Homework 1 Solutions

Hansen 2.2

$$
\begin{aligned}
\mathbb{E}[Y X] & =\mathbb{E}[X \mathbb{E}[Y \mid X]] \\
& =\mathbb{E}[X(a+b X)] \\
& =\mathbb{E}\left[a X+b X^{2}\right] \\
& =a \mathbb{E}[X]+b \mathbb{E}\left[X^{2}\right]
\end{aligned}
$$

where the first equality holds by the law of iterated expectations, the second equality holds by the expression for $\mathbb{E}[Y \mid X]$ in the problem, and the remaining two equalities are just algebra/basic properties of expectations.

Hansen 2.5

a) The mean squared error is given by

$$
M S E=\mathbb{E}\left[\left(e^{2}-h(X)\right)^{2}\right]
$$

b) e^{2} is closely related to a measure of the magnitude of how far off our predictions of Y given X are. For example, given X, if we predict a "high" value of e^{2}, it would suggest that we expect our predictions of Y to not be too accurate for that value of X.
c) Recall that $\sigma^{2}(X)=\mathbb{E}\left[e^{2} \mid X\right]$ so that

$$
\begin{aligned}
M S E & =\mathbb{E}\left[\left(\left(e^{2}-\mathbb{E}\left[e^{2} \mid X\right]\right)-\left(h(X)-\mathbb{E}\left[e^{2} \mid X\right]\right)\right)^{2}\right] \\
& =\mathbb{E}\left[\left(e^{2}-\mathbb{E}\left[e^{2} \mid X\right]\right)^{2}\right]-2 \mathbb{E}\left[\left(e^{2}-\mathbb{E}\left[e^{2} \mid X\right]\right)\left(h(X)-\mathbb{E}\left[e^{2} \mid X\right]\right)\right]+\mathbb{E}\left[\left(h(X)-\mathbb{E}\left[e^{2} \mid X\right]\right)^{2}\right]
\end{aligned}
$$

Let's consider each of these three terms.

- The first term does not depend on $h(X)$ so it is invariant to our choice of h.
- The second term is equal to 0 after applying the law of iterated expectations.
- The third term is minimized by setting $h(X)=\mathbb{E}\left[e^{2} \mid X\right]=\sigma^{2}(X)$ which implies that $M S E$ is minimized by $\sigma^{2}(X)$.

Hansen 2.6

To start with, notice that

$$
\mathbb{E}[Y]=\mathbb{E}[m(X)+e]=\mathbb{E}[m(X)]
$$

where the last equality holds because $\mathbb{E}[e]=0$. Thus, we have that

$$
\begin{aligned}
\operatorname{var}(Y) & =\mathbb{E}\left[(Y-\mathbb{E}[Y])^{2}\right] \\
& =\mathbb{E}\left[(m(X)+e-\mathbb{E}[m(X)])^{2}\right] \\
& =\mathbb{E}\left[(m(X)-\mathbb{E}[m(X)])^{2}\right]+2 \mathbb{E}[(m(X)-\mathbb{E}[m(X)]) e]+\mathbb{E}\left[e^{2}\right] \\
& =\mathbb{E}\left[(m(X)-\mathbb{E}[m(X)])^{2}\right]+\mathbb{E}\left[e^{2}\right] \\
& =\operatorname{var}[m(X)]+\sigma^{2}
\end{aligned}
$$

where first equality holds by the definition of $\operatorname{var}(Y)$, the second equality holds by the expression for $\mathbb{E}[Y]$ in the previous display, the third equality holds by expanding the square, the fourth equality holds by applying the law of iterated expectations to the middle term (and because $\mathbb{E}[e \mid X]=0$), and the fifth equality holds by the definition of $\operatorname{var}[m(X)]$ and the fact that $\mathbb{E}\left[e^{2}\right]=\sigma^{2}$.

Hansen 2.10

True.

$$
\mathbb{E}\left[X^{2} e\right]=\mathbb{E}[X^{2} \underbrace{\mathbb{E}[e \mid X]}_{=0}]=0
$$

Hansen 2.11

False. Here is a counterexample. Suppose that $X=1$ with probability $1 / 2$ and that $X=-1$ with probability $1 / 2$. Importantly, this means that $X^{2}=1, X^{3}=X, X^{4}=1$, and so on; this further implies that $\mathbb{E}[X]=0, \mathbb{E}\left[X^{2}\right]=1, \mathbb{E}\left[X^{3}\right]=0$ and so on. Also, suppose that $\mathbb{E}[e \mid X]=X^{2}$. Then, $\mathbb{E}[X e]=\mathbb{E}[X \mathbb{E}[e \mid X]]=\mathbb{E}\left[X \cdot X^{2}\right]=\mathbb{E}\left[X^{3}\right]=0$. However, $\mathbb{E}\left[X^{2} e\right]=\mathbb{E}\left[X^{2} \mathbb{E}[e \mid X]\right]=\mathbb{E}\left[X^{2} \cdot X^{2}\right]=$ $\mathbb{E}\left[X^{4}\right]=1 \neq 0$

Hansen 2.12

False. Here is a counterexample. Suppose that $\mathbb{E}\left[e^{2} \mid X\right]$ depends on X, then e and X are not independent. As a concrete counterexample, suppose $e \mid X \sim \mathcal{N}\left(0, X^{2}\right)$ (that is, conditional on X, e follows a normal distribution with mean 0 and variance X^{2}). In this case $\mathbb{E}[e \mid X]=0$, but e and X are not independent.

Hansen 2.13

False. The same counterexample as in 2.11 works here. In that case, $\mathbb{E}[X e]=0$, but $\mathbb{E}[e \mid X]=X^{2}$ (in that case $X^{2}=1$, but the main point is that it is not equal to 0 for all values of X).

Hansen 2.14

False. In this case, higher order moments can still depend on X. For example, $\mathbb{E}\left[e^{3} \mid X\right]$ can still depend on X. If it does, then e and X are not independent.

Hansen 2.21

a) Following omitted variable bias types of arguments (also, notice that the notation in the problem implies that X is scalar here), we have that

$$
\begin{aligned}
\gamma_{1} & =\frac{\mathbb{E}[X Y]}{\mathbb{E}\left[X^{2}\right]} \\
& =\frac{\mathbb{E}\left[X\left(X \beta_{1}+X^{2} \beta_{2}+u\right)\right]}{\mathbb{E}\left[X^{2}\right]} \\
& =\beta_{1}+\frac{\mathbb{E}\left[X^{3}\right]}{\mathbb{E}\left[X^{2}\right]} \beta_{2}
\end{aligned}
$$

Thus, $\gamma_{1}=\beta_{1}$ if either $\beta_{2}=0$ or $\mathbb{E}\left[X^{3}\right]=0 . \beta_{2}=0$ if X^{2} does not have an effect on the outcome (after accounting for the effect of X); this is similar to the omitted variable logic that we talked about in class. A leading case where $\mathbb{E}\left[X^{3}\right]=0$ is when X is a mean 0 symmetric random variable; for example, if X is standard normal, then its third moment is equal to 0 .
b) Using the same arguments as in part (a), we have that

$$
\gamma_{1}=\theta_{1}+\frac{\mathbb{E}\left[X^{4}\right]}{\mathbb{E}\left[X^{2}\right]} \theta_{2}
$$

Similar to the previous part, γ_{1} could equal θ_{1} if θ_{2} were equal to 0 . Unlike the previous part though, here, we cannot have that $\mathbb{E}\left[X^{4}\right]=0$ except in the degenerate case where $X=0$ with probability 1 (which would be ruled out here as it would also imply that $\mathbb{E}\left[X^{2}\right]=0$).

Extra Question

```
load("fertilizer_2000.RData")
# part (a)
nrow(fertilizer_2000)
```

[1] 68

```
# part (b)
fertilizer_2000[21,]$country
```

[1] "Gambia, The"

```
# part (c)
mean_gdp <- mean(fertilizer_2000$avgdppc)
mean_gdp
```

[1] 4291.377

```
# part (d)
above_avg_gdp <- subset(fertilizer_2000, avgdppc > mean_gdp)
mean(above_avg_gdp$prec)
```

[1] 1391.391

