
Sampling

PSE 6.1-6.3
This material comes from Hansen’s Probability and Statistics for Economists (PSE) and Len

Goff’s lecture notes along with some of my own comments.
This set of notes begins our discussion about statistics.
We will start by putting some structure on what type of data, or sample, we have access

to. There are alternative sampling schemes, but we’ll start with the simplest (and arguably most
common)

Definition. A collection of random vectors {X1, . . . , Xn} is a (simple) random sample from
the population F if Xi are independent and identically distributed (i.i.d)

Here, Xi is a particular observation and there are n of them total; n is called the sample
size. Sometimes I may use notation like {Xi}n

i=1. The key condition is independent and identically
distributed. Independent means that Xi is independent from Xj for i ̸= j. Identically distributed
means that all of the Xi are draws from the same distribution F. The distribution F is called the
population or population distribution. The book discusses two different “metaphors” to think
about the population that are worth mentioning. One is that there is an actual large population
with N observations where N is much larger than n (the sample size) and where random sampling
amounts to drawing a subset of n of these observations each with equal probability. The other
metaphor is of a data generating process (DGP) where there is a process by which each
observation is created, and the population is the probability model which generates the observations.

It is reasonable to think of much data as being a random sample. For example, it is likely
reasonable to think of large datasets like the Current Population Survey or American Community
Survey as being (at least approximately) random samples. In these data, if Xi is a person’s income,
it is reasonable to think that individual i’s income is independent from individual j’s and that they
are drawn from the same distribution.

It is helpful to give a couple of examples that are not random samples.

• Stratified random sampling: The population is divided into groups, and then simple random
sampling occurs within each group (e.g. I run my sampling algorithm separately for men
and women, so that I can ensure equal representation of each). This is a common sampling
procedure and many samples include “sampling weights” to “adjust back” to the overall
population from a stratified random sample.

• Clustered Sampling After defining groups, we randomly select some of the groups. Then all
individuals from those groups are included in the sample. An example of clustered sampling
would be the case where a researcher is interested in studying the effect of some policy on
student’s test scores, and, instead of randomly sampling students, the researcher randomly
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Sample X

row i ωi agei marriedi collegei

1 1 25 0 0
2 4 37 1 1
3 5 54 0 1

Population I

individual i agei marriedi collegei

1 25 0 0
2 74 1 1
3 8 0 0
4 37 1 1
5 54 0 1

Figure 1: An example of simple random sampling, in which n = 3 and N = 5. Each row of the
dataset on the left is a realization of random vector X = (age, married, college), which chooses a
row at random from the population matrix on the right. We can conceptualize this sampling process
as a probability space with outcomes ω = (ω1, ω2, ω3), where ωi yields the index of the randomly
selected individual in I. The random vectors Xi = Xi(ωi) and Xj = Xj(ωj) are independent for
i ̸= j, but the random variables within a row are generally not independent, e.g. agei and collegei

are positively correlated.

selects classrooms and collects data about students within those classrooms. This sort of
sample likely violates the independence condition of random sampling as test scores for students
within the same classroom are likely to be correlated due to having the same teacher.

• Time Series Examples of time series data are a country’s GDP over time or a company’s stock
price over time. Time series data is often serially correlated (if a country is in a recession
this quarter, they are more likely than usual to be in a recession next quarter); this violates
independence. Many time series have trends (e.g., the GDP of the United States has trended
up over time). Thus, the distribution of GDP was different in, say, 2020 relative to, say 1970.
This violates identically distributed.

The main goal of statistics is to conduct inference – that is, to learn something about the
underlying population using the sample that we have access to.

Statistics, Parameters, and Estimators

PSE 6.4-6.6
Next, we’ll introduce some additional important concepts. First, as discussed above, the main

goal of statistics is to learn about features of the population. These features are called parameters.

Definition. A parameter θ is any function of the population F.

θ is a generic notation for a parameter, but it is common to use other Greek letters such as µ or
β to represent population parameters or even to just use the population quantity itself. A simple
example of a parameter is µ = E[X].
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Definition. A statistic is a function of the sample {Xi}n
i=1.

One thing that is worth pointing out is that a parameter is non-random while a statistic is
random. This second part is not immediately obvious. The textbook has a good discussion of this
point which I paste here

Recall that there is a distinction between random variables and their realizations.
Similarly there is a distinction between a statistic as a function of a random sample –
and is therefore a random variable as well – and a statistic as a function of the realized
sample, which is a realized value. When we treat a statistic as random we are viewing
it as a function of a sample of random variables. When we treat it as a realized value
we are viewing it as a function of a set of realized values. One way of viewing the
distinction is to think of "before viewing the data" and "after viewing the data." When
we think about a statistic "before viewing" we do not know what value it will take. From
our vantage point it is unknown and random. After viewing the data and specifically
after computing and viewing the statistic the latter is a specific number is therefore a
realization. It is what it is and it is not changing. The randomness is the process by
which the data was generated – and the understanding that if this process were repeated
the sample would be different and the specific realization would be therefore different.

Definition. An estimator θ̂ for a parameter θ is a statistic intended as a guess about θ.

As in the above definition, we will typically put a “hat” (that is,ˆ) to indicate the estimator
of the parameter θ. Once we have a specific sample (so that we can θ̂ is a particular number that
we can calculate), we will refer to θ̂ as an estimate of θ. This distinction is similar to the above
discussion of thinking of a statistic as being random but also being a number that can be calculated
given for a particular sample.

A natural way to construct estimators is to use the analogy principle; that is, if we can write
θ as a function of the population F, to have θ̂ be the same function of the sample. The previous
sentence may sound complicated, but this is actually a very simple/straightforward idea.

The most common parameter that we’ll estimate is the population mean of a random variable,
µ = E[X]; we’ll see that a large number of more complicated/interesting parameters are equal to
functions of population means. The idea of the analogy principle is to estimate the population mean
using the sample average:

X̄ := 1
n

n∑
i=1

Xi

The sample average is random in the sense that it would be different across different random samples
from the same underlying population.
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Other random variables can be written as the expected value of a transformation of X. For
example, the second moment E[X2], or, more generally, θ = E[g(X)]. The analog estimator of θ is

θ̂ = 1
n

n∑
i=1

g(Xi)

Again, all we are doing here is estimating the population parameter by replacing the population
mean with the sample average.

Functions of Parameters

PSE 6.7
More generally, a large number of parameters can be written as transformations of population

moments. We can write these generally as

β = h
(
E[g(X)]

)
where h and g are functions. Taking θ = E[g(X)], so that β = h(θ), the natural way to estimate β

is by

β̂ = h
(
θ̂
)

= h

(
1
n

n∑
i=1

g(Xi)
)

This type of estimator is called a plug-in estimator because we plug in θ̂ in place of θ in order to
estimate β.

An example comes from estimating σ2 = var(X) = E[X2] − E[X]2. Replacing population
expectations with sample averages and then applying the same function to them, we obtain plug-in
estimator for σ2 which is given by

σ̂2 = 1
n

n∑
i=1

X2
i −

(
1
n

n∑
i=1

Xi

)2

Sampling Distribution

PSE 6.8
Because statistics are random variables, they have a distribution. The distribution of a statistic

is called its sampling distribution. We will be interested in the accuracy of our estimates which,
in turn, depends on the sampling distribution of our estimator. The sampling distribution depends
on the population distribution F, the sample size n, and the mapping from the data to the statistic.

Estimation Bias

PSE 6.9
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An important feature of the sampling distribution of θ̂ is its mean, E[θ̂].

Definition. The bias of an estimator θ̂ of a parameter θ is

bias(θ̂) = E[θ̂] − θ

This is the mean difference (over repeated samples) between θ̂ and θ. An estimator is said to be
unbiased if bias(θ̂) = 0.

Let us return to estimating µ = E[X] using the sample average X̄. Notice that

E[X̄] = E
[

1
n

n∑
i=1

Xi

]

= 1
n

n∑
i=1

E[Xi]

= 1
n

n∑
i=1

µ

= µ

where the third equality holds because the Xi are identically distributed. This shows that X̄ is
unbiased for E[X].

Example: One alternative estimator for E[X] is X1 (i.e., just use the first observation int he
data). Is this estimator unbiased for E[X]? Another estimator is cX̄ for some constant c. Is
this estimator unbiased for E[X]?

A useful discussion from the textbook about the importance of unbiasedness as a property of an
estimator (this discussion is in the context of using X1 as an estimator of E[X]):

This last example shows that “reasonable” and “unbiased” are not necessarily the same
thing. While unbiasedness seems like a useful property for an estimator, it is only one of
many desirable properties. In many cases it may be okay for an estimator to possess
some bias if it has other good compensating properties.

Sampling variance

PSE 6.10
The next feature of the sampling distribution for us to consider is the sampling variance, that

is, the variance of the estimator θ̂ across repeated samples. For notation, we will typically just write
var(θ̂) for the sampling variance of θ̂.

Let us calculate the sampling variance of X̄.
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var(X̄) = var
(

1
n

n∑
i=1

Xi

)

= 1
n2 var

(
n∑

i=1
Xi

)

= 1
n2

n∑
i=1

var(Xi)

= σ2

n

where the second equality holds because 1/n is a constant and can come outside the variance after
squaring it, the third equality crucially uses that the Xi are independent (otherwise, there would be
a large number of additional covariance terms to deal with), and the last equality holds because
var(Xi) = σ2 which uses that Xi are identically distributed.

It is interesting to compare the above calculation of var(X̄) to our previous calculation of E[X̄].
Notice that, similar to the expection, the var(X̄) depends on var(X) – this should make sense:
the variance of the sample average depends on the variance of the random variable itself (and is
smaller when the the variance of X itself is smaller, etc.). More interestingly, and distinct from
the expectation, is that var(X̄) depends on the sample size n. For larger values of n, the sampling
variance becomes smaller. To get some intuition along these lines, think about rolling a die n times
and calculating X̄ over and over. When n = 1, the distribtion of X̄ is the same as X, and, for
example, it is not very uncommon for X̄ to be equal to extreme values like 1 or 6 (the probability
that X̄ = 6 is 1/6 for example). Now consider the case where n = 2, in order for X̄ = 6, you would
need to roll two 6’s in a row, this happens with probability 1/36, but values of X̄ close to the
population mean become more common. As you keep increasing n, it starts to become exceedingly
unlikely that X̄ = 6 (and similar arguments apply to other “large” values).

All else equal, one would prefer an estimator with low sampling variance.

Mean Squared Error

PSE 6.11

Definition. The mean squared error of an estimator θ̂ for θ is

mse(θ̂) = E[(θ̂ − θ)2]

The mean squared error is the mean distance between θ̂ and θ over repeated samples.
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Proposition:

mse(θ̂) = bias(θ̂)2 + var(θ̂)

This says that the mean squared error of an estimator is fully determined by its bias and variance,
and gives an explicit formula.

Proof:

mse(θ̂) = E[(θ̂ − θ)2]

= E
[(

(θ̂ − E[θ̂]) + (E[θ̂] − θ)
)2]

= E
[
(θ̂ − E[θ̂])2︸ ︷︷ ︸

A

]
+ E

[
(E[θ̂] − θ)2

]
︸ ︷︷ ︸

B

+2E
[
(θ̂ − E[θ̂])(E[θ̂] − θ)

]
︸ ︷︷ ︸

C

Let’s consider each of these three terms individually. For the first one, it immediately holds that

A = var(θ̂)

from the definition of variance. Next,

B = (E[θ̂] − θ)2

= bias(θ̂)2

where the first equality holds since E[θ̂] and θ are both nonrandom (so the expected value of their
difference squared is also non-random) implying that we can get rid of the outside expectation, and
the second equality holds by the definition of bias(θ̂). Finally,

C = (E[θ̂] − θ)E
[
(θ̂ − E[θ̂])

]
︸ ︷︷ ︸

=0

= 0

where the first equality holds because E[θ̂] and θ are non-random. Combining the expressions for
Terms A, B, and C completes the proof.

Finally, notice that when an estimator is unbiased, then its mean squared error is equal to its
variance.

Example: Calculate the mean squared error for the alternative estimators mentioned in the
previous example: (i) using X1 (i.e., the first observation) as an estimator of E[X] and (ii)
for cX̄.
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Best Linear Unbiased Estimator

PSE 6.12
Next, we want to consider what is the “best” linear unbiased estimator (BLUE) of µ = E[X].

What we mean here is that we are looking for the lowest variance (“best”) among linear estimators
(in the sense of being a linear function of the Xi) that are unbiased. An estimator with these
properties is also referred to as being efficient.

To be more precise about the class of linear estimators that we are considering, what we mean
is that we can write them as a linear function of the underlying data; thus, we will write members
of this class generically as

µ̃ =
n∑

i=1
wiXi

where wi are non-random weights. An implication of unbiasedness is that, we must have that

E[µ̃] = µ

This implies certain properties of the weights; in particular, notice that

E[µ̃] = E
[

n∑
i=1

wiXi

]

=
n∑

i=1
wiE[Xi]

=
n∑

i=1
wiµ

= µ
n∑

i=1
wi

Thus, an implication of unbiasedness is that

n∑
i=1

wi = 1

Now, let’s consider the variance of µ̃.

var(µ̃) = var
(

n∑
i=1

wiXi

)

=
n∑

i=1
w2

i var(Xi)

= σ2
n∑

i=1
w2

i
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Since µ̃ is unbiased, we are interested in choosing weights that minimize var(µ̃). This amounts to
minimizing the variance subject to the unbiasedness constraint that the weights sum to 1. We can
solve this problem using constrained optimization techniques. In particular, we can minimize the
Lagrangian

L(w1, . . . , wn) = σ2
n∑

i=1
w2

i − λ

(
n∑

i=1
wi − 1

)

The first order condition of this problem with respect to wi is

2σ2wi − λ = 0

which we can re-write as

wi = λ

2σ2

Notice that this condition implies that the weights all must be equal to each other. [If you don’t like
this step, you can plug the expression for wi above into the constraint, then solve that λ = 2σ2/n,
and plug this back into the expression for wi above to get wi = 1/n.] In order to satisfy that they
sum to 1, it therefore must be that wi = 1/n. This implies that the best linear unbiased estimator
of E[X] is given by

n∑
i=1

1
n

Xi = X̄

In other words, the sample average is BLUE.

Estimation of Variance

6.13
Earlier we considered the plug-in estimator of σ2 = var(X) that was given by

σ̂2 = 1
n

n∑
i=1

(Xi − X̄)2

(this is re-arranged from the expression earlier in the notes, but they are equal to each other). Next,
we will show that σ̂2 is biased for σ2. To see this, notice that, by adding and subtracting µ = E[X],
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we have that

σ̂2 = 1
n

n∑
i=1

(
(Xi − µ) − (X̄ − µ)

)2

= 1
n

n∑
i=1

(Xi − µ)2 + 1
n

n∑
i=1

(X̄ − µ)2

︸ ︷︷ ︸
=(X̄−µ)2

−2 1
n

n∑
i=1

(Xi − µ)(X̄ − µ)︸ ︷︷ ︸
=(X̄−µ)2

= 1
n

n∑
i=1

(Xi − µ)2 − (X̄ − µ)2

where the expression for the underlined term in the second line holds because (X̄ − µ) doesn’t
depend on i and can come out of the summation and because 1

n

∑n
i=1(Xi − µ) = X̄ − µ. Taking

expectations implies that

E[σ̂2] = E
[

1
n

n∑
i=1

(Xi − µ)2
]

− E
[
(X̄ − µ)2

]
= 1

n

n∑
i=1

E[(X − µ)2] − var(X̄)

= var(X) − var(X)
n

= n − 1
n

σ2 ̸= σ2

where the second equality holds (mainly) by recalling that the mean of X̄ is µ and therefore the
second term is equal to var(X̄).

This implies that σ̂2 is biased for σ2. Because the bias is proportional, it is straightforward to
propose an alternative unbiased estimator for σ2:

s2 = n

n − 1 σ̂2 = n

n − 1
1
n

n∑
i=1

(Xi − X̄)2 = 1
n − 1

n∑
i=1

(Xi − X̄)2

It essentially immediately follows that s2 is unbiased for σ2:

E[s2] = n

n − 1E[σ̂2] = n

n − 1

(
n − 1

n

)
σ2 = σ2

Notice that, as long as n is relatively large, s2 and σ̂2 will be very close to each other.

Standard Error

6.14
For a general parameter θ, we will often be interested in estimating its sampling variance. Letting

V := var(θ̂), and suppose that we have an estimator V̂ of V .
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Definition. A standard error s.e.(θ̂) = V̂ 1/2 for an estimator θ̂ of a parameter θ is the square
root of an estimator of V .

As was the case for variance/standard deviation and covariance/correlation earlier in the semester,
taking the square root puts the standard deviation in the same units as θ̂.

As an example, let’s briefly return to the case where θ = E[X]. In this case V = var(X̄) = σ2/n,
and V̂ is either equal to σ̂2/n or s2/n. If we go with the plugin estimator, the s.e.(θ̂) = σ̂√

n
.

Multivariate Means

6.15
Most of the properties that we have been talking about in this section carry over to the case

where E[X] is a vector and where the sample average is given by

X̄ = 1
n

n∑
i=1

Xi =


X̄1

X̄2
...

X̄m


Below, I paste in properties of multivariate means/sample averages from the textbook:

Monte Carlo Simulations

To conclude this set of notes, I want to briefly introduce you to the idea of Monte Carlo simulations
and then demonstrate some of the properties of estimators that we have been thinking about in this
case.

Monte Carlo simulations are a useful way to study/understand the properties of an estimation
procedure. The basic idea is that, instead of using real data, we are going to use simulated data
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where we control the data generating process. This will be useful for two reasons. First, we will know
what the truth is and compare results coming from our estimation procedure to the truth. Second,
because we are simulating data, we can actually carry out our thought experiment of repeatedly
drawing a sample of some particular size.

For the moment, let’s consider a very simple setting where we are interested in properties of the
sample average of flipping a coin. As a first step, let’s write a function that will flip coins for us.

# function to flip a coin with probability p

flip <- function(p) {
sample(c(0,1), size=1, prob=(c(1-p,p)))

}

# test out flip function

flip(0.5)

## [1] 0

Next, let’s write another function for flipping a coin n times; this is a function that generates a
sample of n observations for us.

# function to generate a sample of size n

generate_sample <- function(n,p) {
Y <- c()
for (i in 1:n) {

Y[i] <- flip(p)
}
Y

}

# test out generate_sample function

generate_sample(10,0.5)

## [1] 0 1 0 1 0 1 0 0 0 0

Now, since we know the true data generating process, we can draw repeated samples and use
this to calculate the sampling distribution of X̄.

# carry out monte carlo simulations

n <- 10
p <- 0.5
nsims <- 1000 # need to pick large number of monte carlo simulations
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mc_est <- c() # vector to hold estimation results

for (i in 1:nsims) {
Y <- generate_sample(n,p)
mc_est[i] <- mean(Y)

}

# compute bias

bias <- mean(mc_est) - p
bias

## [1] -0.0011

# compute sampling variance

var <- var(mc_est)
var

## [1] 0.02497376

# compute mean squared error

mse <- biasˆ2 + var
mse

## [1] 0.02497497

# plot entire sampling distribution

library(ggplot2)
ggplot(as.data.frame(mc_est), aes(x=mc_est)) + geom_histogram() + theme_bw()

## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
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As a a second exercise, let’s change n = 1000

# carry out monte carlo simulations

n <- 1000
p <- 0.5
nsims <- 1000 # need to pick large number of monte carlo simulations

mc_est <- c() # vector to hold estimation results

for (i in 1:nsims) {
Y <- generate_sample(n,p)
mc_est[i] <- mean(Y)

}

# compute bias

bias <- mean(mc_est) - p
bias

## [1] 0.000671
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# compute sampling variance

var <- var(mc_est)
var

## [1] 0.00025525

# compute mean squared error

mse <- biasˆ2 + var
mse

## [1] 0.0002557003

# plot entire sampling distribution

library(ggplot2)
ggplot(as.data.frame(mc_est), aes(x=mc_est)) + geom_histogram() + theme_bw()

## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
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Notice that, in line with our theory, X̄ is unbiased whether we have n = 10 or n = 1000, but the
sampling variance and overall sampling distribution are much different depending on the number of
observations.

15



Let’s try using one of the estimators from the examples that we computed earlier, λX̄ where λ

is some constant (we’ll try a couple different values below).

# carry out monte carlo simulations

n <- 1000
p <- 0.5
lam <- 0.4
nsims <- 1000 # need to pick large number of monte carlo simulations

mc_est <- c() # vector to hold estimation results

for (i in 1:nsims) {
Y <- generate_sample(n,p)
mc_est[i] <- lam*mean(Y)

}

# compute bias

bias <- mean(mc_est) - p
bias

## [1] -0.3002412

# compute sampling variance

var <- var(mc_est)
var

## [1] 3.996114e-05

# compute mean squared error

mse <- biasˆ2 + var
mse

## [1] 0.09018474

# plot entire sampling distribution

library(ggplot2)
ggplot(as.data.frame(mc_est), aes(x=mc_est)) + geom_histogram() + theme_bw()

## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
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You can see here that, by choosing λ = .4, we can decrease the variance of our estimator of E[Y ],
but it comes at the cost of introducing substantial bias, and the MSE is worse overall (at least for
this choice of λ).
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