

≤ 1
𝑛

𝑛
∑
𝑖=1

||𝑋𝑖||2| ̂𝑒2
𝑖 − 𝑒2

𝑖 | (4)

where the first inequality holds by the triangle inequality and the second inequality holds by applying
the Schwarz inequality twice. Now consider

| ̂𝑒2
𝑖 − 𝑒2

𝑖 | = | − 2𝑒𝑖𝑋′
𝑖( ̂𝛽 − 𝛽) + ( ̂𝛽 − 𝛽)′𝑋𝑖𝑋′

𝑖( ̂𝛽 − 𝛽)|
≤ 2|𝑒𝑖𝑋′

𝑖( ̂𝛽 − 𝛽)| + ( ̂𝛽 − 𝛽)′𝑋𝑖𝑋′
𝑖( ̂𝛽 − 𝛽)

= 2|𝑒𝑖| |𝑋′
𝑖( ̂𝛽 − 𝛽)| + |( ̂𝛽 − 𝛽)′𝑋𝑖|2

≤ 2|𝑒𝑖| ||𝑋𝑖|| || ̂𝛽 − 𝛽|| + ||𝑋𝑖||2 || ̂𝛽 − 𝛽||2

where the first equality holds by plugging in from above the difference between ̂𝑒2
𝑖 and 𝑒2

𝑖 , the second
inequality holds by the triangle inequality (the second term is positive because it is quadratic), the
third equality holds by properties of absolute value, the fourth inequality holds by the Schwarz
inequality. Using this expression back in Equation 4 implies that

∣∣ 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑋′
𝑖( ̂𝑒2

𝑖 − 𝑒2
𝑖 )∣∣ ≤ 2 ( 1

𝑛
𝑛

∑
𝑖=1

||𝑋𝑖||3 |𝑒𝑖|) || ̂𝛽 − 𝛽|| + 1
𝑛

𝑛
∑
𝑖=1

||𝑋𝑖||4 || ̂𝛽 − 𝛽||2

The second term converges to 0 because 𝑛−1 ∑𝑛
𝑖=1 ||𝑋𝑖||4

𝑝
−→ 𝔼[𝑋4] and because || ̂𝛽 − 𝛽||

𝑝
−→ 0. For the

first term || ̂𝛽 − 𝛽||
𝑝
−→ 0, and then consider

1
𝑛

𝑛
∑
𝑖=1

||𝑋𝑖||3 |𝑒𝑖|
𝑝
−→ 𝔼[||𝑋||3 |𝑒|]

≤ 𝔼 [(||𝑋||3)4/3]3/4 𝔼[𝑒4]1/4

= 𝔼[||𝑋||4]3/4𝔼[𝑒4]1/4

< ∞

where the first equality holds by the weak law of large numbers, the second equality holds using
Holder’s inequality (using ||𝑋||3 and |𝑒| and setting 𝑝 = 4/3 and 𝑞 = 4), the third equality by
canceling the inside exponents, and the last inequality by Assumption 7.2 and that we showed that
𝔼[𝑒4] < ∞ in the previous Technical Details box.
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Inference

Asymptotic Standard Errors

H: 7.11-7.13, 7.16, 9.7, 9.9
Inference and hypothesis testing were covered in detail in 8070. This section provides a brief

review along with (brief) explanations in the context of regression.
Next, let us return to our results on asymptotic normality of ̂𝛽 in order to see how this is useful

for hypothesis testing.
We define the standard error of the ̂𝛽𝑗 (the jth element of ̂𝛽) as

se( ̂𝛽𝑗) =
√V̂𝛽,𝑗𝑗√𝑛

where V̂𝛽,𝑗𝑗 is the (𝑗, 𝑗) element of V̂𝛽. As a side-comment, I define this slightly differently from the
book. I use V̂𝛽 (the asymptotic variance matrix) rather than V ̂𝛽 = var( ̂𝛽|X). These are different
from each other by a factor of

√𝑛; in particular, V̂𝛽 does not go to 0 as 𝑛 → ∞.
It is common in applications in economics to report ̂𝛽 along with standard errors for each esti-

mated parameter.
In many cases, a researcher may be interested in testing a hypothesis for a single parameter in

a regression. We have typically made the regressor of interest 𝑋1, so I’ll follow that convention
here, but analogous arguments apply for other regressors. Consider ℍ0 ∶ 𝛽1 = 𝜃0 (where 𝜃0 is a
hypothesized value for 𝛽1; this implies that 𝜃0 is known to us, and, e.g., by far the most common
choice is 𝜃0 = 0), then the t-statistic is given by

𝑡 =
̂𝛽1 − 𝜃0

s.e.( ̂𝛽1)

Recall that, if ℍ0 is true, then 𝑡 will behave like a draw from a standard normal distribution. On
the other hand, if ℍ0 is false, then 𝑡 will diverge (i.e., go to positive or negative infinity) as 𝑛 → ∞.
This difference is the basis for us to conduct inference. In particular, when |𝑡| > 𝑐 (where 𝑐 is
some critical value such as 1.96 when the significance level is 5%), then one would reject ℍ0 and
otherwise fail to reject ℍ0.

The approach to inference discussed so far has been to compute a t-statistic and then to make a
binary decision to either reject or fail to reject ℍ0. This approach has some inherent issues. The
textbook gives the example of a t-statistic equal to 1.7 relative to one that is equal to 2.0. Given a
5% significance level, these t-statistics lead to different decisions. However, it is immediately clear
that the strength of evidence against ℍ0 is not really much different between these two cases.

An alternative approach is to report an (asympotic) p-value. The p-value is the probability of
getting a test-statistic as large (in absolute value) as we did given that ℍ0 is true (an alternative
interpretation is that 𝑝 is the smallest value of 𝛼 for which the test would reject ℍ0). Given that
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𝑡 𝑑−→ 𝑍 ∼ 𝒩(0, 1),

𝑝 = P(𝑍 < −|𝑡|) + P(𝑍 > |𝑡|)
= 2(1 − Φ(|𝑡|))

where the second line follows by symmetry of 𝑍. Unlike the binary decision rule that we have
discussed previously, the p-value provides continuous information. For example, if we calculate
that 𝑝 = 0.06, we would not reject ℍ0 at the 5% significance level, but getting a t-statistic this
large in absolute value is still relatively uncommon if ℍ0 is true. Similarly, if 𝑝 = 0.00001, this
would indicate very strong evidence against ℍ0.

Next, we also have enough information to compute a confidence interval. The most common
version of a confidence interval is the one given by

̂𝐶 = [ ̂𝜃 − 𝑐1−𝛼/2s.e.( ̂𝜃), ̂𝜃 + 𝑐1−𝛼/2s.e.( ̂𝜃)]

where, for example, if 𝛼 = 0.05, then 𝑐1−𝛼/2 = 𝑐.975 = 1.96 (because 1.96 is the 97.5th percentile of
a standard normal distribution).

Finally, in some cases, a researcher may be interested in testing multiple hypotheses. For example,
one might be interested in testing ℍ0 ∶ 𝛽1 = 𝛽2 = 0. More generally, consider 𝜃 = 𝑟(𝛽) where
𝑟 ∶ ℝ𝑘 → ℝ𝑞 and ̂𝜃 = 𝑟( ̂𝛽). Further, suppose that we know

√𝑛( ̂𝜃 − 𝜃) 𝑑−→ 𝒩(0, V𝜃) for some V𝜃
(it require some work to show this sort of result, e.g., see the discussion in the next section, but
you can also fit in simple examples here such as 𝜃 = 𝛽). And suppose that we are interested in
ℍ0 ∶ 𝜃 = 𝜃0. It is hard to operationalize the t-statistic that we talked about above. Instead, we will
consider a Wald statistic:

𝑊 = 𝑛( ̂𝜃 − 𝜃0)′V̂−1
𝜃 ( ̂𝜃 − 𝜃0)

Notice that this is a number that we can compute (given a value of 𝜃0) and that it is a scalar. As for
𝑡 above, let’s consider the behavior of 𝑊 under ℍ0 and under ℍ1 ∶ 𝜃 ≠ 𝜃0. When ℍ0 is true, then
one can show that 𝑊 will behave like a draw from a 𝜒2

𝑞 distribution (i.e., a chi-squared distribution
with 𝑞 degrees of freedom). On the other hand, if ℍ0 is not true, then 𝑊 will diverge to infinity as
𝑛 → ∞.

As for the t-statistic, this different behavior under ℍ0 relative to ℍ1 provides an approach to
inference. For testing multiple restrictions like this, I think that it is most common to report a
p-value. Here, you can calculate a p-value by

p-value = 1 − 𝐺𝑞(𝑊)

where 𝐺𝑞 is the cdf of a chi-square random variable with 𝑞 degrees of freedom.
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Because the distribution of 𝑊 under ℍ0 depends on the degrees of freedom 𝑞 (i.e., the number
of restrictions being tested), it is harder to “just remember” critical values. That said, it is easy to
compute the p-value above in R using the function pchisq (which computes the cdf of a chi-square
random variable). For example, suppose that you calculate 𝑊 = 7 and that 𝑞 = 2. Then, the
p-value can be calculated as

p <- 1 - pchisq(7,df=2)
round(p,4)

[1] 0.0302

so that the p-value is about 0.03 (indicating that you would reject ℍ0 at the 5% significance
level).

Functions of Parameters

H: 7.10
In many applications, a researcher may only be interested in conducting inference with respect

to a specific transformation of the parameters. Probably the leading case is when a researcher is
just interested in a particular parameter, say, 𝛽1; but another example would be a case where a
researcher is interested in, say, 𝛽𝑗/𝛽𝑙 (the ratio between 𝛽𝑗 and 𝛽𝑙). In these cases, we can write
𝜃 = 𝑟(𝛽) for a function 𝑟 ∶ ℝ𝑘 → ℝ𝑞 and the estimate of 𝜃 is given by

̂𝜃 = 𝑟( ̂𝛽)

Under Assumption 7.1, we have that ̂𝜃
𝑝
−→ 𝜃 if 𝑟(⋅) is continuous at 𝛽. This holds by the continuous

mapping theorem.
Showing asymptotic normality is somewhat trickier, and I think it is worthwhile to think two

distinct cases. First, suppose that 𝑟(⋅) is a linear function; i.e., that we can write 𝜃 = R′𝛽 where
R is a 𝑘 × 𝑞 matrix. In this case, it immediately follows that

√𝑛( ̂𝜃 − 𝜃) = √𝑛 (R′ ̂𝛽 − R′𝛽) = R′√𝑛( ̂𝛽 − 𝛽) 𝑑−→ 𝒩(0, V𝜃)

where

V𝜃 = R′V𝛽R
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Example: Consider the case where 𝑟(𝛽) = 𝛽1; this can be alternatively written as 𝑟(𝛽) =
R′𝛽 where

R = (1
0

)

so that R is a 𝑘 × 1 vector. Thus,

V𝜃 = (1 0) V𝛽 (1
0

)

= (V11 V12 ⋯ V1𝑘) (1
0

)

= V11

i.e., the element in the first row and first column of V𝛽. This explicitly justifies our inference
procedures for 𝛽1 discussed above.
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Example: Regression Intervals
Suppose that 𝑚(𝑋) ∶= 𝔼[𝑌 |𝑋] = 𝑋′𝛽 and that you are interested in constructing a confi-
dence interval for 𝑚(𝑥) ∶= 𝔼[𝑌 |𝑋 = 𝑥] = 𝑥′𝛽 (that is, the value of the conditional CEF at a
particular value of the regressors given by 𝑥).

The natural way to estimate 𝑚(𝑥) is by

𝑚̂(𝑥) = 𝑥′ ̂𝛽

Notice that this can fit into the framework of this section by taking 𝜃 = 𝑚(𝑥) so that 𝜃 = R′𝛽
for R = 𝑥. Thus, notice that

√𝑛(𝑚̂(𝑥) − 𝑚(𝑥)) = √𝑛(𝑥′ ̂𝛽 − 𝑥′𝛽)
= 𝑥′√𝑛( ̂𝛽 − 𝛽)
𝑑−→ 𝑥′𝒩(0, V𝛽) = 𝒩(0, 𝑥′V𝛽𝑥)

Thus, we have shown that
√𝑛(𝑚̂(𝑥) − 𝑚(𝑥)) is asymptotically normal with asymptotic

variance 𝑥′V𝛽𝑥). We can estimate the asymptotic variance by

V̂𝑚 = 𝑥′V̂𝛽𝑥 = 𝑥′ ( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑋′
𝑖)

−1

Ω̂ΩΩ ( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑋′
𝑖)

−1

𝑥

i.e., we can use exactly the same estimate of V𝛽 that we have been using earlier, just pre-
multiplying by 𝑥′ and post-multiplying by 𝑥. Further, notice that V̂𝑚 is a scalar. Finally,
we can construct a 95% confidence interval using essentially the same approach that we used
above, that is:

̂𝐶𝑚 = ⎡⎢
⎣

𝑥′ ̂𝛽 ± 1.96
√V̂𝑚√𝑛

⎤⎥
⎦

Moreover, if you had some particular ℍ0 that you wanted to test, you could construct a
t-statistic, p-values, etc. along the lines discussed above.

Next, let’s move to the case where 𝑟(⋅) is a nonlinear function [as a side-comment, this case
generalizes the linear case, so these results cover that case well, but I think it is worth a separate
treatment of these two cases]. Under Assumption 7.2, we have that

√𝑛( ̂𝜃 − 𝜃) 𝑑−→ 𝒩(0, V𝜃) if 𝑟(⋅)
is continuously differentiable in a neighborhood of 𝛽 and R ∶= ∇𝑟(𝛽) where ∇𝑟(𝑏̄) ∶= 𝜕𝑟(𝑏)′

𝜕𝑏 ∣𝑏=𝑏̄ has
rank 𝑞. In this case, V𝜃 = R′V𝛽R

The above result is just an application of the delta method, but these arguments are importan-
t/unfamiliar enough that it is worth explaining in some more detail. Recall that the mean-value
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theorem says that, if 𝑓 is a continuous function on [𝑎, 𝑏] and differentiable on (𝑎, 𝑏), then there
exists a 𝑐 ∈ (𝑎, 𝑏) such that

𝑓 ′(𝑐) = 𝑓(𝑏) − 𝑓(𝑎)
𝑏 − 𝑎

In other words, there exists a point in between 𝑎 and 𝑏 where the slope of 𝑓 is equal to the slope
of the line connecting 𝑓(𝑎) and 𝑓(𝑏). Re-arranging implies that

𝑓(𝑏) = 𝑓(𝑎) + 𝑓 ′(𝑐)(𝑏 − 𝑎)

This is the expressions that will be useful for us (and note that these arguments also go through
when 𝑓 takes a vector argument and/or is vector-valued).

Going back to our case, using a mean-value argument, we can write

𝑟( ̂𝛽) = 𝑟(𝛽) + ∇𝑟( ̄𝛽)′( ̂𝛽 − 𝛽)

where ∇𝑟(𝑏̄) ∶= 𝜕𝑟(𝑏)′

𝜕𝑏 ∣
𝑏=𝑏̄

(so this is a 𝑘×𝑞 dimensional matrix, and plays the role of 𝑓 ′ in the mean

value theorem above), ̄𝛽 is a vector “between’ ’ ̂𝛽 and 𝛽 (and plays the role of 𝑐 in the mean value
theorem above). Further, notice that by multiplying both sides by

√𝑛 and re-arranging, it follows
that

√𝑛(𝑟( ̂𝛽) − 𝑟(𝛽)) = ∇𝑟( ̄𝛽)′√𝑛( ̂𝛽 − 𝛽)

= ∇𝑟(𝛽)′√𝑛( ̂𝛽 − 𝛽) + (∇𝑟( ̄𝛽) − ∇𝑟(𝛽))
′√𝑛( ̂𝛽 − 𝛽)

= ∇𝑟(𝛽)′√𝑛( ̂𝛽 − 𝛽) + 𝑜𝑝(1)𝑂𝑝(1)
= ∇𝑟(𝛽)′√𝑛( ̂𝛽 − 𝛽) + 𝑜𝑝(1)
𝑑−→ 𝒩(0, ∇𝑟(𝛽)′V𝛽∇𝑟(𝛽))

where the second equality holds by adding and subtracting ∇𝑟(𝛽)′√𝑛( ̂𝛽 − 𝛽), the third equality
holds by the continuous mapping theorem (as long as ∇𝑟(𝑏) is continuous at 𝛽) and because ̄𝛽 is
between ̂𝛽 and 𝛽, the fourth and fifth equalities hold immediately given the third equality, and the
last equality holds because we know the limiting distribution of

√𝑛( ̂𝛽 − 𝛽) and by the continuous
mapping theorem.
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Example: Consumer Surplus (H: 7.12)

Problem 7.12 in the textbook concerns running the regression 𝑌 = 𝛼 + 𝛽𝑋 + 𝑒 where 𝑋 is a scalar in the
case where it is known that 𝛼 > 0 and 𝛽 < 0 and then computing the area under the curve defined by the
regression line (which is relevant in economics applications for computing consumer surplus) and is given by
𝐴 = −𝛼2/2𝛽. The problem asks to propose an estimator of 𝐴 and to provide a confidence interval for 𝐴.
The natural estimator of 𝐴 is given by

̂𝐴 = −𝛼̂2

2 ̂𝛽

The key step for coming up with the confidence interval is figuring out the limiting distribution of
√𝑛( ̂𝐴−𝐴).

As a first step, our “usual” arguments for least squares regression imply that

√𝑛 (𝛼̂ − 𝛼
̂𝛽 − 𝛽) 𝑑−→ 𝒩(0, V𝛽) where V𝛽 = 𝔼[𝑋𝑋′]−1ΩΩΩ𝔼[𝑋𝑋′]−1

and ΩΩΩ = 𝔼[𝑋𝑋′𝑒2] (and where, to keep the expressions from getting too long, I am taking 𝑋 here to include
an intercept, so that V𝛽 is a 2 × 2 asymptotic variance matrix).
Next, notice that we can write 𝐴 = 𝑟(𝛼, 𝛽) and ̂𝐴 = 𝑟(𝛼, 𝛽) where 𝑟(𝑎, 𝑏) = −𝑎2/2𝑏. This suggests using a
delta method type of argument. In particular, using a mean value theorem argument, we can write

𝑟(𝛼̂, ̂𝛽) = 𝑟(𝛼, 𝛽) + ∇𝑟(𝛼̄, ̄𝛽)′ (𝛼̂ − 𝛼
̂𝛽 − 𝛽) (5)

where

∇𝑟(𝑎̄, 𝑏̄) ∶= ⎡⎢
⎣

𝜕𝑟(𝑎,𝑏)
𝜕𝑎

𝜕𝑟(𝑎,𝑏)
𝜕𝑏

⎤⎥
⎦

∣
𝑎=𝑎̄,𝑏=𝑏̄

= ⎡⎢
⎣

− 𝑎
𝑏

𝑎2
2𝑏2

⎤⎥
⎦

∣
𝑎=𝑎̄,𝑏=𝑏̄

which is the vector of partial derivatives of 𝑟(𝑎, 𝑏) evaluated at 𝑎̄ and 𝑏̄. Plugging this back in to Equation 5
implies that

̂𝐴 = 𝐴 + ⎡⎢
⎣

− 𝛼̄
̄𝛽

𝛼̄2
2 ̄𝛽2

⎤⎥
⎦

′

(𝛼̂ − 𝛼
̂𝛽 − 𝛽)

and, by multiplying by
√𝑛 and adding and subtracting terms, implies that

√𝑛( ̂𝐴 − 𝐴) = ⎡⎢
⎣

− 𝛼
𝛽

𝛼2
2𝛽2

⎤⎥
⎦

′
√𝑛 (𝛼̂ − 𝛼

̂𝛽 − 𝛽) +

′

⎛⎜⎜
⎝

⎡⎢
⎣

− 𝛼̄
̄𝛽

𝛼̄2
2 ̄𝛽2

⎤⎥
⎦

− ⎡⎢
⎣

− 𝛼
𝛽

𝛼2
2𝛽2

⎤⎥
⎦

⎞⎟⎟
⎠⏟⏟⏟⏟⏟⏟⏟⏟⏟

=𝑜𝑝(1)

√𝑛 (𝛼̂ − 𝛼
̂𝛽 − 𝛽)

⏟⏟⏟⏟⏟
=𝑂𝑝(1)

= ⎡⎢
⎣

− 𝛼
𝛽

𝛼2
2𝛽2

⎤⎥
⎦

′
√𝑛 (𝛼̂ − 𝛼

̂𝛽 − 𝛽) + 𝑜𝑝(1) 𝑑−→ 𝒩(0, 𝑉 )

where the 𝑜𝑝(1) in the first equality arises because (i) 𝛼̄ is between 𝛼̂ and 𝛼 and ̄𝛽 is between ̂𝛽 and 𝛽; (ii)
𝛼̂

𝑝
−→ 𝛼, ̂𝛽

𝑝
−→ 𝛽; and (iii) the continuous mapping theorem; and where

𝑉 = ⎡⎢
⎣

− 𝛼
𝛽

𝛼2
2𝛽2

⎤⎥
⎦

′

V𝛽
⎡⎢
⎣

− 𝛼
𝛽

𝛼2
2𝛽2

⎤⎥
⎦

Moreover, we can estimate 𝑉 by

̂𝑉 = ⎡⎢
⎣

− 𝛼̂
̂𝛽

𝛼̂2
2 ̂𝛽2

⎤⎥
⎦

′

V̂𝛽
⎡⎢
⎣

− 𝛼̂
̂𝛽

𝛼̂2
2 ̂𝛽2

⎤⎥
⎦

where V̂𝛽 = ( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑋′
𝑖)

−1
1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑋′
𝑖 ̂𝑒2

𝑖 ( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑋′
𝑖)

−1

which is the “usual” estimator of V𝛽. Finally, we can construct a 95

̂𝐶 = [ ̂𝐴 ± 1.96
√ ̂𝑉√𝑛 ]
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