
Hansen 3.16
To start with, notice that

𝑅2
1 = 1 − ẽ′ẽ

(Y − 1𝑛 ̄𝑌 )′(Y − 1𝑛 ̄𝑌 )

𝑅2
2 = 1 − ê′ê

(Y − 1𝑛 ̄𝑌 )′(Y − 1𝑛 ̄𝑌 )

where these expressions come from Section 3.14 in Hansen (these are just saying that 𝑅2 is 1 minus
the ratio of the sum of squared residuals to the total sum of squares). We aim to show that 𝑅2

2 ≥ 𝑅2
1.

To do this, given that the only difference between the two expressions comes ẽ′ẽ versus ê′ê, the
result will hold if we can show that ẽ′ẽ ≥ ê′ê.

One useful property of annihilator matrices that is useful below is that

MM1 = M(I − P1)
= M (1)

where P1 and M1 are the projection and annihilator matrices for X1. The second equality holds
because MP1 = MX1⏟

=0

(X′
1X1)−1X′

1 = 0. An implication of Equation 1 is that M1M = M, which

follows from the symmetry properties of annihilator matrices which have used many times before.
This is useful below.

Next, notice that

ẽ′ẽ = (Y − X1 ̃𝛽1)′(Y − X1 ̃𝛽1)
= Y′Y − 2Y′X1 ̃𝛽1 + ̃𝛽′

1X′
1X1 ̃𝛽1

= Y′Y − 2Y′P1Y + Y′P′
1P1Y

= Y′Y − Y′P1Y
= Y′M1Y

where the first equality holds be the definition of ẽ, the second equality expands the previous line,
the third equality holds because X1 ̃𝛽1 = P1Y, the fourth equality holds because P1 is symmetric
and idempotent and by cancelling terms, and the last equality holds because M1 = I − P1.

Second, notice that

Y = X1 ̂𝛽1 + X2 ̂𝛽2 + ê
⟹ M1Y = M1X1⏟

=0

̂𝛽1 + M1X2 ̂𝛽2 + M1ê

= M1X2 ̂𝛽2 + M1Me
= M1X2 ̂𝛽2 + Me
= M1X2 ̂𝛽2 + ̂e

⟹ ê = M1Y − M1X2 ̂𝛽2

where the first line is given in the problem, the second line comes from pre-multiplying by M1, the
third equality cancels the first term and holds because ê = Me, the fourth equality holds because
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(as discussed above) M1M = M, the fifth equality again uses that Me = ê, and the last line holds
by rearranging terms. From this expression, we have that

ê′ê = (M1Y − M1X2 ̂𝛽2)′(M1Y − M1X2 ̂𝛽2)
= Y′M1Y − 2 ̂𝛽′

2X′
2M1Y + ̂𝛽′

2X′
2M1X2 ̂𝛽2

= Y′M1Y − 2 ̂𝛽′
2X′

2M1Y + ̂𝛽′
2X′

2M1X2(X′
2M1X2)−1X′

2M1Y
= Y′M1Y − ̂𝛽′

2X′
2M1Y

= Y′M1Y − Y′M1X2(X′
2M1X2)−1X′

2M1Y⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≥0

where the first equality holds from the previous expression for ê, the second equality expands the
previous line, the third equality holds by plugging in ̂𝛽2 = (X′

2M1X2)−1X′
2M1Y (which holds by

FWL), the fourth equality holds by cancelling and combining terms from the previous line, and the
last equality holds by plugging in for ̂𝛽2 again. The underlined term is non-negative because it is
a quadratic form.

Plugging in from the above expressions, we have that

ẽ′ẽ − ê′ ̂e = Y′M1X2(X′
2M1X2)−1X′

2M1Y ≥ 0

which, as discussed above, implies that 𝑅2
2 ≥ 𝑅2

1.
The case where 𝑅2

2 = 𝑅2
1 occurs when X′

2M1Y = 0. This is equivalent to ̂𝛽2 =
(X′

2M1X2)−1X′
2M1Y = 0; i.e., 𝑅2 is the same for the two models if ̂𝛽2 = 0. This is the

case where the second set of regressors does not help to explain the variation in 𝑌 after accounting
for the first set of regressors.

Hansen 3.22
From the first regression, we immediately have that

ũ = M1Y

which holds because it is a regression of 𝑌 on 𝑋1 (and I use bold font above to indicate that, e.g.,
ũ is the 𝑛 × 1 vector of residuals from the first regression). Then, the coefficient from the second
regression is given by

̃𝛽2 = (X′
2X2)−1X′

2ũ
= (X′

2X2)−1X′
2M1Y

We can compare this to ̂𝛽 from the third regression given in the problem. We immediately know
from FWL-type arguments that

̂𝛽2 = (X′
2M1X2)−1X′

2M1Y

In general, these are not equal to each other.
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Hansen 3.24
Part a

# read data
library(haven)
cps <- read_dta("cps09mar.dta")

# construct subset of single, Asian men
data <- subset(cps, marital==7 & race==4 & female==0)

# ...not totally clear if this is exactly right subset
# confirm same number of rows as mentioned in textbook
nrow(data)

[1] 268

# construct experience and wage
data$exp <- data$age - data$education - 6
data$wage <- data$earnings/(data$hours*data$week)

# also construct subset with < 45 years of experience
data <- subset(data, exp < 45)

# run regression
Y <- log(data$wage)
X <- cbind(1, data$education, data$exp, data$exp^2/100)
bet <- solve(t(X)%*%X)%*%t(X)%*%Y
round(bet,3)

[,1]
[1,] 0.531
[2,] 0.144
[3,] 0.043
[4,] -0.095

ehat <- Y - X%*%bet

# sum of squared errors
ssr <- t(ehat)%*%ehat
round(ssr,3)

[,1]
[1,] 82.505
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# r-squared
tss <- t(Y-mean(Y)) %*% (Y-mean(Y))
r2 <- 1-ssr/tss
round(r2,3)

[,1]
[1,] 0.389

Part b

# residual regression
X1 <- data$education
X2 <- cbind(1, data$exp, data$exp^2/100)
ycoef <- solve(t(X2)%*%X2)%*%t(X2)%*%Y
yresid <- Y - X2%*%ycoef
x1coef <- solve(t(X2)%*%X2)%*%t(X2)%*%X1
x1resid <- X1 - X2%*%x1coef
fw_bet <- solve(t(x1resid)%*%x1resid)%*%t(x1resid)%*%yresid
round(fw_bet,3)

[,1]
[1,] 0.144

This is the same as the estimate from part a. This is expected due to the Frisch-Waugh theorem.

# calculate sum of squared errors
uhat <- yresid - x1resid%*%fw_bet
fw_ssr <- t(uhat)%*%uhat
round(fw_ssr,3)

[,1]
[1,] 82.505

# calculate R2
fw_tss <- t(yresid-mean(yresid))%*%(yresid-mean(yresid))
fw_r2 <- 1-fw_ssr/fw_tss
round(fw_r2, 3)

[,1]
[1,] 0.369

Part c

The sum of squared errors is the same as in part (a). This is expected, e.g., Theorem 3.5 shows
that the residuals from the FWL-type residual regression are the same as for the regression that
includes both 𝑋1 and 𝑋2. This implies that the sum of squared errors will be the same too. On
the other hand, 𝑅2 is different because the total sum of squares is different between the case where
it is calculated with 𝑌 directly relative to using the residuals from 𝑌 on 𝑋1.
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Hansen 3.25

# a)
ehat <- Y - X%*%bet
round(sum(ehat),5)

[1] 0

# b)
round(sum(data$education*ehat),5)

[1] 0

# c)
round(sum(data$exp*ehat),5)

[1] 0

# d)
round(sum(data$education^2 * ehat),5)

[1] 133.1331

# e)
round(sum(data$exp^2 * ehat),5)

[1] 0

# f)
Yhat <- X%*%bet
round(sum(Yhat*ehat),5)

[1] 0

# g)
round(sum(ehat^2),5)

[1] 82.505

Yes, these calculations are consistent with the theoretical properties of OLS. Parts a, b, c, e, and
f all hold due to the property that ∑𝑛

𝑖=1 𝑋𝑖 ̂𝑒𝑖 = 0. Part d is not equal to 0 because 𝑋2
1 is not an

included regressor. Part g provides the sum of squared errors which is not generally equal to 0.
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Hansen 4.1
Part a

̂𝜇𝑘 = 1
𝑛

𝑛
∑
𝑖=1

𝑌 𝑘
𝑖

Part b

𝔼 [ ̂𝜇𝑘] = 𝔼 [ 1
𝑛

𝑛
∑
𝑖=1

𝑌 𝑘
𝑖 ]

= 1
𝑛

𝑛
∑
𝑖=1

𝔼[𝑌 𝑘
𝑖 ]

= 1
𝑛

𝑛
∑
𝑖=1

𝔼[𝑌 𝑘]

= 𝔼[𝑌 𝑘]

where the third equality holds because the 𝑌𝑖 are identically distributed (implying the mean is the
same across 𝑖). This result implies that ̂𝜇𝑘 is unbiased for 𝜇𝑘.

Part c

var ( ̂𝜇𝑘) = var ( 1
𝑛

𝑛
∑
𝑖=1

𝑌 𝑘
𝑖 )

= 1
𝑛2 var (

𝑛
∑
𝑖=1

𝑌 𝑘
𝑖 )

= 1
𝑛2

𝑛
∑
𝑖=1

var(𝑌 𝑘)

= var(𝑌 𝑘)
𝑛

where the second equality holds because 1/𝑛 is a constant and it should be squared to come out
of the variance, the third equality holds by passing the variance through the sum (in order for
their not to be any covariance terms introduced here, it requires the “independence” part of iid;
for this variance to be the same across all units requires the “identically distributed” part of iid),
and the last equality holds because summing a constant 𝑛 times cancels one of the 𝑛’s from the
denominator.

For var( ̂𝜇𝑘) to exist, we need for var(𝑌 𝑘) to exist. Notice that,

var(𝑌 𝑘) = 𝔼[(𝑌 𝑘)2] − 𝔼[𝑌 𝑘]2

Thus, the condition that we need is that 𝔼[(𝑌 𝑘)2] = 𝔼[𝑌 2𝑘] < ∞.
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Part d

We can estimate by

v̂ar( ̂𝜇𝑘) = v̂ar(𝑌 𝑘)
𝑛 =

1
𝑛

𝑛
∑
𝑖=1

𝑌 2𝑘
𝑖 − ( 1

𝑛
𝑛

∑
𝑖=1

𝑌 𝑘
𝑖 )

2

𝑛

Hansen 4.5
First (and notice that this is exactly the same as what we showed in class…because unbiasedness
did not rely on homoskedasticity),

𝔼[ ̂𝛽|X] = 𝔼[(X′X)−1X′Y|X]
= (X′X)−1X′𝔼[Y|X]
= (X′X)−1X′X𝛽
= 𝛽

For thinking about the sampling variance, first notice that

var(Y|X) = var(X𝛽 + e|X)
= var(e|X)
= 𝜎2ΣΣΣ

where the first equality holds by plugging in for Y, the second equality holds because we are
conditioning on X, and the third equality holds from the way that ΣΣΣ is defined in the textbook.
Next,

var( ̂𝛽|X) = var((X′X)−1X′Y|X)
= (X′X)−1X′var(Y|X)X(X′X)−1

= 𝜎2(X′X)−1X′ΣΣΣX(X′X)−1

where the first equality holds by plugging in for ̂𝛽, the second equality holds because the variance
is conditional on X (so the terms involving X can come out but need to be “squared”), and the
last equality holds by plugging in the expression for var(Y|X) that we derived above. This is the
result we were trying to show.

Hansen 4.6
Recall that the restriction to linear estimators implies that we can write any estimator in this class
as ̃𝛽 = A′Y for an 𝑛 × 𝑘 matrix A that is a function of X. Unbiasedness implies that, it must be
the case that 𝔼[ ̃𝛽|X] = 𝛽. Then, notice that under linearity, we have that

𝔼[ ̃𝛽|X] = 𝔼[A′Y|X] = A′𝔼[Y|X] = A′X𝛽

where the second equality holds because A is a function of X. Therefore, together linearity and
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unbiasedness imply that A′X = I𝑘. Next, notice that

var( ̃𝛽|X) = var(A′Y|X) = A′var(Y|X)A = 𝜎2A′ΣΣΣA

We aim to show that var( ̃𝛽|X) − 𝜎2(X′ΣΣΣ−1X)−1 ≥ 0. Notice that

var( ̃𝛽|X) − 𝜎2(X′ΣΣΣ−1X)−1 = 𝜎2 (A′ΣΣΣA − (X′ΣΣΣ−1X)−1)
= 𝜎2 (A′ΣΣΣA − A′ΣΣΣ1/2ΣΣΣ−1/2X(X′ΣΣΣ−1X)−1X′ΣΣΣ−1/2ΣΣΣ1/2A)

= 𝜎2A′ΣΣΣ1/2 (I − ΣΣΣ−1/2X((ΣΣΣ−1/2X)′ΣΣΣ−1/2X)
−1

X′ΣΣΣ−1/2)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=∶MΣ−1/2𝑋

ΣΣΣ1/2A

= 𝜎2A′ΣΣΣ1/2MΣ−1/2𝑋ΣΣΣ1/2A

= 𝜎2 (MΣ−1/2𝑋ΣΣΣ1/2A)′ MΣ−1/2𝑋ΣΣΣ1/2A
≥ 0

where the above result repeatedly uses ΣΣΣ is positive definite and symmetric (which implies that it
has a positive definite and symmetric inverse, and that it has a positive definite and symmetric
square root matrix, and so does its inverse). In particular, the second equality holds because (i)
ΣΣΣ−1/2ΣΣΣ1/2 = I𝑛, and A′X = I𝑘 (due to linearity and unbiasedness as discussed above); the third
equality holds by factoring out A′ΣΣΣ1/2 and from a slight manipulation of the inside term; the fourth
equality holds by the definition of MΣ−1/2𝑋 (which is an annihilator matrix); the fifth equality holds
because MΣ−1/2𝑋 is idempotent and symmetric; and the last equality holds because the previous
expression is a quadratic form.

Hansen 4.23
Notice that

𝔼[ ̂𝛽𝑟𝑖𝑑𝑔𝑒|X] = 𝔼 [(X′X + I𝑘𝜆)−1X′Y]
= (X′X + I𝑘𝜆)−1X′𝔼[Y|X]
= (X′X + I𝑘𝜆)−1X′X𝛽
≠ 𝛽

This implies that ̂𝛽𝑟𝑖𝑑𝑔𝑒 is not unbiased for 𝛽.
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