
Homework 4 Solutions
7.7
(a)

𝛽 is defined as the coefficient of the linear projection of 𝑌 ∗ on 𝑋. Thus, 𝛽 = 𝔼[𝑋𝑋′]−1𝔼[𝑋𝑌 ∗].
Now, let’s define

̃𝛽 = argmin
𝑏

𝔼[(𝑌 − 𝑋′𝑏)2]

so that ̃𝛽 is the coefficient from the linear projection of 𝑌 on 𝑋. Solving this, we get that

̃𝛽 = 𝔼[𝑋𝑋′]−1𝔼[𝑋𝑌 ]
= 𝔼[𝑋𝑋′]−1𝔼[𝑋(𝑌 ∗ + 𝑢)]
= 𝔼[𝑋𝑋′]−1𝔼[𝑋𝑌 ∗] + 𝔼[𝑋𝑋′]−1 𝔼[𝑋𝑢]⏟

=0
= 𝛽

Thus, ̃𝛽 = 𝛽.
I think the above is the correct answer to the question, but there is one more thing that is worth

pointing out. As in the problem, let’s define ̂𝛽 as the estimate that comes from running a regression
of 𝑌 on 𝑋, and additionally define ̂𝛽∗ as the (infeasible) regression coefficient that you would get
if you could run the regression of 𝑌 ∗ on 𝑋. Note that

̂𝛽∗ = ( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑋′
𝑖)

−1
1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑌 ∗
𝑖

and

̂𝛽 = ( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑋′
𝑖)

−1
1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑌𝑖

= ( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑋′
𝑖)

−1
1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖(𝑌 ∗
𝑖 + 𝑢𝑖) (1)

so, in general, ̂𝛽 ≠ ̂𝛽∗; that is, if we were to observe 𝑌 ∗
𝑖 , we would not get numerically estimates

from the regression of 𝑌 on 𝑋 as from the regression of 𝑌 ∗ on 𝑋.

(b)

From Equation 1, we can write
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̂𝛽 = ( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑋′
𝑖)

−1
1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑌 ∗
𝑖 + ( 1

𝑛
𝑛

∑
𝑖=1

𝑋𝑖𝑋′
𝑖)

−1
1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑢𝑖

𝑝
−→ 𝔼[𝑋𝑋′]−1𝔼[𝑋𝑌 ∗] + 0
= 𝛽

where the second equality holds by the law of large numbers and the continuous mapping theorem.
This implies that, despite the measurement error, ̂𝛽 is consistent for 𝛽.

(c)

Plugging in 𝑌 ∗
𝑖 = 𝑋′

𝑖𝛽 + 𝑒𝑖 into Equation 1 and multiplying by
√𝑛, we have that

√𝑛( ̂𝛽 − 𝛽) = ( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑋′
𝑖)

−1
1√𝑛

𝑛
∑
𝑖=1

𝑋𝑖(𝑒𝑖 + 𝑢𝑖)

= 𝔼[𝑋𝑋′]−1 1√𝑛
𝑛

∑
𝑖=1

𝑋𝑖(𝑒𝑖 + 𝑢𝑖) + 𝑜𝑝(1)

𝑑−→ 𝒩(0, 𝔼[𝑋𝑋′]−1ΩΩΩ𝔼[𝑋𝑋′]−1)

where

ΩΩΩ = 𝔼[𝑋𝑋′(𝑒 + 𝑢)2]

This is related, but different, from the case without measurement error; recall that, in that case
ΩΩΩ = 𝔼[𝑋𝑋′𝑒2].

Altogether, this suggests that, when there is this relatively simple kind of measurement error in
the outcome, using the measured-with-error outcome still delivers consistent estimates of 𝛽, but
the asymptotic variance changes; it is likely to be bigger.

7.14
(a)

̂𝜃 = ̂𝛽1 ̂𝛽2

where ̂𝛽1 and ̂𝛽2 come from the regression of 𝑌 on 𝑋1 and 𝑋2.

(b)

First, notice that our usual arguments imply that

√𝑛 (
̂𝛽1 − 𝛽1
̂𝛽2 − 𝛽2

) 𝑑−→ 𝒩(0, V𝛽)
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where V𝛽 = 𝔼[𝑋𝑋′]−1ΩΩΩ𝔼[𝑋𝑋′]−1, where we take 𝑋 = (𝑋1, 𝑋2)′ and where ΩΩΩ = 𝔼[𝑋𝑋′𝑒2]. Note
that V𝛽 is a 2 × 2 variance matrix.

Next, notice that we can write 𝜃 = 𝑟(𝛽1, 𝛽2) and ̂𝜃 = 𝑟( ̂𝛽1, ̂𝛽2) where 𝑟(𝑏1, 𝑏2) = 𝑏1𝑏2. Moreover,
using a mean value theorem argument, we have that

𝑟( ̂𝛽1, ̂𝛽2) = 𝑟(𝛽1, 𝛽2) + ∇𝑟( ̄𝛽1, ̄𝛽2)′ (
̂𝛽1 − 𝛽1
̂𝛽2 − 𝛽2

)

where

∇𝑟( ̄𝛽1, ̄𝛽2) ∶= ⎡⎢
⎣

𝜕𝑟(𝑏1,𝑏2)
𝜕𝑏1

𝜕𝑟(𝑏1,𝑏2)
𝜕𝑏2

⎤⎥
⎦

∣
𝑏1= ̄𝛽1,𝑏2= ̄𝛽2

= ⎡⎢
⎣

𝑏2

𝑏1

⎤⎥
⎦

∣
𝑏1= ̄𝛽1,𝑏2= ̄𝛽2

= ⎡⎢
⎣

̄𝛽2

̄𝛽1

⎤⎥
⎦

This implies that

√𝑛( ̂𝜃 − 𝜃) = ⎡⎢
⎣

̄𝛽2

̄𝛽1

⎤⎥
⎦

′
√𝑛 (

̂𝛽1 − 𝛽1
̂𝛽2 − 𝛽2

)

= ⎡⎢
⎣

𝛽2

𝛽1

⎤⎥
⎦

′
√𝑛 (

̂𝛽1 − 𝛽1
̂𝛽2 − 𝛽2

) + ⎛⎜
⎝

⎡⎢
⎣

̄𝛽2

̄𝛽1

⎤⎥
⎦

− ⎡⎢
⎣

𝛽2

𝛽1

⎤⎥
⎦

⎞⎟
⎠

′

⏟⏟⏟⏟⏟⏟⏟⏟⏟
=𝑜𝑝(1)

√𝑛 (
̂𝛽1 − 𝛽1
̂𝛽2 − 𝛽2

)
⏟⏟⏟⏟⏟⏟⏟

=𝑂𝑝(1)

= ⎡⎢
⎣

𝛽2

𝛽1

⎤⎥
⎦

′
√𝑛 (

̂𝛽1 − 𝛽1
̂𝛽2 − 𝛽2

) + 𝑜𝑝(1)

𝑑−→ 𝒩(0, 𝑉 )

where the second equality holds by adding and subtracting, the third equality holds because (
̄𝛽1̄𝛽2
)

is between ̂𝛽 and 𝛽 (and because ̂𝛽 is consistent for 𝛽), and where

𝑉 = ⎡⎢
⎣

𝛽2

𝛽1

⎤⎥
⎦

′

V𝛽 ⎡⎢
⎣

𝛽2

𝛽1

⎤⎥
⎦

(c)

To calculate a 95% confidence interval, the main step is to estimate 𝑉 . The natural estimate is
given by

⎡⎢
⎣

̂𝛽2

̂𝛽1

⎤⎥
⎦

′

V̂𝛽
⎡⎢
⎣

̂𝛽2

̂𝛽1

⎤⎥
⎦

3



and where we use the usual estimate of V𝛽 that is given by

V̂𝛽 = ( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑋′
𝑖)

−1
1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑋′
𝑖 ̂𝑒2

𝑖 ( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑋′
𝑖)

−1

and then we can construct a 95% confidence interval by

̂𝐶 = [ ̂𝜃 ± 1.96
√ ̂𝑉√𝑛 ]

7.17
(a)

To start with, let’s write 𝜃 = 𝑟(𝛽1, 𝛽2) = 𝛽1 − 𝛽2. The key step is to derive an expression for√𝑛( ̂𝜃 − 𝜃). Using a delta method type of argument, notice that we have that

𝑟( ̂𝛽1, ̂𝛽2) = 𝑟(𝛽1, 𝛽2) + ∇𝑟( ̄𝛽1, ̄𝛽2)′ (
̂𝛽1 − 𝛽1
̂𝛽2 − 𝛽2

) (2)

where

∇𝑟(�̄�1, �̄�2) = ⎡⎢
⎣

𝜕𝑟(𝑏1,𝑏2)
𝜕𝑏1

𝜕𝑟(𝑏1,𝑏2)
𝜕𝑏2

⎤⎥
⎦

∣
𝑏1=�̄�1,𝑏2=�̄�2

= ⎡⎢
⎣

1

−1
⎤⎥
⎦

In other words, ∇𝑟(�̄�1, �̄�2) is the vector of partial derivatives of 𝑟 with respect to each of its arguments
evaluated at �̄�1 and �̄�2. For the particular 𝑟 in our problem, the vector of partial derivatives is just
equal to (1, −1)′ no matter the values of �̄�1 and �̄�2. Plugging this back into Equation 2 and
multiplying by

√𝑛, we have that

√𝑛( ̂𝜃 − 𝜃) = ⎡⎢
⎣

1

−1
⎤⎥
⎦

′
√𝑛 (

̂𝛽1 − 𝛽1
̂𝛽2 − 𝛽2

)

𝑑−→ 𝒩(0, 𝑉 )

(as a small side-comment, in the first line there is no 𝑜𝑝(1) term at the end of that equation — that
line holds exactly from the previous part because the vector of partial derivatives of 𝑟 does not
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depend on the values of �̄�1 and �̄�2) and where

𝑉 = ⎡⎢
⎣

1

−1
⎤⎥
⎦

′

V𝛽 ⎡⎢
⎣

1

−1
⎤⎥
⎦

= ((𝑉11 − 𝑉21) (𝑉12 − 𝑉22)) ⎡⎢
⎣

1

−1
⎤⎥
⎦

= 𝑉11 − 𝑉21 − 𝑉12 + 𝑉22

where 𝑉𝑖𝑗 denotes the element in the ith row and jth column in V𝛽. This is the main theoretical
result that we needed to show, but we would still need to estimate 𝑉 in order to come up with a
confidence interval. Before doing that, it is useful to note that we can write a 2 × 2variance matrix,
like V𝛽 as

V𝛽 = [𝑉11 𝑉12
𝑉21 𝑉22

] = [ 𝑉11 𝜌√𝑉11√𝑉22
𝜌√𝑉11√𝑉22 𝑉22

]

As a side-comment, this holds because the diagonal elements of this matrix are variance, and the off
diagonals are covariances (and recalling that cov(𝑋, 𝑌 ) = corr(𝑋, 𝑌 )√var(𝑋)√var(𝑌 ) — which
just holds from the definition of correlation). This suggests that,

̂𝑉 = ̂𝑉11 − 2 ̂𝜌√ ̂𝑉11√ ̂𝑉22 + ̂𝑉22

which further implies that

̂𝑉
𝑛 =

̂𝑉11
𝑛 − 2 ̂𝜌

√ ̂𝑉11√𝑛
√ ̂𝑉22√𝑛 +

̂𝑉22
𝑛

= se( ̂𝛽1)2 − 2 ̂𝜌 se( ̂𝛽1) se( ̂𝛽2) + se( ̂𝛽2)2

Finally, we can write down a 95% confidence interval as

̂𝐶 = ⎡⎢
⎣

̂𝜃 ± 1.96√ ̂𝑉
𝑛

⎤⎥
⎦

= [ ̂𝜃 ± 1.96√se( ̂𝛽1)2 − 2 ̂𝜌 se( ̂𝛽1) se( ̂𝛽2) + se( ̂𝛽2)2]

where the first line is just the usual confidence interval (i.e., estimate plus or minus critical value
time standard error), and the second equality plugs in the expression for ̂𝑉 /𝑛 derived above.

(b)

No, it is not possible to calculate ̂𝜌 from the information given in the problem. Besides the estimates
of ̂𝛽1 and ̂𝛽2, the only other information that we have is about se( ̂𝛽1) and se( ̂𝛽2) — which does not
tell us about their correlation.
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(c)

I think the way to think about this problem is to think about the largest possible confidence interval
given the information that we have. If this confidence interval does not include 0, then it would
support the author’s claim. As a side-comment, this is actually a really interesting question (at least
in my view) because: on the one hand, you can immediately see that the 95% confidence interval
for 𝛽1 would not include the estimated value of 𝛽2 (which is probably what the author is thinking),
on the other hand, if you compute both confidence intervals for 𝛽1 and 𝛽2, they overlap (which
would suggest that they are not different from each other). These are just heuristic arguments
though, and our calculations above indicate that it is actually more complicated than either of
these scenarios. Anyway…the widest possible confidence interval here will occur when ̂𝜌 = −1 (you
can see this because it shows up in the negative term in the square root). Therefore, the widest
possible confidence interval is given by

̂𝐶𝑤𝑖𝑑𝑒 = [ ̂𝜃 ± 1.96√se( ̂𝛽1)2 + 2se( ̂𝛽1)se( ̂𝛽2) + se( ̂𝛽2)2]

= [0.2 ± 1.96
√

3 × 0.072]
= [−0.038, 0.438]

This includes 0, which suggests that the author’s claim is not correct; the difference between ̂𝛽1
and ̂𝛽2 is (just barely) not statistically significant.

7.28
(a)

I am going to include a little bit of extra detail about comparing “manually” calculated standard
errors with those coming directly from R as I think this is interesting. For part of the problem, I’ll
compare to results from the R package estimatr which is popular among economists for computing
heteroskedasticity robust standard errors.

# read data
library(haven)
cps <- read_dta("cps09mar.dta")

# construct subset of white, male, Hispanic
data <- subset(cps, race==1 & female==0 & hisp==1)

# construct experience and wage
data$exp <- data$age - data$education - 6
data$wage <- data$earnings/(data$hours*data$week)

# run regression
Y <- log(data$wage)
X <- cbind(data$education, data$exp, data$exp^2/100, 1)
bet <- solve(t(X)%*%X)%*%t(X)%*%Y
round(bet,5)

[,1]
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[1,] 0.09045
[2,] 0.03538
[3,] -0.04651
[4,] 1.18521

# construct standard errors
ehat <- as.numeric(Y - X%*%bet)
Xe <- X*ehat
n <- nrow(data)
Omeg <- t(Xe)%*%Xe/n
XX <- t(X)%*%X/n
V <- solve(XX)%*%Omeg%*%solve(XX)
se <- sqrt(diag(V))/sqrt(n)
round(data.frame(beta=bet, se=se),5)

beta se
1 0.09045 0.00292
2 0.03538 0.00258
3 -0.04651 0.00530
4 1.18521 0.04608

# compare to R's lm function
reg <- lm(log(wage) ~ education + exp + I(exp^2/100), data=data)
summary(reg)

Call:
lm(formula = log(wage) ~ education + exp + I(exp^2/100), data = data)

Residuals:
Min 1Q Median 3Q Max

-8.0275 -0.3135 0.0063 0.3411 2.8603

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.185209 0.044745 26.488 <2e-16 ***
education 0.090449 0.002737 33.051 <2e-16 ***
exp 0.035380 0.002512 14.083 <2e-16 ***
I(exp^2/100) -0.046506 0.005027 -9.251 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.5739 on 4226 degrees of freedom
Multiple R-squared: 0.2334, Adjusted R-squared: 0.2328
F-statistic: 428.8 on 3 and 4226 DF, p-value: < 2.2e-16
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# Notice that estimates of beta are the same but
# standard errors are different

library(estimatr)
reg2 <- lm_robust(log(wage) ~ education + exp + I(exp^2/100), data=data, se_type="HC0")
summary(reg2)

Call:
lm_robust(formula = log(wage) ~ education + exp + I(exp^2/100),

data = data, se_type = "HC0")

Standard error type: HC0

Coefficients:
Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper DF

(Intercept) 1.18521 0.046078 25.722 1.129e-135 1.09487 1.27555 4226
education 0.09045 0.002915 31.028 1.312e-190 0.08473 0.09616 4226
exp 0.03538 0.002584 13.691 8.859e-42 0.03031 0.04045 4226
I(exp^2/100) -0.04651 0.005304 -8.767 2.606e-18 -0.05691 -0.03611 4226

Multiple R-squared: 0.2334 , Adjusted R-squared: 0.2328
F-statistic: 372.7 on 3 and 4226 DF, p-value: < 2.2e-16

# these are exactly the same now

# Homoskedasticity standard errors
sigma2 <- mean(ehat^2)
V0 <- sigma2 * solve(XX)
se0 <- sqrt(diag(V0))/sqrt(n)
se0

[1] 0.002735371 0.002511055 0.005024746 0.044723948

# these are very, very close to R's lm standard errors
# but not exactly the same

# Homoskedasticity w/ degree of freedom adjustment
k <- 4 # number of regressors (including intercept)
s2 <- sum(ehat^2)/(n-k)
Vs <- s2 * solve(XX)
ses <- sqrt(diag(Vs))/sqrt(n)
ses

[1] 0.002736665 0.002512243 0.005027124 0.044745109
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# these are exactly the same now

(b)

𝜃 = 𝛽1
𝛽2 + 2𝛽3(10)/100 = 𝛽1

𝛽2 + 1
5𝛽3

thet <- bet[1]/(bet[2] + bet[3]/5)
thet

[1] 3.468335

(c)

We can use a Delta method argument for this. In particular, define

𝑟(𝑏) = 𝑏1
𝑏2 + 1

5𝑏3

and, therefore, we have that
√𝑛( ̂𝜃 − 𝜃) = ∇𝑟(𝛽)′√𝑛( ̂𝛽 − 𝛽) + 𝑜𝑝(1)

where

∇𝑟(𝛽) =
⎡
⎢
⎢
⎢
⎢
⎣

𝜕𝑟(𝑏)
𝜕𝑏1

𝜕𝑟(𝑏)
𝜕𝑏2

𝜕𝑟(𝑏)
𝜕𝑏3

𝜕𝑟(𝑏)
𝜕𝑏4

⎤
⎥
⎥
⎥
⎥
⎦

∣
∣
∣
∣
∣
∣𝑏=𝛽

=
⎡
⎢⎢⎢⎢
⎣

1
𝑏2+ 1

5 𝑏3

− 𝑏1
(𝑏2+ 1

5 𝑏3)2

− 𝑏1
5(𝑏2+ 1

5 𝑏3)2

0

⎤
⎥⎥⎥⎥
⎦

∣
∣
∣
∣
∣
∣𝑏=𝛽

Thus, we have that

√𝑛( ̂𝜃 − 𝜃) 𝑑−→ 𝒩(0, Γ)

where

Γ = ∇𝑟(𝛽)′V𝛽∇𝑟(𝛽)

which we can estimate by

Γ̂ =
⎡
⎢⎢⎢⎢
⎣

1
̂𝛽2+ 1

5
̂𝛽3

− ̂𝛽1
( ̂𝛽2+ 1

5
̂𝛽3)2

− 1
5( ̂𝛽2+ 1

5
̂𝛽3)2

0

⎤
⎥⎥⎥⎥
⎦

′

V̂𝛽

⎡
⎢
⎢
⎢
⎢
⎣

1
̂𝛽2+ 1

5
̂𝛽3

− ̂𝛽1
( ̂𝛽2+ 1

5
̂𝛽3)2

− ̂𝛽1
5( ̂𝛽2+ 1

5
̂𝛽3)2

0

⎤
⎥
⎥
⎥
⎥
⎦
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and

s.e.( ̂𝜃) =
√Γ̂√𝑛

# se(\hat{\theta})
r1 <- 1/(bet[2] + bet[3]/5)
r2 <- -bet[1]/(bet[2] + bet[3]/5)^2
r3 <- -bet[1]/(5*(bet[2] + bet[3]/5)^2)
r4 <- 0
r <- as.matrix(c(r1,r2,r3,r4))
Gamma <- t(r)%*%V%*%r
se_theta <- sqrt(Gamma)/sqrt(n)
se_theta

[,1]
[1,] 0.2267341

(d)

# 90% confidence interval
ci_thet_L <- thet - 1.645*se_theta
ci_thet_U <- thet + 1.645*se_theta
paste0("[", round(ci_thet_L,3), ", ", round(ci_thet_U,3), "]")

[1] "[3.095, 3.841]"

(e)

# compute regression intervals and 95% confidence interval
x <- c(12,20,20^2/100,1)
m <- t(x)%*%bet
m

[,1]
[1,] 2.792167

Vm <- t(x)%*%V%*%x
sem <- sqrt(Vm)/sqrt(n)
L <- m - 1.96*sem
U <- m + 1.96*sem
paste0("[",round(L,3),", ", round(U,3), "]")

[1] "[2.769, 2.815]"
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Extra Question 1

set.seed(1234) # set seed for reproducibility

B <- 1000 # 1000 bootstrap iterations

boot_res <- list() # list to hold bootstrap results
for (b in 1:B) {

# draw a sample
index <- sample(1:n, replace=TRUE)
boot_data <- data[index, ]
Yb <- log(boot_data$wage)
Xb <- cbind(boot_data$education, boot_data$exp, boot_data$exp^2/100, 1)
betb <- solve(t(Xb)%*%Xb)%*%t(Xb)%*%Yb
boot_res[[b]] <- betb

}

# bootstrap list to matrix
boot_res <- do.call(cbind, boot_res)
boot_res <- t(boot_res) # and take transpose for cov call below

# bootstrap estimate of asymptotic variance
Vb <- cov(boot_res)*n

# standard errors
seb <- sqrt(diag(Vb))/sqrt(n)

# compare to analytical standard errors computed above
round(data.frame(analytical=se, bootstrap=seb),5)

analytical bootstrap
1 0.00292 0.00290
2 0.00258 0.00257
3 0.00530 0.00525
4 0.04608 0.04568

You can see that these are not exactly the same, but they are very close.

Extra Question 2

# function to run a single simulation
sim <- function() {

# draw X1
X1 <- rexp(n)

# draw the error term
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e <- mixtools::rnormmix(n, lambda=c(.5,.5), mu=c(-2,2), sigma=c(1,1))

## TODO: construct Y
Y <- b0 + b1*X1 + e

## TODO: use X1 and Y to estimate bet0 and bet1
X <- cbind(1,X1)
bet <- solve(t(X)%*%X)%*%t(X)%*%Y
bet1 <- bet[2,1]

# TODO: return estimated value of bet1
bet1

}

# function to run many simulations
# @param n_sims is the number of simulations to run
run_mc <- function(n_sims=1000) {

# run n_sims simulations and store in a vector
mc_res <- sapply(1:n_sims, function(s) {
sim()

})

# print number of observations
cat("n = ", n, "....\n")

# print the mean of b1
cat("mean b1 : ", mean(mc_res), "\n")

# print the variance of b1
cat("var b1 : ", var(mc_res), "\n")

}

# run the simulations
# set values of parameters and number of observations
set.seed(1234) # so can reproduce
b0 <- 0
b1 <- 1

n <- 2
run_mc()

n = 2 ....
mean b1 : 2.506428
var b1 : 4841.861
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n <- 10
run_mc()

n = 10 ....
mean b1 : 1.036217
var b1 : 1.074335

n <- 50
run_mc()

n = 50 ....
mean b1 : 0.9884143
var b1 : 0.122526

n <- 100
run_mc()

n = 100 ....
mean b1 : 1.004076
var b1 : 0.05406661

n <- 500
run_mc()

n = 500 ....
mean b1 : 1.006865
var b1 : 0.01053563

It looks like our theory is holding here. ̂𝛽1 appears to be unbiased — recall unbiasedness is a
finite sample property — so this should hold for all values of 𝑛 (the only case where there are issues
is when 𝑛 = 2; in this case, you can see that the variance is extremely high, and I think that we are
not doing enough simulations to see that it is actually unbiased in this case). The other interesting
thing to note is that, as expected, the variance of ̂𝛽1 is decreasing for larger sample sizes.

Extra Question 3
(a)

Given our discussion in class (and given that ℍ0 is true here), we would expect/hope to reject about
5% of the time.

(b)
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# function to run a single simulation
sim <- function() {

# draw X1
X1 <- rexp(n)

# draw the error term
e <- mixtools::rnormmix(n, lambda=c(.5,.5), mu=c(-2,2), sigma=c(1,1))

## construct Y
Y <- b0 + b1*X1 + e

## estimate bet1 and V and construct t-stat
X <- cbind(1,X1)
bet <- solve(t(X)%*%X)%*%t(X)%*%Y
ehat <- as.numeric(Y-X%*%bet)
Xe <- X*ehat
XX <- t(X)%*%X/n
Omeg <- t(Xe)%*%Xe/n
V <- solve(XX)%*%Omeg%*%solve(XX)
bet1 <- bet[2,1]
t_stat <- sqrt(n)*(bet1 - H0)/sqrt(V[2,2])

# return whether or not reject
1*(abs(t_stat) > qnorm(.975))

}

# function to run many simulations
# @param n_sims is the number of simulations to run
run_mc <- function(n_sims=1000) {

# run n_sims simulations and store in a vector
mc_res <- sapply(1:n_sims, function(s) {
sim()

})

# print rejection probability
cat("rej. prob : ", mean(mc_res), "\n")

}

# run the simulations
# set values of parameters and number of observations
set.seed(1234)
b0 <- 0
b1 <- 1
H0 <- 1
n <- 100
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run_mc()

rej. prob : 0.071

We reject 7.1% of the time here. This looks like we are slightly over-rejecting (relative to the
fraction of time that we’d like to), but this seems to at least be working pretty well.

(c)

# n=10
n <- 10
run_mc()

rej. prob : 0.256

# n=50
n <- 50
run_mc()

rej. prob : 0.1

# n=500
n <- 500
run_mc()

rej. prob : 0.052

# n=1000
n <- 1000
run_mc()

rej. prob : 0.045

These results are quite interesting. When 𝑛 = 10, we reject ℍ0 25.6% of the time — in other words,
despite being true, we reject the null about 25% of the time when we only have 10 observations. This
suggests that our asymptotic approximation arguments for the limiting distribution of

√𝑛( ̂𝛽 − 𝛽)
are not working very well when 𝑛 = 10. This should not be surprising though because 𝑛 is quite
small here.

The performance of inference procedure is better, though we still over-reject, when 𝑛 = 50. By
the time 𝑛 = 500 or 𝑛 = 1000, it looks like our inference procedure is working quite well.

(d)

In this case ℍ0 is false, so we’d like to reject ℍ0. We expect to have more power (i.e., be able to
reject a false null) as the number of observations increases.
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set.seed(1234)
b0 <- 0
b1 <- 1
H0 <- 0

# n=10
n <- 10
run_mc()

rej. prob : 0.439

# n=50
n <- 50
run_mc()

rej. prob : 0.844

# n=100
n <- 100
run_mc()

rej. prob : 0.987

# n=500
n <- 500
run_mc()

rej. prob : 1

# n=1000
n <- 1000
run_mc()

rej. prob : 1

This is exactly what we find. When 𝑛 = 10, we reject only 44% of the time; when 𝑛 = 50, we
reject 84% of the time; when 𝑛 = 100, we reject almost 99% of the time; and for higher values of
𝑛, we reject 100% of the time.

If you are interested, it would interesting to experiment with different values of b1 and/or H0
here and also see how that affects the power of the test.
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