
This material primarily comes directly from me, but you should also read H: 2.30. I didn’t
directly refer to it while I was writing these notes, but, if you want additional related material, you
can consult Scott Cunningham’s The Mixtape (particularly chapters 1 and 4).

Linear Regression Notes 2: Why Linear Regression?

H 2.18, H 2.11
We will spend a lot of time this semester studying properties of 𝛽 defined as

𝛽 = arg min
𝑏

𝔼[(𝑌 − 𝑋′𝑏)2]

In the first lecture notes, we showed that (under some regularity conditions) this had the solution

𝛽 = 𝔼[𝑋𝑋′]−1𝔼[𝑋𝑌 ]

Moreover, in the previous few classes, we provided some traditional reasons to be interested in
𝛽:

1. 𝑋′𝛽 is the best linear predictor of 𝑌 given 𝑋 (see H 2.18)

2. If we additionally (somehow) know that 𝔼[𝑌 |𝑋] = 𝑋′𝛽, then 𝑋′𝛽 is the best predictor of 𝑌
given in 𝑋 (see H 2.11)

Both of these are properties related to making predictions. This is interesting/useful in lots of
contexts. For example, suppose that you work as an appraiser and want to predict how much
a house will sell for, this suggests that you could run a regression of the price that houses sell
for on their characteristics (e.g., number of square feet, number of bathrooms, etc). This would
give you an estimate of ̂𝛽. Suppose that you wanted to predict the selling price of a house with
characteristics 𝑥; the above results suggest that 𝑥′ ̂𝛽 should be a good prediction (relative to trying
to use the same information in some other way to make a prediction).

These sorts of prediction problems are extremely common (you can especially imagine that this
important in numerous business/tech applications), and there have been major advancements in
using data to make predictions over the past 20-30 years.

That said, most research in economics (and social sciences, business fields, etc.) is not so much
interested in predictions, per se. For example, my secondary research interest is in labor economics.
In labor economics, there is tons of work where the outcome is a person’s earnings. However, I
have never seen any researcher who was primarily interested in taking a person’s characteristics
(say, their years of education, demographic characteristics, etc.) and making predictions about
what their earnings will be.

Instead, much research in labor economics concerns the effects of different policies (e.g., minimum
wage policies) or other interventions (e.g., a person participating in a union, going to college, or
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losing their job) on earnings. Learning about “effects” is related to making predictions (and we’ll
see that most of the main tools for prediction are also useful for evaluating effects of policies/inter-
ventions), but there are also some subtle and important differences.

The exception to the above discussion from the first lecture notes is the regression derivative. Be-
low, we will provide a connection between the regression derivative and linear projection coefficient
and answering the sort of “research questions” that are a main focus for us.

Causal Effects

H 2.30 (though much of the material below is not included in the textbook)
Now, let’s move to thinking about causal effects. I’ll talk briefly about how to think about this

conceptually and then how this is related to regression derivatives and linear regression.

Notation
In cases (like in the current section) where we are interested in understanding the effect of
particular variable, I may denote it by 𝐷 (which is common in many academic papers), while
referring to all remaining regressors as 𝑋 (I’ll probably also use the term ”covariates” for
these other regressors).

Binary Treatment

Work on understanding the effect of a particular variable of interest on some outcome is typically
called the “treatment effects literature”. This terminology originates from the biostatistics literature
where a treatment could literally refer to a medical treatment. We’ll use the term “treatment’ ’ more
broadly to refer to a policy or some intervention that we are interested in studying.

Let’s start with the case where the treatment is binary; that is 𝐷𝑖 = 1 if a unit participates in
the treatment and 𝐷𝑖 = 0 if a unit does not participate in the treatment.

We’ll also define potential outcomes 𝑌𝑖(1) and 𝑌𝑖(0) – these are the outcomes that a unit
would experience if it participated in the treatment or if it did not participate in the treatment,
respectively. For any, particular unit, the researcher only observes one of these potential outcomes;
that is, for treated units, we observe their treated potential outcomes, and for untreated units, we
observe their untreated potential outcomes. We can therefore write the observed outcome as

𝑌𝑖 = 𝐷𝑖𝑌𝑖(1) + (1 − 𝐷𝑖)𝑌𝑖(0)

and, it is convenient to note that this can also be written as

𝑌𝑖 = 𝑌𝑖(0) + 𝐷𝑖(𝑌𝑖(1) − 𝑌𝑖(0)) (1)

which follows just by re-arranging terms from the previous equation.
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Target Parameters
In the context of a binary treatment, much research targets one of the following two parameters:

𝐴𝑇 𝐸 ∶= 𝔼[𝑌 (1) − 𝑌 (0)]
𝐴𝑇 𝑇 ∶= 𝔼[𝑌 (1) − 𝑌 (0)|𝐷 = 1]

𝐴𝑇 𝐸 stands for “average treatment effect” and 𝐴𝑇 𝑇 stands for “average treatment effect on the
treated”. 𝐴𝑇 𝐸 is the average difference between treated and untreated potential outcomes for the
entire population. 𝐴𝑇 𝑇 is the average difference between treated and untreated potential outcomes
among those that participate in the treatment.

It may seem like 𝐴𝑇 𝐸 is inherently more interesting than 𝐴𝑇 𝑇 , but I don’t think this is neces-
sarily the case. To give an example, suppose you are interested in studying the causal effect of job
training on people’s earnings. Presumably, the effect of job training is exactly 0 for a large portion
of the population. In this case, 𝐴𝑇 𝑇 is probably the more relevant parameter to aim to identify —
it is the average effect of job training among those that actually participate.

For much of the course, we will target identifying the 𝐴𝑇 𝑇 — at the beginning of the course, this
is mainly to make the arguments more concise, and we could instead target 𝐴𝑇 𝐸. That said, there
are some cases where we will explicitly target 𝐴𝑇 𝐸, and there will be some other case (particularly
when we discuss panel data) where it would require different sorts of arguments to identify 𝐴𝑇 𝐸
relative to 𝐴𝑇 𝑇 .

Experiments
If we had access to an experiment (that is, that we could randomly assign units to either partic-

ipate in the treatment or not), it would follow that

(𝑌 (1), 𝑌 (0)) ⟂ 𝐷 (2)

In words, if we can randomly assign treatment, then (by construction) potential outcomes are
independent of participating in the treatment. More informally, there is “nothing special” about
units that participate in the treatment relative to those that do not participate in the treatment
(at least in terms of their potential outcomes).

Let’s think about identifying 𝐴𝑇 𝑇 under random assignment as in Equation 2. Notice that

𝐴𝑇 𝑇 = 𝔼[𝑌 (1) − 𝑌 (0)|𝐷 = 1]
= 𝔼[𝑌 (1)|𝐷 = 1] − 𝔼[𝑌 (0)|𝐷 = 1]
= 𝔼[𝑌 |𝐷 = 1]⏟⏟⏟⏟⏟

Easy

− 𝔼[𝑌 (0)|𝐷 = 1]⏟⏟⏟⏟⏟⏟⏟
Hard

The previous display indicates that 𝐴𝑇 𝑇 is equal to the average outcome actually experienced
by the treated group relative to the average outcome among those in the treated group if they had
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not participated in the treatment. The first term is “easy” because those outcomes are observed
outcomes. The second term is “hard” because we do not observe untreated potential outcomes for
the treated group.

However, Equation 2 implies that 𝔼[𝑌 (0)|𝐷 = 1] = 𝔼[𝑌 (0)|𝐷 = 0]. That is, because untreated
potential outcomes are independent of treatment, the average untreated potential outcome among
the treated group is the same as the average untreated potential outcome among the untreated
group. This, therefore, implies that (given random assignment):

𝐴𝑇 𝑇 = 𝔼[𝑌 |𝐷 = 1] − 𝔼[𝑌 |𝐷 = 0]

That is, we can recover the 𝐴𝑇 𝑇 by comparing the average outcomes among the treated group
relative to the average outcomes among the untreated group.

Practice: Given the above expression for 𝐴𝑇 𝑇 , what is the natural way to estimate 𝐴𝑇 𝑇 ?

Now, let’s think about how to estimate causal effects using a regression (and given random
assigment) — this is going to be very simple, but I think it is worth explaining so that we can use
the same sorts of procedures in more complicated cases below.

Let’s write an extremely simple model for untreated potential outcomes:

𝑌𝑖(0) = 𝛽0 + 𝑒𝑖 (3)

By construction, we have that 𝔼[𝑒] = 0, but random assigment also implies that 𝔼[𝑒|𝐷 = 𝑑] = 0
for 𝑑 ∈ {0, 1}. To see this, notice that 𝔼[𝑌 (0)|𝐷 = 𝑑] = 𝛽0 + 𝔼[𝑒|𝐷 = 𝑑]. Recall that random
assignment implies that 𝔼[𝑌 (0)|𝐷 = 1] = 𝔼[𝑌 (0)|𝐷 = 1], therefore it must be the case that
𝔼[𝑒|𝐷 = 1] = 𝔼[𝑒|𝐷 = 0] = 0.

Let’s also make an additional assumption called treatment effect homogeneity. In math, we
can write this as 𝑌𝑖(1) − 𝑌𝑖(0) = 𝛼. This means that the effect of participating in the treatment is
the same for all units (and is equal to 𝛼). This is probably a strong assumption; in my view, one
would expect that the effect of participating in most any treatment could conceivably vary across
units (especially in economics, social sciences, and most business applications). But let’s just make
this assumption for now — we’ll talk about it much more in the future.

Next, notice that

𝑌𝑖 = 𝑌𝑖(0) + 𝐷𝑖(𝑌𝑖(1) − 𝑌𝑖(0))
= 𝑌𝑖(0) + 𝛼𝐷𝑖

= 𝛽0 + 𝛼𝐷𝑖 + 𝑒𝑖 (4)

where the first equality comes from Equation 1, the second equality holds by treatment effect
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homogeneity, and the last equality holds from Equation 3 and by rearranging terms. Moreover,
because 𝔼[𝑒|𝐷] = 0, this suggests estimating 𝛼 (the causal effect of the treatment) by running a
regression of 𝑌 on 𝐷.

To conclude this discussion, it is interesting to notice that, given the regression in Equation 4,

𝔼[𝑌 |𝐷 = 1] = 𝛽0 + 𝛼
𝔼[𝑌 |𝐷 = 0] = 𝛽0

and subtracting the second equation from the first equation and re-arranging implies that

𝛼 = 𝔼[𝑌 |𝐷 = 1] − 𝔼[𝑌 |𝐷 = 0]

which further implies that 𝛼 = 𝐴𝑇 𝑇 . This is interesting because we derived the regression in
Equation 4 under the extra condition of treatment effect homogeneity. However, that 𝛼 = 𝐴𝑇 𝑇
implies that this regression is robust to treatment effect heterogeneity.

Unconfoundedness
In most application in economics, researchers do not have access to an experiment (or, alterna-

tively, do not have the ability to randomly assign units to participate in the treatment or not).
In cases with “observational” data (meaning: non-experimental data), one of the most common
assumptions for thinking about causal effects is the following unconfoundedness assumption (you
may also sometimes hear this called selection-on-observables, and the textbook refers to this as a
conditional independence assumption):

(𝑌 (1), 𝑌 (0)) ⟂⟂ 𝐷|𝑋

Unconfoundedness says that potential outcomes are independent of the treatment after conditioning
on some covariates 𝑋. Informally, unconfoundedness means that, among units with the same
characteristics 𝑋, the distribution of treated and untreated potential outcomes is the same among
the treated and untreated group (though the distribution of 𝑋 could differ across groups). If
you want to assume unconfoundedness, this often needs to be rationalized (perhaps informally)
theoretically.

Side Comment: Sometimes the assumption that 𝑌 (0) ⟂⟂ 𝐷|𝑋 can be meaningfully weaker
that what I have called unconfoundedness above. In particular, this assumption just implies
that treated and untreated units with the same characteristics 𝑋 have the same distribution
of untreated potential outcomes (but would allow for treated units to, for example, have
systematically better treated potential outcomes that untreated units). The assumption in
this comment is strong enough to identify 𝐴𝑇 𝑇 , but it is not strong enough to identify 𝐴𝑇 𝐸.
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Under unconfoundedness, notice that

𝐴𝑇 𝑇 = 𝔼[𝑌 (1)|𝐷 = 1] − 𝔼[𝑌 (0)|𝐷 = 1]
= 𝔼[𝑌 (1)|𝐷 = 1] − 𝔼[𝔼[𝑌 (0)|𝑋, 𝐷 = 1]|𝐷 = 1]
= 𝔼[𝑌 (1)|𝐷 = 1] − 𝔼[𝔼[𝑌 (0)|𝑋, 𝐷 = 0]|𝐷 = 1]
= 𝔼[𝑌 |𝐷 = 1] − 𝔼[𝔼[𝑌 |𝑋, 𝐷 = 0]|𝐷 = 1]

This implies that 𝐴𝑇 𝑇 is nonparametrically identified under the assumption of unconfound-
edness — that is, it can be related to population quantities that we have analogues of in the data
that we observe.

And, in particular, the above result implies that 𝐴𝑇 𝑇 is equal to the mean actual outcomes of
the treated group adjusted by the the mean outcomes for the treated group conditional on 𝑋, but
then averaged over the distribution of 𝑋 for the treated group.

For example, suppose that the treatment is whether or not a person goes to college; further,
suppose that we are willing to assume unconfoundedness conditional on parents’ income (note: this
assumption is not likely to be plausible, but let’s just go with it here). In this case, the first term in
the ATT of going to college is equal to the mean earnings of those that went to college. The inside
part of the second term, 𝔼[𝑌 |𝑋, 𝐷 = 0], is the average earnings of those that did not go to college
conditional on their parents’ income (by assumption this is equal to the average earnings of people
that (i) went to college and (ii) have the same value of parents’ income would have experienced if
they had not gone to college), and the outside expectation averages the conditional expectation
over the distribution of parents’ income among those that went to college. This latter step allows
for the distribution of parents’ income to differ (perhaps significantly) among those that went to
college and those that did not go to college.

Although the previous result implies that ATT is nonparametrically identified, it may be prac-
tically difficult to (nonparametrically) estimate the ATT using the above expression. This would
particularly be the case if the dimension of 𝑋 is relatively large as estimating 𝔼[𝑌 |𝑋, 𝐷 = 0] would
start to suffer from the curse of dimensionality that we talked about in the introductory slides.
Thus, in many applications, it might be desirable to have simpler (i.e., more feasible) estimation
strategies. And, for this reason, we are going to try to connect unconfoundedness to running re-
gressions. This will involve some extra assumptions, but it will result in (very) simple estimation
approaches.

To connect this to running a regression, let’s make some additional assumptions. First, let’s
assume a model for untreated potential outcomes:

𝑌𝑖(0) = 𝑋′
𝑖𝛽 + 𝑒𝑖

This is a linearity assumption for untreated potential outcomes. Notice that unconfoundedness
implies that 𝔼[𝑌 (0)|𝑋, 𝐷 = 1] = 𝔼[𝑌 (0)|𝑋, 𝐷 = 0] which (given linearity) implies that 𝔼[𝑒|𝑋, 𝐷 =
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𝑑] = 0 for 𝑑 ∈ {0, 1}. Next, let’s make the treatment effect homogeneity assumption that 𝑌𝑖(1) −
𝑌𝑖(0) = 𝛼. Then,

𝑌𝑖 = 𝑌𝑖(0) + 𝐷𝑖(𝑌𝑖(1) − 𝑌𝑖(0))
= 𝑌𝑖(0) + 𝛼𝐷𝑖

= 𝛼𝐷𝑖 + 𝑋′
𝑖𝛽 + 𝑒𝑖

where the first equality holds by Equation 1, the second equality holds by the treatment effect
homogeneity condition, and the third equality holds by the model for untreated potential outcomes
and by rearranging. This equation suggests estimating the causal effect of 𝐷 on 𝑌 by running a
regression of 𝑌 on 𝐷 and 𝑋 and interpreting the estimated coefficient on 𝐷 as an estimate of the
causal effect.

Unlike in the earlier case of random assignment, this regression is not robust to violations of
treatment effect homogeneity. Later in the semester, we will talk about exactly what this regres-
sion recovers in the presence of treatment effect heterogeneity, and we will also talk about some
alternative methods that are more robust to violations of treatment effect homogeneity. It is also
not robust to violations of the linear model for untreated potential outcomes. I am not totally sure
about this, but my sense is that, in cases where unconfoundedness holds, that the “empirical rele-
vance” of violations of treatment effect homogeneity and linearity of untreated potential outcomes
are relatively small. And, at any rate, under unconfoundedness, running a regression of 𝑌 on 𝐷
and 𝑋 is by far the most common approach used in empirical work.

Continuous Treatment

So far, we have talked about the case with a binary treatment. Next, let’s move to the case
where the treatment can take on a continuum of values. I’ll talk here about the case where the
treatment can take values in 𝒟 = {0} ∪ [𝑑𝐿, 𝑑𝑈 ]. In other words, it is possible that some units do
not participate in the treatment at all, but, otherwise, the treatment is continuous in the range
from 𝑑𝐿 to 𝑑𝑈 . I won’t cover intermediate cases such as a multi-valued discrete treatment, but the
arguments would basically be a combination of the ones in this section with the ones in the previous
section with binary treatment. To fix ideas, you can think of continuous treatment examples such
as the amount of “dose” of some medical treatment (e.g., number of Advils to treat a headache or
the “amount” of a Covid-19 vaccine); as an economics example, one example is intergenerational
income mobility where the outcome is child’s income and the continuous treatment is parents’
income, and another example is quantity demanded where the outcome is quantity demanded and
the continuous treatment is price.

We use 𝐷𝑖 to denote the actual amount of the treatment that unit 𝑖 experiences. We’ll define
potential outcomes using a slightly extended notation from the previous extension. In particular,
let 𝑌𝑖(𝑑) denote the outcome that would occur for unit 𝑖 if they were to experience dose 𝑑. The
observed outcome is given by
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𝑌𝑖 = 𝑌𝑖(𝐷𝑖)
= 𝑌𝑖(0) + (𝑌𝑖(𝐷𝑖) − 𝑌𝑖(0)) (5)

In other words, we observe outcomes corresponding to the actual amount of the treatment for a
particular unit. The second equality holds by adding and subtracting 𝑌𝑖(0) and will be helpful
in some derivations below. As a side-comment, in cases where it is not possible to be untreated
or where defining untreated potential outcomes is somehow “awkward”; the arguments below will
follow with trivial modifications by replacing “untreated” with the smallest possible amount of the
treatment.

Let’s briefly talk about the sorts of parameters that you could be interested in for this case. One
sort of parameters are level effects such as

𝐴𝑇 𝑇 (𝑑) ∶= 𝔼[𝑌 (𝑑) − 𝑌 (0)|𝐷 = 𝑑]
𝐴𝑇 𝐸(𝑑) ∶= 𝔼[𝑌 (𝑑) − 𝑌 (0)]

These are quite similar to 𝐴𝑇 𝑇 and 𝐴𝑇 𝐸 that we talked about in the case with a binary treatment.
𝐴𝑇 𝑇 (𝑑) is the average difference between potential outcomes under dose 𝑑 relative to untreated
potential outcomes among those that actually experienced dose 𝑑. 𝐴𝑇 𝐸(𝑑) is the overall average
difference between potential outcomes under dose 𝑑 relative to untreated potential outcomes.

When the treatment is continuous, it also makes sense to think about “slope effects” that are
derivatives of the above parameters. For example, one could be interested average causal re-
sponse

𝐴𝐶𝑅(𝑑) ∶= 𝜕 𝐴𝑇 𝐸(𝑑)
𝜕 𝑑

This is how much outcomes causally increase on average under a marginal increase in the dose/treat-
ment.
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Side-Comment: Another interesting target parameter would be a derivative of 𝐴𝑇 𝑇 (𝑑),
though this is somewhat conceptually harder to think about. In particular, let’s expand the
notation above to define

𝐴𝑇 𝑇 (𝑑|𝑑′) = 𝔼[𝑌 (𝑑) − 𝑌 (0)|𝐷 = 𝑑′]

so that this is the average difference between potential outcomes under dose 𝑑 relative to
untreated potential outcomes among those that experienced dose 𝑑′ — which breaks the
connection between the dose for the potential outcomes and the dose being conditioned on.
Then, one can define the average causal response on the treated

𝐴𝐶𝑅𝑇 (𝑑|𝑑′) ∶= 𝜕 𝐴𝑇 𝑇 (𝑙|𝑑′)
𝜕 𝑙 ∣

𝑙=𝑑

This is the causal effect of a marginal increase in the treatment (relative to dose 𝑑) among
those that actually experienced dose 𝑑′.
At the cost of somewhat stronger assumptions (in some cases), we’ll mostly target 𝐴𝐶𝑅(𝑑),
mostly for simplicity.

Side Comment: 𝐴𝐶𝑅(𝑑) is a functional parameter — you could plug in different values of
𝑑 and 𝐴𝐶𝑅(𝑑) could take a different value. Many times researchers would like to report a
single number to summarize the causal effect of a treatment. In this case, a natural summary
measure is

𝐴𝐶𝑅𝑂 ∶= 𝔼[𝐴𝐶𝑅(𝐷)|𝐷 > 0]

which is just 𝐴𝐶𝑅(𝑑) averaged over the distribution of the dose. Below, when we talk about
regressions, these generally output a single number, and it is natural to compare that number
to 𝐴𝐶𝑅𝑂 (ideally, we would like the regression to deliver 𝐴𝐶𝑅𝑂).

Let’s start with the case where the amount (sometimes this is called the “dose”) of the treatment
is randomly assigned. This implies that, for all 𝑑 ∈ 𝒟,

𝑌 (𝑑) ⟂⟂ 𝐷

In other words, potential outcomes are independent of the amount of the treatment.
Let’s show that some of the parameters of interest above are identified. First, let’s consider
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𝐴𝑇 𝐸(𝑑). In this case,

𝐴𝑇 𝐸(𝑑) = 𝔼[𝑌 (𝑑)] − 𝔼[𝑌 (0)]
= 𝔼[𝑌 (𝑑)|𝐷 = 𝑑] − 𝔼[𝑌 (0)|𝐷 = 0]
= 𝔼[𝑌 |𝐷 = 𝑑] − 𝔼[𝑌 |𝐷 = 0]

where the first equality is just the definition of 𝐴𝑇 𝐸(𝑑), the second equality holds by random
assignment, and the third equality re-writes potential outcomes in terms of their observed coun-
terparts. This shows that, under random assignment, 𝐴𝑇 𝐸(𝑑) is identified. And, in particular, it
is given by the mean outcome among those that experienced dose 𝑑 relative to the mean outcome
among those that were untreated. This is not surprising: random assignment means that to think
about average treatment effects, we can take units that experienced some particular amount of
the treatment (because of random assignment their outcomes are not systematically different from
outcomes among those that experienced some other amount of the treatment) and we can com-
pare these outcomes to the mean of outcomes experienced by the untreated group (under random
assignment, these outcomes are not systematically different from the outcomes others would have
experienced if they had been untreated).

We can also recover 𝐴𝐶𝑅(𝑑) by taking the derivative of the previous expression; that is,

𝐴𝐶𝑅(𝑑) = 𝜕𝔼[𝑌 |𝐷 = 𝑙]
𝜕𝑙 ∣

𝑙=𝑑

which holds because 𝔼[𝑌 |𝐷 = 0] does not depend on 𝑑.

Practice: Show that 𝐴𝑇 𝑇 (𝑑) is identified under random assignment and provide an
expression for it.

The above discussion implies that 𝐴𝑇 𝐸(𝑑) and 𝐴𝐶𝑅(𝑑) are both nonparametrically identified.
Now, let’s think about nonparametrically estimating these. As long as you have access to an
untreated group, then the term 𝔼[𝑌 |𝐷 = 0] is easy to estimate — just subset the data down
to untreated observations and calculate their average outcome. However, when the treatment is
continuously distributed, 𝔼[𝑌 |𝐷 = 𝑑] is trickier to estimate; in particular, if the treatment is truly
continuous then there are likely to be 0 observations that have dose exactly equal to 0 which
suggests that the same “subsetting” strategy is not likely to work. Instead, most nonparametric
estimation strategies take observations that are “close” to 𝑑 and average them together (we will
leave the definition of “close” vague for now as there are several ways to think about this and this
discussion can become quite technical). Broadly, this strategy should work pretty well. There is no
curse of dimensionality here since 𝐷 is a scalar. Estimating 𝐴𝐶𝑅(𝑑) is somewhat more challenging
(intuitively, it should make sense that estimating derivatives of functions well is more challenging
than estimating the function itself though they are clearly related). I’m not going to talk about
how you would do it now, but, in many application, it is probably feasible to do this too.
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In my view, if you are in this case, you ought to seriously consider the nonparametric estimation
approaches discussed above, but I think that it is much more common to use regressions in this case
too. My sense is that this is for two reasons: (i) although the nonparametric approaches mentioned
above are likely to be “feasible”, they are definitely more complicated than running a regression, (ii)
you need to choose some way to define “close” and, it turns out, that results can be quite sensitive
to this choice, but regressions (for better or worse) side-step this choice.

Now, let’s discuss how you can connect the previous discussion to running a regression. As in
the case with a binary treatment, let’s start by making a treatment effect homogeneity assumption:
for all 𝑑 ∈ 𝒟, 𝑌𝑖(𝑑) − 𝑌𝑖(0) = 𝛼𝑑. Notice that this implies that

𝑌 ′(𝑑) ∶= lim
ℎ→0

𝑌 (𝑑 + ℎ) − 𝑌 (𝑑)
ℎ

= lim
ℎ→0

𝛼(𝑑 + ℎ) − 𝛼𝑑
ℎ

= 𝛼.

where the second line uses the treatment effect homogeneity assumption, and the last line follows
just from canceling terms. This means that 𝛼 should be interpreted as how much outcomes causally
increase under a one unit increase in the dose, and (under the assumptions we have made) this is
constant across units and across different amounts of the dose.

As in the previous section, treatment effect homogeneity is likely to be very strong. As in the
case with a binary treatment, it restricts treatment effects to be constant across units. In this case
it is additionally potentially restrictive in that it requires that the causal effect of more dose is
the same regardless of the “starting dose” (for example, it would be a very strong assumption to
assume that every time you increase the number of Advil that you take it reduces your headache by
the same amount). As before, let us delay trying to relax this assumption and/or thinking about
what potential issues it could cause and just go with it for now.

Finally, let’s use the same model for untreated potential outcomes as in Equation 3, where from
random assignment, it holds that 𝔼[𝑒|𝐷 = 𝑑] = 0.

Now, notice that

𝑌𝑖 = 𝑌𝑖(0) + (𝑌𝑖(𝐷𝑖) − 𝑌𝑖(0))
= 𝑌𝑖(0) + 𝛼𝐷𝑖

= 𝛽0 + 𝛼𝐷𝑖 + 𝑒𝑖

where the first equality uses Equation 5, the second equality uses treatment effect homogeneity,
and the third equality uses Equation 3 and re-arranges terms. This discussion suggests (in the case
where the amount of the treatment is randomly assigned and under treatment effect homogeneity)
to run a regression of 𝑌 on 𝐷 and interpret 𝛼 as the causal effect of a marginal increase in the dose.

Like the case of unconfoundedness above, treatment effect homogeneity matters in a potentially
meaningful way here. We’ll come back to this issue in a few weeks and discuss how 𝛼 can be

11



interpreted without treatment effect homogeneity. As in the previous case, my sense is that running
the above regression would still be the leading approach to estimating causal effects in this case
though, and it is not entirely clear to me how much using alternative approaches that are robust
to treatment effect heterogeneity actually matter.

To conclude this section, let’s briefly consider the case of a continuous treatment under uncon-
foundedness. That is, let’s assume that, for all 𝑑 ∈ 𝒟,

𝑌 (𝑑) ⟂⟂ 𝐷|𝑋

Practice: Show that 𝐴𝑇 𝐸(𝑑), 𝐴𝑇 𝑇 (𝑑), and 𝐴𝐶𝑅(𝑑) are nonparametrically identified
under the above unconfoundedness assumption and provide an expression for them.

If you complete the above practice problem, you will see that 𝐴𝑇 𝐸(𝑑), 𝐴𝑇 𝑇 (𝑑), and 𝐴𝐶𝑅(𝑑)
all depend on terms like 𝔼[𝑌 |𝑋, 𝐷 = 𝑑] (given our above discussion about unconfoundedness with
a binary treatment, this should not come as a surprise to you). Although these sorts of terms
are identified, they can be very challenging to nonparametrically estimate particularly when 𝑋 is
moderate- or high-dimensional. For this reason, it is often empirically useful to provide conditions
under which one can estimate causal effects of a continuous treatment using a regression. As earlier,
the benefit here is a (much) simpler estimation strategy, and the cost is some extra assumptions.

Let’s make some assumptions that lead to using a regression to estimate the causal effect of a
small increase in the dose. As in the case of a binary treatment under unconfoundedness, let’s
assume that untreated potential outcomes are generated by the following linear model:

𝑌𝑖(0) = 𝑋′
𝑖𝛽 + 𝑒𝑖

where the linearity is the key assumption here. Given linearity, we have that 𝔼[𝑒|𝑋] = 0. Un-
confoundedness additionally implies that 𝔼[𝑒|𝑋, 𝐷 = 𝑑] = 0 for all 𝑑 ∈ 𝒟. Next, let’s make the
treatment effect homogeneity assumption that, for all 𝑑 ∈ 𝒟, 𝑌𝑖(𝑑) − 𝑌𝑖(0) = 𝛼𝑑. Then, following
the same sorts of arguments that we have been using in earlier sections

𝑌𝑖 = 𝑌𝑖(0) + (𝑌𝑖(𝐷𝑖) − 𝑌𝑖(0))
= 𝑌𝑖(0) + 𝛼𝐷𝑖

= 𝛼𝐷𝑖 + 𝑋′
𝑖𝛽 + 𝑒𝑖

which holds using similar arguments as we have used before and suggests estimating the causal
effect of a marginal increase in the dose by running a regression of 𝑌 on 𝐷 and 𝑋.

As you would expect (given that this is the most complicated setup we have considered so far), this
regression is not fully robust to (i) violations of treatment effect homogeneity or (ii) misspecification
of the model for untreated potential outcomes. That said, we’ll re-visit what exactly 𝛼 is under
treatment effect heterogeneity and potential misspecification in several weeks.
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