
Introduction to R
We will learn a lot more about statistical programming this semester, but we’ll start with a crash course

on R  with the idea of getting you up-and-running.

I listed a few references in the Introduction, but this section will mostly follow the discussion in

Introduction to Data Science: Data Wrangling and Visualization with R, by Rafael Irizarry. I’ll abbreviate

this reference as IDS throughout this section.

IDS is not specifically geared towards Econometrics, but I think it is a really fantastic book and resource.

In this section, I cover what I think are the most important basics of R programming and additionally

point you to the references for the material that I cover in class. I will cover chapters 1-3, 6, and 20 in

some detail, and I strongly recommend reading all of these chapters closely. As you have time, I’d

recommend reading 4-5 (about working with data) and 7-10 (about visualizing data). The course should

set you up so that the remaining chapters of the book can serve as helpful reference material

throughout the rest of the semester.

Setting up R

This section covers how to set up R and RStudio and then what RStudio will look like when you open it up.

Related Reading: IDS 1.1

R is a statistical programming language. This is important for two reasons

It looks like a “real” programming language. In my view, this is a big advantage. And many of the

programming skills that we will learn in this class will be transferable. What I mean is that, if you one

day want to switch to writing code in Stata or Python, I think the switch should be not-too-painful

because learning new “syntax” (things like where to put the semi-colons) is usually relatively easy

compared to the “way of thinking” about how to write code. Some other statistical programming

languages are more “canned” than R. In some sense, this makes them easier to learn, but this also

comes with the drawback that whatever skills that you learn are quite specific to that one language.

Even though R is a real programming language, it is geared towards statistics. Compared to say,

Matlab, a lot of common statistical procedures (e.g., running a regression) will be quite easy for you.

R is very popular among statisticians, computer scientists, economists.

It is easy to share code across platforms: Linux, Windows, Mac. Besides that, it is easy to write and

contribute extensions. I have 10+ R packages that you can easily download and immediately use.

There is a large community, and lots of available, helpful resources.

What is R?

https://rafalab.dfci.harvard.edu/dsbook-part-1/


ChatGPT

Your favorite search engine

StackOverflow

We will use R (https://www.r-project.org/) to analyze data. R is freely available and available across

platforms. You should go ahead and download R for your personal computer as soon as possible — this

should be relatively straightforward. It is also available at most computer labs on campus.

Base R  comes with a lightweight development environment (i.e., a place to write and execute code), but

most folks prefer RStudio as it has more features. You can download it here:

https://www.rstudio.com/products/rstudio/download/#download; choose the free version based on your

operating system (Linux, Windows, Mac, etc.).

Related Reading: IDS 1.4

When you first open Rstudio, it will look something like this

Typically, we will write scripts, basically just as a way to save the code that we have written. Go to File -

> New File -> R Script . This will open up a new pane, and your screen should look something like this

Downloading R

RStudio

RStudio Development Environment

https://www.r-project.org/
https://www.rstudio.com/products/rstudio/download/#download


Let’s look around here. The top left pane is called the “Source Pane”. It is where you can write an R script.

Try typing

in that pane. This is a very simple R program. Now, type Ctrl+s  to save the script. This will likely prompt

you to provide a name for the script. You can call it first_script.R  or something like that. The only

thing that really matters is that the file name ends in “.R” (although you should at least give the file a

reasonably descriptive name).

Now let’s move to the bottom left pane. This is called the “Console Pane”. It is where the actual

computations happen in R (Notice that, although we have already saved our first script, we haven’t

actually run any code). Beside the blue arrow in that pane, try typing

and then press ENTER . This time you should actually see the answer.

Now, let’s go back to the Source pane. Often, it is convenient to run R programs line by line (mainly in

order for it to be easy for you to digest the results). You can do this by pressing Ctrl+ENTER  on any line

in your script for it to run next. Try this on the first line of your script file where we previously typed 1+1 .

This code should now run, and you should be able to see the result down in the bottom left Console

pane.

We will ignore the two panes on the right for now and come back to them once we get a little more

experience programming in R.

1+1

2+2



Installing R Packages

Related Reading: IDS 1.5

When you download R , you get “base” R . Base R contains “basic” functions that are commonly used by

most R users. To give some examples, base R gives you the ability add, subtract, divide, or multiply

numbers. Base R gives you the ability to calculate the mean (the function is called mean ) or standard

deviation (the function is called sd ) of a vector of numbers.

Base R is quite powerful and probably the majority of code you will write in R will only involve Base R.

That being said, there are many cases where it is useful to expand the base functionality of R . This is

done through packages. Packages expand the functionality of R. R is open source so these packages are

contributed by users.

It also typically wouldn’t make sense for someone to install all available R packages. For example, a

geographer might want to install a much different set of packages relative to an economist. Therefore,

we will typically install only the additional functionality that we specifically want.

Example: In this example, we’ll install the dslabs  package (which is from the IDS book) and the

lubridate  package (which is a package for working with dates in R).

Installing a package is only the first step to using a package. You can think of installing a package like

downloading a package. To actually use a package, you need to load it into memory (i.e., “attach” it) or at

least be clear about the package where a function that you are trying to call comes from.

Example: Dates can be tricky to work with in R (and in programming languages generally). For

example, they are not exactly numbers, but they also have more structure than just a character

string. The lubridate  package contains functions for converting numbers/strings into dates.

[1] "character"

# install dslabs package
install.packages("dslabs")

# install lubridate package
install.packages("lubridate")

bday <- "07-15-1985"
class(bday) # R doesn't know this is actually a date yet



[1] "1985-07-15"

[1] "Date"

Another (and perhaps better) way to call a function from a package is to use the ::  syntax. In

this case, you do not need the call to library  from above. Instead, you can try

[1] "1985-07-15"

This does exactly the same thing as the code before. What is somewhat better about this code is

that it is easier to tell that the mdy  function came from the lubridate  package.

AER  — package containing data from Applied Econometrics with R

wooldridge  — package containing data from Wooldridge’s text book

ggplot2  — package to produce sophisticated looking plots

dplyr  — package containing tools to manipulate data

haven  — package for loading different types of data files

plm  — package for working with panel data

fixest  — another package for working with panel data

ivreg  — package for IV regressions, diagnostics, etc.

estimatr  — package that runs regressions but with standard errors that economists often like more

than the default options in R

modelsummary  — package for producing nice output of more than one regression and summary

statistics

# load the package
library(lubridate)
# mdy stands for "month, day, year"
# if date were in different format, could use ymd, etc.
date_bday <- mdy(bday)
date_bday

# now R knows this is a date
class(date_bday)

lubridate::mdy(bday)

A list of useful R packages



As of this writing, there are currently 18,004 R packages available on CRAN (R’s main repository for

contributed packages).

R Basics

Related Reading: IDS 2.1

In this section, we’ll start to work towards writing useful R code.

Related Reading: IDS 2.2

The very first step to writing code that can actually do something is to able to store things. In R, we store

things in objects (perhaps sometimes I will also use the word variables).

Earlier, we used R to calculate . Let’s go back to the Source pane (top left pane in RStudio) and type

Press Ctrl+ENTER  on this line to run it. You should see the same line down in the Console now.

Let’s think carefully about what is happening here

answer  is the name of the variable (or object) that we are creating here.

the <-  is the assignment operator. It means that we should assign whatever is on the right hand

side of it to the variable that is on the left hand side of it

1+1  just computes  as we did earlier. Soon we will put more complicated expressions here.

You can think about the above code as computing  and then saving it in the variable answer .

Side Comment: The assignment operator, <- , is a “less than sign” followed by a “hyphen”. It’s

often convenient though to use the keyboard shortcut Alt+-  (i.e., hold down Alt  and press the

hypen key) to insert it. You can also use an =  for assignment, but this is less commonly done in R.

Practice: Try creating variable called five_squared  that is equal to  (multiplication in R is

done using the *  symbol).

Objects

1 + 1

answer <- 1 + 1

1 + 1

1 + 1

5 × 5



There are a number of reasons why you might like to create an object in R. Perhaps the main one is so

that you can reuse it. Let’s try multiplying answer  by .

[1] 6

If you wanted, you could also save this as its own variable too.

Related Reading: IDS 2.2

Before we move on, I just want to show you what my workspace looks like now.

As we talked about above, you can see the code in my script in the Source pane in the top left. You can

also see the code that I actually ran in the Console pane on the bottom left.

Now, take a look at the top right pane. You will see under the Environment tab that answer  shows up

there with a value of 2 . The Environment tab keeps track of all the variables that you have created in

your current session. A couple of other things that might be useful to point out there.

Later on in the class, we will often import data to work with. You will notice the “Import Dataset”

button that is located in this top right pane. I will suggest to you a different way of importing data in

the next section, but this is also a way to do it.

Occasionally, you might get into the case where you have saved a bunch of variables and it would be

helpful to “start over”. The broom in this pane will “clean” your workspace (this just means delete

3

answer*3

Workspace



everything).

Related Reading: IDS 6

To work with actual data in R, we will need to import it. I mentioned the “Import Data” button above, but

let me mention a few other possibilities here, including how to import data by writing code.

On the course website, I posted three files firm.data.csv , firm_data.RData , and firm_data.dta . All

three of these contain exactly the same small, fictitious dataset, but are saved in different formats.

Probably the easiest way to import data in R is through the Files pane on the bottom right. But, in order

to do this, you may need to change your working directory. We will do this using RStudio’s user interface

in the following steps:

First navigate to Sessions -> Set Working Directory -> Choose Directory. This will open a window that

will allow you to choose the directory where you saved the data.

Next, use the menu to navigate to the place where you saved firm_data.csv . I created a folder

~/Dropbox/Courses/Georgia/Undergrad Econometrics/24 Fall/firm data/  and saved it there.

Importing Data



Now, we have set the working directory, and this is what RStudio looks like for me. Notice that the

working directory is now set to the folder where I saved the data. You can see the difference in the

Files pane.



Next, we will load the data, just by clicking it in the Files pane. I picked firm_data.csv , but any of

the three files will work. R  is quite good at recognizing different types of data files and importing

them, so this same procedure will work for firm_data.RData  and firm_data.dta  even though they

are different types of files. Once you click it, you will get a screen that should look like this

Click “Import” and the data should be imported. You can see that it is now in the Environment pane.



Next, let’s discuss how to import data by writing computer code (by the way, this is actually what is

happening behind the scenes when you import data through the user interface as described above). “csv”

stands for “Comma Separated Values”. This is basically a plain text file (e.g., try opening it in Notepad or

Text Editor) where the columns are separated by commas and the rows are separated by being on

different lines. Most any computer program can read this type of file; that is, you could easily import this

file into, say, R, Excel, or Stata. You can import a .csv  file using R  code by

An RData  file is the native format for saving data in R . You can import an RData  file using the following

command:

Similarly, a dta  file the native format for saving data in Stata. You can import a dta  file using the

following command:

In all three cases above, what we have done is to create a new data.frame  (a data.frame  is a type of

object that we’ll talk about in detail later on in this chapter) called firm_data  that contains the data that

we were trying to load.

firm_data <- read.csv("firm_data.csv")

firm_data <- load("firm_data.RData")

library(haven) # external package for reading dta file
firm_data <- read_dta("firm_data.dta")



Programming in R

Functions in R

Related Reading: IDS 3.2

R has a large number of helpful, built-in functions. Let’s start with a pretty representative example:

computing logarithms. This can be done using the R function log .

[1] 1.609438

You can tell this is a function because of the parentheses. The 5  inside of the parentheses is called the

argument of the function. As practice, try computing the  of 7.

Side Comment: As a reminder, the logarithm of some number, let’s call it , is is the value of 

that solves .

The default base in R is , so that log(5)  actually computes what you might be more used to

calling the “natural logarithm”. You can change the default value of the base by adding an extra

argument to the function.

[1] 0.69897

In order to learn about what arguments are available (and what they mean), you can access the help files

for a particular function by running either

and, of course, substituting the name of whatever function you want to learn about in place of log .

In RStudio, it can also be helpful to press Tab  and RStudio will provide possible completions to the

function you are typing as well as what arguments can be provided to that function.

Practice: R has a function for computing absolute value (you’ll have to find the name of it on

your own). Try computing the absolute value of  and . Try creating a variable called

log(5)

log

b a

base

a

= b

e ≈ 2.718

log(5, base=10)

help(log)
?log

5 −5



negative_three  that is equal to ; then, try to compute the absolute value of

negative_three .

Data types

Related Reading: IDS 2.3

The most basic data type in R  is the vector. In fact, above when we created variables that were just a

single number, they are actually stored as a numeric vector.

To more explicitly create a vector, you can use the c  function in R . For example, let’s create a vector

called five  that contains the numbers 1 through 5.

We can print the contents of the vector five  just by typing its name

[1] 1 2 3 4 5

Another common operation on vectors is to get a particular element of a vector. Let me give an example

[1] 3

This code takes the vector five  and returns the third element in the vector. Notice that the above line

contains braces, [  and ]  rather than parentheses.

If you want several different elements from a vector, you can do the following

[1] 1 4

This code takes the vector five  and returns the first and fourth element in the vector.

One more useful function for vectors is the function length . This tells you the number of elements in

vector. For example,

−3

Numeric Vectors

  five <- c(1,2,3,4,5)

five

five[3]

five[c(1,4)]

length(five)



[1] 5

which means that there are five total elements in the vector five .

Related Reading: IDS 2.8

The main operations on numeric vectors are + , - , * , /  which correspond to addition, subtraction,

multiplication, and division. Often, we would like to carry out these operations on vectors.

There are two main cases. The first case is when you try to add a single number (i.e., a scalar) to all the

elements in a vector. In this setup, the operation will happen element-wise which means the same

number will be added to all numbers in the vector. This will be clear with some examples.

[1] 2 3 4 5 6

[1] 2 3 4 5 6

Similar things will happen with the other mathematical operations above. Here are some more examples:

[1]  3  6  9 12 15

[1] -2 -1  0  1  2

[1] 0.3333333 0.6666667 1.0000000 1.3333333 1.6666667

The other interesting case is what happens when you try to apply any of the same mathematical

operators to two different vectors.

Vector arithmetic

five <- c(1,2,3,4,5)

# adds one to each element in vector
five + 1

# also adds one to each element in vector
1 + five

five * 3

five - 3

five / 3

# just some random numbers
vec2 <- c(8,-3,4,1,7)

five + vec2



[1]  9 -1  7  5 12

[1] -7  5 -1  3 -2

[1]  8 -6 12  4 35

[1]  0.1250000 -0.6666667  0.7500000  4.0000000  0.7142857

You can immediately see what happens here. For example, for five + vec2 , the first element of five  is

added to the first element of vec2 , the second element of five  is added to the second element of vec2

and so on. Similar things happen for each of the other mathematical operations too.

There’s one other case that might be interesting to consider too. What happens if you try to apply these

mathematical operations to two vectors of different lengths? Let’s find out

Warning in five + vec3: longer object length is not a multiple of shorter
object length

[1]  3  8  5 10  7

You’ll notice that this computes something but it also issues a warning. What happens here is that the

result is equal to the first element of five  plus the first element of vec3 , the second of five  plus the

second element of vec3 , the third element of five  plus the first element of vec3 , the fourth element

of five  plus the second element of vec3 , and the fifth element of five  plus the first element of vec3 .

What’s happening here is that, since vec3  contains fewere elements that five , the elements of vec3

are getting recycled. In my experience, this warning often indicates a coding mistake. There are many

cases where I want to add the same number to all elements in a vector, and many other cases where I

want to add two vectors that have the same length, but I cannot think of any cases where I would want to

add two vectors the way that is being carried out here.

The same sort of things will happen with subtraction, multiplication, and division (feel free to try it out).

This is definitely an incomplete list, but I’ll point you here to some more functions in R that are often

helpful along with quick examples of them.

seq  function — creates a “sequence” of numbers

five - vec2

five * vec2

five / vec2

vec3 <- c(2,6)
five + vec3

More helpful functions in R



[1] 2 3 4 5 6 7

sum  function — computes the sum of a vector of numbers

[1] 14

sort , order , and rev  functions — functions for understanding the order or changing the order of a

vector

[1] 1 3 5

[1] 2 1 3

[1] 5 1 3

%%  — modulo function (i.e., returns the remainder from dividing one number by another)

[1] 2

[1] 1

Practice: The function seq  contains an optional argument length.out . Try running the

following code and seeing if you can figure out what length.out  does.

seq(2,7)

sum(c(1,5,8))

sort(c(3,1,5))

order(c(3,1,5))

rev(c(3,1,5))

8 %% 3

1 %% 3

seq(1,10,length.out=5)
seq(1,10,length.out=10)
seq(1.10,length.out=20)



There are other types of vectors in R too. Probably the main two other types of vectors are character

vectors and logical vectors. We’ll talk about character vectors here and defer logical vectors until later.

Character vectors are often referred to as strings.

We can create a character vector as follows

[1] "econometrics"

The above code creates two character vectors and then prints the first one.

Side Comment c  stands for “concatenate”. Concatenate is a computer science word that means

to combine two vectors. Probably the most well known version of this is “string concatenation”

that combines two vectors of characters. Here is an example of string concatenation.

[1] "econometrics" "class"       

Sometimes string concatenation means to put two (or more strings) into the same string. This

can be done using the paste  command in R.

[1] "econometrics class"

Notice that paste  puts in a space between string1  and string2 . For practice, see if you can

find an argument to the paste  function that allows you to remove the space between the two

strings.

Another very important type of object in R is the data frame. I think it is helpful to think of a data frame

as being very similar to an Excel spreadsheet — sort of like a matrix or a two-dimensional array. Each row

typically corresponds to a particular observation, and each column typically provides the value of a

particular variable for that observation.

Just to give a simple example, suppose that we had firm-level data about the name of the firm, what

industry a firm was in, what county they were located in, and their number of employees. I created a data

Other types of vectors

string1 <- "econometrics"
string2 <- "class"
string1

c(string1, string2)

paste(string1, string2)

Data Frames



frame like this (it is totally made up, BTW) and show it to you next

name industry county employees

ABC Manufacturing Manufacturing Clarke 531

Martin’s Muffins Food Services Oconee 6

Down Home Appliances Manufacturing Clarke 15

Classic City Widgets Manufacturing Clarke 211

Watkinsville Diner Food Services Oconee 25

Side Comment: If you are following along on R, I created this data frame using the following

code

This is also the same data that we loaded earlier in Section 2.3.

Often, we’ll like to access a particular column in a data frame. For example, you might want to calculate

the average number of employees across all the firms in our data.

Typically, the easiest way to do this, is to use the accessor symbol, which is $  in R. This will make more

sense with an example:

firm_data

firm_data <- data.frame(name=c("ABC Manufacturing",
                               "Martin\'s Muffins",
                               "Down Home Appliances",
                               "Classic City Widgets",
                               "Watkinsville Diner"),
                        industry=c("Manufacturing",
                                   "Food Services",
                                   "Manufacturing",
                                   "Manufacturing",
                                   "Food Services"),
                        county=c("Clarke",
                                 "Oconee",
                                 "Clarke",
                                 "Clarke",
                                 "Oconee"),
                        employees=c(531, 6, 15, 211, 25))



[1] 531   6  15 211  25

firm_data$employees  just provides the column called “employees” in the data frame called “firm_data”.

You can also notice that firm_data$employees  is just a numeric vector. This means that you can apply

any of the functions that we have been covering on it

[1] 157.6

[1] 6.274762 1.791759 2.708050 5.351858 3.218876

Side Comment: Notice that the function mean  and log  behave differently. mean  calculates the

average over all the elements in the vector firm_data$employees  and therefore returns a single

number. log  calculates the logarithm of each element in the vector firm_data$employees  and

therefore returns a numeric vector with five elements.

Side Comment:

The $  is not the only way to access the elements in a data frame. You can also access them by

their position. For example, if you want whatever is in the third row and second column of the

data frame, you can get it by

[1] "Manufacturing"

Sometimes it is also convenient to recover a particular row or column by its position in the data

frame. Here is an example of recovering the entire fourth row

                  name      industry county employees
4 Classic City Widgets Manufacturing Clarke       211

firm_data$employees

mean(firm_data$employees)

log(firm_data$employees)

firm_data[3,2]

firm_data[4,]



Notice that you just leave the “column index” (which is the second one) blank

Side Comment: One other thing that sometimes takes some getting used to is that, for

programming in general, you have to be very precise. Suppose you were to make a very small

typo. R is not going to understand what you mean. See if you can spot the typo in the next line of

code.

NULL

A few more useful functions for working with data frames are:

nrow  and ncol  — returns the number of rows or columns in the data frame

colnames  and rownames  — returns the names of the columns or rows

Vectors and data frames are the main two types of objects that we’ll use this semester, but let me give

you a quick overview of a few other types of objects. Let’s start with lists. Lists are very generic in the

sense that they can carry around complicated data. If you are familiar with any object oriented

programming language like Java or C++, they have the flavor of an “object”, in the object-oriented sense.

I’m not sure if we will see any examples this semester where you have to use a list. But here is an

example. Suppose that we wanted to put the vector that we created earlier five  and the data frame

that we created earlier firm_data  into the same object. We could do it as follows

You can access the elements of a list in a few different ways. Sometimes it is convenient to access them

via the $

[1] 1 2 3 4 5

Other times, it is convenient to access them via their position in the list

firm_data$employes

Lists

unusual_list <- list(numbers=five, df=firm_data)

unusual_list$numbers

unusual_list[[2]] # notice the double brackets



                  name      industry county employees
1    ABC Manufacturing Manufacturing Clarke       531
2     Martin's Muffins Food Services Oconee         6
3 Down Home Appliances Manufacturing Clarke        15
4 Classic City Widgets Manufacturing Clarke       211
5   Watkinsville Diner Food Services Oconee        25

Matrices are very similar to data frames, but the data should all be of the same type. Matrices are very

useful in some numerical calculations that are beyond the scope of this class. Here is an example of a

matrix.

     [,1] [,2]
[1,]    1    2
[2,]    3    4

You can access elements of a matrix by their position in the matrix, just like for the data frame above.

[1] 2

[1] 2 4

Sometimes variables in economics are categorical. This sort of variable is somewhat between a numeric

variable and a string. In R , categorical variables are called factors.

A good example of a categorical variable is firm_data$industry . It tells you the “category” of the

industry that a firm is in.

Oftentimes, we may have to tell R that a variable is a “factor” rather than just a string. Let’s create a

variable called industry  that contains the industry from firm_data  but as a factor.

[1] Manufacturing Food Services Manufacturing Manufacturing Food Services
Levels: Food Services Manufacturing

Matrices

mat <- matrix(c(1,2,3,4), nrow=2, byrow=TRUE)
mat

# first row, second column
mat[1,2]

# all rows in second column
mat[,2]

Factors

industry <- as.factor(firm_data$industry)
industry



A useful package for working with factor variables is the forcats  package.

Sometimes you may be in the case where there is a variable where you don’t know what exactly it

contains. Some functions that are helpful in this case are

class  — tells you, err, the class of an object (i.e., its “type”)

head  — shows you the “beginning” of an object; this is especially helpful for large objects (like some

data frames)

str  — stands for “structure” of an object

Let’s try these out

[1] "data.frame"

                  name      industry county employees
1    ABC Manufacturing Manufacturing Clarke       531
2     Martin's Muffins Food Services Oconee         6
3 Down Home Appliances Manufacturing Clarke        15
4 Classic City Widgets Manufacturing Clarke       211
5   Watkinsville Diner Food Services Oconee        25

'data.frame':   5 obs. of  4 variables:
 $ name     : chr  "ABC Manufacturing" "Martin's Muffins" "Down Home Appliances" "Classic 
City Widgets" ...
 $ industry : chr  "Manufacturing" "Food Services" "Manufacturing" "Manufacturing" ...
 $ county   : chr  "Clarke" "Oconee" "Clarke" "Clarke" ...
 $ employees: num  531 6 15 211 25

Practice: Try running class , head , and str  on the vector five  that we created earlier.

Logicals

Understanding an object in R

class(firm_data)

# typically would show the first five rows of a data frame,
# but that is the whole data frame here
head(firm_data)

str(firm_data)



Related Reading: IDS 2.9

All programming languages have ways of tracking whether variables meet certain criteria. These are

often called Booleans or Logicals. For us, this will particularly come up in the context of subsetting data

(i.e., selecting data based on some condition) and in running particular portions of code based on some

condition.

Some main logical operators are == , <= , >= , < , >  corresponding to whether or not two things are equal,

less than or equal to, greater than or equal, strictly less than, and strictly greater than. These can be

applied to vectors. And the comparisons result in either TRUE  or FALSE . Here are some examples

[1] FALSE FALSE  TRUE FALSE FALSE

[1]  TRUE  TRUE  TRUE FALSE FALSE

[1] FALSE FALSE  TRUE  TRUE  TRUE

[1]  TRUE  TRUE FALSE FALSE FALSE

[1] FALSE FALSE FALSE  TRUE  TRUE

Example: Often, we might be interested in learning about a subset of our data. As a simple

example, using our firm_data  from earlier, you could imagine being interested in average

employment for manufacturing firms.

We can do this using the subset  function along with the logical operations we’ve learned in this

section.

five <- c(1,2,3,4,5)

# only 3 is equal to 3
five == 3

# 1,2,3 are all less than or equal to 3
five <= 3

# 3,4,5, are all greater than or equal to 3
five >= 3

# 1,2 are strictly less than 3
five < 3

# 4,5 are strictly greater than 3
five > 3



[1] 252.3333

As practice, try creating a subset of firm_data  based on firms having more than 100 employees.

Related Reading: IDS 2.9

There are a number of additional logical operators that can be useful in practice. Here, we quickly cover

several more.

!=  — not equal

[1]  TRUE  TRUE FALSE

We can link together multiple logical comparisons. If we want to check whether multiple conditions

hold, we can use “logical AND” & ; if we want to check whether any of multiple conditions hold, we

can use “logical OR” | .

[1] FALSE FALSE  TRUE  TRUE FALSE

[1]  TRUE FALSE FALSE  TRUE  TRUE

%in%  — checks whether the elements of one vector show up in another vector

[1]  TRUE FALSE

Often it is useful to check whether any logical conditions are true or all logical conditions are true.

This can be done as follows

manufacturing_firms <- subset(firm_data, industry=="Manufacturing")
mean(manufacturing_firms$employees)

Additional Logical Operators

c(1,2,3) != 3

# AND
( c(1,2,3,4,5) >= 3 ) & ( c(1,2,3,4,5) < 5 )

# OR
( c(1,2,3,4,5) >= 4 ) | ( c(1,2,3,4,5) < 2 )

# 1 is in the 2nd vector, but 7 is not
c(1,7) %in% c(1,2,3,4,5)



[1] TRUE

[1] FALSE

Programming basics

Related Reading: IDS 3.2

It is often helpful to write your own functions in R. If you ever find yourself repeating the same code over

and over, this suggests that you should write this code as a function and repeatedly call the function.

Suppose we are interesting in solving the quadratic equation

If you remember the quadratic formula, the solution to this equation is

It would be tedious to calculate this by hand (especially if we wanted to calculate it for many different

values of , , and ), so let’s write a function to do it.

Before we try this out, let’s notice a few things. First, while this particular function is for solving the

quadratic equation, this is quite representative of what a function looks like in R.

quadratic_solver  — This is the name of the function. It’s good to give your function a descriptive

name related to what it does. But you could call it anything you want. If you wanted to call this

function uga , it would still work.

the part <- function  finishes off assigning the function the name quadratic_solver  and implies

that we are writing down a function rather than a vector  or data.frame  or something else. This

part will show up in all function definitions.

# this one is TRUE because 1 is in the 2nd vector
any(c(1,7) %in% c(1,2,3,4,5))

# this one is FALSE because 7 is not in the 2nd vector
all(c(1,7) %in% c(1,2,3,4,5))

Writing functions

ax

2

+ bx+ c = 0

x =

−b±
√
b

2

− 4ac

2a

a b c

quadratic_solver <- function(a, b, c) {
  root1 <- ( -b + sqrt(b^2 - 4*a*c) ) / 2*a
  root1
}



the part (a, b, c) , a , b , and c  are the names of the arguments to the function. In a minute when

we call the function, we need to tell the function the particular values of a , b , and c  for which to

solve the quadratic equation. We could name these whatever we want, but, again, it is good to have

descriptive names. When you write a different function, it can have as many arguments as you want

it to have.

the part { ... }  everything that the function does should go between the curly brackets

the line root1 <- ( -b + sqrt(b^2 - 4*a*c) ) / 2*a  contains the main thing that is calculated

by our function. Notice that we only calculate one of the “roots” (i.e., solutions to the quadratic

equation) because of the  in this expression.

the line root1  R returns whatever variable is on the last line of the function. It might be somewhat

more clear to write return(root1) . The behavior of the code would be exactly the same, but it is

just the more common “style” in R programming to not include the explicit return .

Now let’s try out our function

[1] -1

[1] -1.531129

Two last things that are worth pointing out about functions:

Functions in R can be set up to take default values for some of their arguments

Because the arguments have names, if you are explicit about the name of the argument, then the

order of the argument does not matter.

To give examples, let’s write a slightly modified version of our function to solve quadratic equations.

The only thing different here is that a  takes the default value of 1. Now let’s try some different calls to

quadratic_solver  and quadratic_solver2

+

# solves quadratic equation for a=1, b=4, c=3
quadratic_solver(1,4,3)

# solves quadratic equation for a=-1, b=5, c=10
quadratic_solver(-1,5,10)

quadratic_solver2 <- function(a=1, b, c) {
  root1 <- ( -b + sqrt(b^2 - 4*a*c) ) / 2*a
  root1
}

# solve again for a=1,b=4,c=3
quadratic_solver2(b=4,c=3)



[1] -1

[1] -1.531129

Error in quadratic_solver(b = 4, c = 3): argument "a" is missing, with no default

Related Reading: IDS 3.1

Often when writing code, you will want to do different things depending on some condition. Let’s write a

function that takes in the number of employees that are in a firm and prints “large” if the firm has more

than 100 employees and “small” otherwise.

I think, at this point, this code should make sense to you. The only new thing is the if/else. The following

is not code that will actually run but is just to help understand the logic of if/else.

All that happens with if/else is that we check whether condition  evaluate to TRUE  or FALSE . If it is

TRUE , the code will do whatever is inside the first set of brackets; if it is FALSE , the code will do whatever

is in the set of brackets following else .

Related Reading: IDS 3.4

Often, we need to run the same code over and over again. A for  loop is a main programming tool for this

case ( for  loops show up in pretty much all programming languages).

# replace default and change order
quadratic_solver2(c=10,b=5,a=-1)

# no default set for quadratic_solver so it will crash if a not provided
quadratic_solver(b=4,c=3)

if/else

large_or_small <- function(employees) {
  if (employees > 100) {
    print("large")
  } else {
    print("small")
  }
}

if (condition) {
  # do something
} else {
  # do something else
}

for loops



We’ll have more realistic examples later on in the semester, but we’ll do something trivial for now.

 [1]  3  6  9 12 15 18 21 24 27 30

The above code, starts with , calculates  (which is 3), and then stores that result in the first

element of the vector out , then  increases to 2, the code calculates  (which is now 6), and stores

this result in the second element of out , and so on through .

Related Reading: IDS 3.5

Vectorizing functions is a relatively advanced topic in R programming, but it is an important one, so I am

including it here.

Because we will often be working with data, we will often be performing the same operation on all of the

observations in the data. For example, suppose that you wanted to take the logarithm of the number of

employees for all the firms in firm_data . One way to do this is to use a for  loop, but this code would be

a bit of a mess. Instead, the function log  is vectorized — this means that if we apply it to a vector, it will

calculate the logarithm of each element in the vector. Besides this, vectorized functions are often faster

than for  loops.

Not all functions are vectorized though. Let’s go back to our function earlier called large_or_small . This

took in the number of employees at a firm and then printed “large” if the firm had more than 100

employees and “small” otherwise. Let’s see what happens if we call this function on a vector of

employees (Ideally, we’d like the function to be applied to each element in the vector).

[1] 531   6  15 211  25

Error in if (employees > 100) {: the condition has length > 1

This is not what we wanted to have happen. Instead of determining whether each firm was large or small,

we get an error basically said that something may be going wrong here. What’s going on here is that the

function large_or_small  is not vectorized.

In order to vectorize a function, we can use one of a number of “apply” functions in R. I’ll list them here

out <- c()
for (i in 1:10) {
  out[i] <- i*3
}
out

i = 1 i ∗ 3

i i ∗ 3

i = 10

Vectorization

employees <- firm_data$employees
employees

large_or_small(employees)



sapply  — this stands for “simplify” apply; it “applies” the function to all the elements in the vector

or list that you pass in and then tries to “simplify” the result

lapply  — stands for “list” apply; applies a function to all elements in a vector or list and then

returns a list

vapply  — stands for “vector” apply; applies a function to all elements in a vector or list and then

returns a vector

apply  — applies a function to either the rows or columns of a matrix-like object (i.e., a matrix or a

data frame) depending on the value of the argument MARGIN

Let’s use sapply  to vectorize large_or_small .

All that this will do is call the function large_or_small  for each element in the vector employees . Let’s

see it in action

[1] "large"
[1] "small"
[1] "small"
[1] "large"
[1] "small"

[1] "large" "small" "small" "large" "small"

This is what we were hoping for.

Side Comment: I also typically replace most all for  loops with an apply  function. In most cases,

I don’t think there is much of a performance gain, but the code seems easier to read (or at least

more concise).

Earlier we wrote a function to take a vector of numbers from 1 to 10 and multiply all of them by

3. Here’s how you could do this using sapply

 [1]  3  6  9 12 15 18 21 24 27 30

which is considerably shorter.

large_or_small_vectorized <- function(employees_vec) {
  sapply(employees_vec, FUN = large_or_small)
}

large_or_small_vectorized(employees)

sapply(1:10, function(i) i*3)



One last thing worth pointing out though is that multiplication is already vectorized, so you

don’t actually need to do sapply  or the for  loop; a better way is just

 [1]  3  6  9 12 15 18 21 24 27 30

Side Comment: A relatively popular alternative to apply  functions are map  functions provided

in the purrr  package.

Side Comment: It’s often helpful to have a vectorized version of if/else. In R , this is available in

the function ifelse . Here is an alternative way to vectorize the function large_or_small :

[1] "large" "small" "small" "large" "small"

Here you can see that ifelse  makes every comparison in its first argument, and then returns

the second element for every TRUE  coming from the first argument, and returns the third

element for every FALSE  coming from the first argument.

ifelse  also works with vectors in the second and third element. For example:

[1] 1 2 6

which picks up 1 and 2 from the second ( yes ) argument and 6 from the third ( no ) argument.

Reproducible Research

Related Reading: IDS Ch. 20

(1:10)*3

large_or_small_vectorized2 <- function(employees_vec) {
  ifelse(employees_vec > 100, "large", "small")
}
large_or_small_vectorized2(firm_data$employees)

  ifelse(c(1,3,5) < 4, yes=c(1,2,3), no=c(4,5,6))



R has very useful tools for mix code and writing to produce reports (or, for our purpose, homeworks and

project).

As of this writing, the most common way to do this seems to be switching from Rmarkdown to Quarto. I

am going to explain how to create a Quarto document below, but, if you are familiar with Rmarkdown,

the workflow is going to be very similar.

To create a new Quaro document, click File -> New File -> Quarto Document . That will open up a

menu that looks like the following

You will need to set a few options. I set the title to be Quarto Example  and author to be Brantly 

Callaway . I also unchecked the box at the bottom that says “Use visual markdown editor” [I prefer this

setting to be unchecked, but you can try it both ways and see what you like.] Now click “Create” and your

screen will look something like this



When you save a Quarto file, you should save it with a .qmd  extension.

Here is a quick example of how you could use Quarto to write homework solutions. Suppose the first

homework of the semester asked you to write a function called sum10  that took in a vector of numbers

and calculated the sum of the first 10 numbers in the vector. Then, report sum10(1:100) .

---
title: "Homework 1"
author: "Brantly Callaway"
format: html
---

## Question 1

To calculate the sum of the first ten numbers in a vector,
I wrote the following function:

```{r}
sum10 <- function(x) {
  # get first 10 elements of x
  x10 <- x[1:10]
  # calculate their sum and return it
  sum(x10)
}

sum10(1:100)
```



A few last comments for you:

These notes are written in Quarto, and I write homework solutions in Quarto too.

If you are interested, you can view the source for this book at

http://github.com/bcallaway11/econ_4750_notes. The source code for this chapter is in the file 02-

programming_in_R.qmd .

Advanced Topics

To conclude this section, I want to briefly point you towards some advanced material. We will probably

brush up against some of this material this semester. That being said, R has some very advanced

capabilities related to data science, data manipulation, and data visualization. If you have time/interest

you might push further in all of these directions. By the end of the semester, we may not have mastered

these topics, but they should at least be accessible to you.

Related Reading: IDS Chapter 4 — strongly recommend that you read this

• R has very good data cleaning / manipulating tools

Many of them are in the “tidyverse”

Mostly this semester, I’ll just give you a data set that is ready to be worked with. But as you move to

your own research projects or do work for a company one day, you will realize that a major step in

analyzing data is organizing (“cleaning”) the data in a way that you can analyze it

• Main packages

ggplot2  – see below

dplyr  — package to manipulate data

tidyr  — more ways to manipulate data

readr  — read in data

purrr  — alternative versions of apply  functions and for  loops

tibble  — alternative versions of data.frame

stringr  — tools for working with strings

forcats  — tools for working with factors

• If you see code that uses the pipe operator %>% , it is tidyverse-style code. [You need to load a package

to get access to the pipe function. I think this was introduced in the magrittr  package, but you can also

load it with the dplyr  package, which is one of the main tidyverse packages.] This is unusual syntax for

Tidyverse

http://github.com/bcallaway11/econ_4750_notes
https://www.tidyverse.org/


most programming languages, but it is (arguably) easier to read. Basically the pipe operator takes the

result from one line of code and “pipes” it into the first argument of the next function. Here is an

example

[1] 2

What the above code does is it takes the data frame firm_data , subsets it to firms that have more than

100 rows, and calculates the number of rows in this subset (i.e., the number of large firms).

It is equivalent to the following, more traditional-looking code:

[1] 2

• I won’t emphasize the tidyverse too much as I prefer (at least to some extent) writing code with a more

traditional syntax. That said, tidyverse packages are really quite useful for data cleaning / wrangling. And,

if you are interested, these are good (and marketable) skills to have.

Related Reading: IDS Ch. 7-10 — R  has very good data visualization tools. I strongly recommend that you

read this.

Another very strong point of R

Base R  comes with the plot  command, but the ggplot2  package provides cutting edge plotting

tools. These tools will be somewhat harder to learn, but we’ll use ggplot2  this semester as I think it

is worth it.

You can produce professional quality plots in R  that are publication ready

We will use ggplot2  this semester, but I will save a longer discussion for later.

Related Reading: IDS Ch. 19

If you are interested, GitHub is a very useful version control tool (i.e., keeps track of the version of your

project, useful for merging projects, and sharing or co-authoring code) and Dropbox (also useful for

sharing code). I use both of these extensively — in general, I use GitHub relatively more for bigger

projects and more public projects and Dropbox more for smaller projects and early versions of projects.

library(dplyr) # or library(magrittr)
firm_data %>%
  subset(employees > 100) %>%
  nrow()

large_firms <- subset(firm_data, employees > 100)
nrow(large_firms)

Data Visualization

Version Control

http://github.com/
http://dropbox.com/


Related Reading: IDS 20.1

You can create a new project by navigating to File -> New Project . Projects in RStudio give a way to

organize your, well… projects. For this course, you don’t necessarily need to use projects, but you could,

for example, create separate projects for each of your homeworks. This would give you separate

environments for each homework (so you don’t have to worry about accidentally using the same variable

name across homeworks leading to any issues) and a separate set of tabs for scripts in each project. Your

current project is listed in the very top right corner of the RStudio workspace.

This is starting to get beyond the scope of the course, but, especially for students in ECON 6750, I

recommend that you look up LaTeX. This is a markup language mainly for technical, academic writing.

The big payoff is on writing mathematical equations. The equations in the Course Notes are written in

LaTeX. For example, the LaTeX code for the solution to the quadratic equation written above is

$$
  x = \frac{-b \pm \sqrt{b^2-4ac}}{2a}
$$

where the $$  is a delimiter that tells LaTeX to render the text between the delimiters as an equation,

\frac  is a command that tells LaTeX to render the text as a fraction, and \pm  is a command that tells

LaTeX to render the text as a plus or minus sign.

As I mentioned above, the course notes are written in quarto , but it is possible to write entire

documents in LaTeX. For example, all of my academic papers are written in pure LaTeX. An easy way to

get started is to use the website Overleaf. This is a website that allows you to write LaTeX documents in

your web browser. Writing homework solutions fully in LaTex would be overkill for this course, but

(especially if you are thinking about doing a Ph.D. in economics), it would be a good thing to poke around

with as you have time.

Lab 1: Introduction to R Programming

For this lab, we will do several practice problems related to programming in R.

1. Create two vectors as follows

Add x  and y , subtract y  from x , multiply x  and y , and divide x  by y  and report your results.

2. The geometric mean of a set of numbers is an alternative measure of central tendency to the more

common “arithmetic mean” (this is the mean that we are used to). For a set of  numbers,

, the geometric mean is defined as

RStudio Projects

Technical Writing Tools

x <- seq(2,10,by=2)
y <- c(3,5,7,11,13)

J

x

1

,x

2

,… ,x

J

http://www.overleaf.com/


Write a function called geometric_mean  that takes in a vector of numbers and computes their

geometric mean. Compute the geometric mean of c(10,8,13)

3. Use the lubridate  package to figure out how many days elapsed between Jan. 1, 1981 and Jan. 10,

2022.

4. mtcars  is one of the data frames that comes packaged with base R.

a. How many observations does mtcars  have?

b. How many columns does mtcars  have?

c. What are the names of the columns of mtcars ?

d. Print only the rows of mtcars  for cars that get at least 20 mpg

e. Print only the rows of mtcars  that get at least 20 mpg and have at least 100 horsepower (it is in

the column called hp )

f. Print only the rows of mtcars  that have 6 or more cylinders (it is in the column labeld cyl ) or at

least 100 horsepower

g. Recover the 10th row of mtcars

h. Sort the rows of mtcars  by mpg (from highest to lowest)

Lab 1: Solutions

1.

[1]  5  9 13 19 23

[1] -1 -1 -1 -3 -3

[1]   6  20  42  88 130

(x

1

⋅ x

2

⋅ ⋯ ⋅ x

J

)

1/J

x <- seq(2,10,by=2)
y <- c(3,5,7,11,13)

x+y

x-y

x*y

x/y



[1] 0.6666667 0.8000000 0.8571429 0.7272727 0.7692308

2.

[1] 10.13159

3.

Time difference of 14984 days

4.

a. 

[1] 32

b. 

[1] 11

c. 

 [1] "mpg"  "cyl"  "disp" "hp"   "drat" "wt"   "qsec" "vs"   "am"   "gear"
[11] "carb"

d. 

                mpg cyl  disp  hp drat    wt  qsec vs am gear carb
Mazda RX4      21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4

geometric_mean <- function(x) {
  J <- length(x)
  res <- prod(x)^(1/J)
  res
}

geometric_mean(c(10,8,13))

first_date <- lubridate::mdy("01-01-1981")
second_date <- lubridate::mdy("01-10-2022")
second_date - first_date

nrow(mtcars)

ncol(mtcars)

colnames(mtcars)

subset(mtcars, mpg >= 20)



Mazda RX4 Wag  21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
Datsun 710     22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
Hornet 4 Drive 21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
Merc 240D      24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
Merc 230       22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
Fiat 128       32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
Honda Civic    30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
Toyota Corolla 33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
Toyota Corona  21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
Fiat X1-9      27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
Porsche 914-2  26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
Lotus Europa   30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
Volvo 142E     21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2

e. 

                mpg cyl  disp  hp drat    wt  qsec vs am gear carb
Mazda RX4      21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
Mazda RX4 Wag  21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
Hornet 4 Drive 21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
Lotus Europa   30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
Volvo 142E     21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2

f. 

                     mpg cyl  disp  hp drat    wt  qsec vs am gear carb
Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4

subset(mtcars, (mpg >= 20) & (hp >= 100))

subset(mtcars, (cyl >= 6) | (hp >= 100))



Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2

g. 

          mpg cyl  disp  hp drat   wt qsec vs am gear carb
Merc 280 19.2   6 167.6 123 3.92 3.44 18.3  1  0    4    4

h. 

                     mpg cyl  disp  hp drat    wt  qsec vs am gear carb
Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4

mtcars[10,]

# without reversing the order, we would order from lowest to smallest
mtcars[rev(order(mtcars$mpg)),]



Coding Exercises

1. The stringr  package contains a number of functions for working with strings. For this problem

create the following character vector in R

Install the stringr  package and use the str_length  function in the package in order to calculate

the length (number of characters) in each element of x .

2. For this problem, we are going to write a function to calculate the sum of the numbers from 1 to 

where  is some positive integer. There are actually a lot of different ways to do this.

Approach 1: write a function called sum_one_to_n_1  that uses the R functions seq  to create a

list of numbers from 1 to  and then the function sum  to sum over that list.

Approach 2: The sum of numbers from 1 to  is equal to . Use this expression to

write a function called sum_one_to_n_2  to calculate the sum from 1 to .

Approach 3: A more brute force approach is to create a list of numbers from 1 to  (you can use

seq  here) and add them up using a for  loop — basically, just keep track of what the current

total is and add the next number to the total in each iteration of the for loop. Write a function

called sum_one_to_n_3  that does this.

Hint: All of the functions should look like

Try out all three approaches that you came up with above for . What is the answer? Do you

get the same answer using all three approaches?

3. The Fibonacci sequence is the sequence of numbers  that comes

from starting with  and  and where each subsequent number is the sum of the previous two. For

example, the 5 in the sequence comes from adding 2 and 3; the 55 in the sequence comes from

adding 21 and 34.

a. Write a function called fibonacci  that takes in a number n  and computes the nth element in

the Fibonacci sequence. For example fibonacci(5)  should return 3  and fibonacci(8)  should

return 13 .

b. Consider an alternative sequence where, starting with the third element, each element is

computed as the sum of the previous two elements (the same as with the Fibonacci sequence)

but where the first two elements can be arbitrary. Write a function alt_seq(a,b,n)  where a  is

the first element in the sequence, b  is the second element in the sequence, and n  is which

x <- c("economics", "econometrics", "ECON 4750")

n

n

n

n n(n+ 1)/2

n

n

sum_one_to_n <- function(n) {
  # do something
}

n = 100

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,…

0 1



element in the sequence to return. For example, if  and , then the sequence would

be  and alt_seq(a=3,b=7,n=4) = 17 .

4. This problem involves writing functions related to computing prime numbers. Recall that a prime

number is a positive integer whose only (integer) factors are 1 and itself (e.g.,  is not prime because

it factors into , but  is a prime number because its only factors are  and ).

For this problem, you cannot use any built-in functions in R  for computing prime numbers or

checking whether or not a number is a prime number. However, a helpful function for this problem is

the modulo function, %%  discussed earlier in the notes. Hint: Notice that 6 %% 2 = 0  indicates that

2  is a factor of 6 ; on the other hand, if you divide  by any integer small than itself (except for ),

the remainder will always be non-zero.

a. Write a function is_prime  that takes x  as an argument and returns TRUE  if x  is a prime

number and returns FALSE  if x  is not a prime number.

b. Write a function prime  that takes n  as an argument and returns a vector of all the prime

numbers from  to . If it is helpful, prime  can call the function is_prime  that you wrote for

part (a).

5. Base R  includes a data frame called iris . This is data about iris flowers (you can read the details by

running ?iris ).

a. How many observations are there in the entire data frame?

b. Calculate the average Sepal.Length  across all observations in iris .

c. Calculate the average Sepal.Width  among the setosa  iris species.

d. Sort iris  by Petal.Length  and print the first 10 rows.

6. One of the examples that we gave above was about writing a function to solve quadratic equations,

but, in the code presented above, we only returned one solution to the quadratic equation. Write a

function quadratic_solver  that takes in a , b , and c  as arguments and returns both solutions to

the quadratic equation in a list. For example, quadratic_solver(1,4,3)  should return a list with

two elements, -1  and -3 .

a = 3 b = 7

3, 7, 10, 17, 27, 44, 71,…

6
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