
Panel Data

These notes cover (i) traditional panel data models, (ii) why these sorts of models can be useful in
the context of causal research, and (iii) alternative approaches that are more robust to treatment
effect heterogeneity. Some of the material in these notes comes from Chapters 17 and 18 in the
textbook, but other parts are not available in the textbook. The other main reference for this
section is my difference-in-differences chapter in the Handbook of Labor, Human Resources, and
Population Economics.

Motivation

For thinking about causal effect, this semester we have typically relied on unconfoundedness assump-
tions. For this section, I want to continue to talk about unconfoundedness, but a slightly altered
version of it. In particular, suppose that you are willing to believe the following assumption:

Unconfoundedness: 𝑌 (0) ⟂⟂ 𝐷|(𝑋, 𝑊)

This is exactly the same sort of setup that we have considered before except that I am splitting
the variables that we need to condition on into 𝑋 and 𝑊 . And, in particular, let us now consider
the case where 𝑋 are observed in our data while 𝑊 are not observed.
In my view, when you think about an unconfoundedness type of assumption, you ought to do it

before you see what’s in available in your data. Then, given your ex ante reasoning/model, you can
check which “covariates” are actually available in your data and which are not. A classic example
along these lines though is in labor economics where a researcher is studying the effect of some
treatment and thinks that unconfoundedness holds after conditioning on a person’s “ability” or
“motivation” (both of which are hard to measure though it seems reasonable to expect that they
affect lots of different individual-level outcomes). If you are studying industrial organization, a firm
may have latent (unobserved) productivity that might be important to condition on. If you are
studying ag econ, a particular location’s soil fertility may be unobserved but important to condition
on. You can probably come up with other sorts of examples along these lines. Just so we have
something concrete to think about in this section, I’ll use the running example of a researcher who
wants to study the effect of job displacement (this essentially just means getting laid off from a job)
on a person’s earnings.
For simplicity, let’s consider the case where there are not any observed covariates that show up

in the unconfoundedness assumption; that is, 𝑌 (0) ⟂⟂ 𝐷|𝑊 — we’ll just do this for now because it
is relatively straightforward to account for observed covariates, and the main complication is due
to 𝑊 . Let’s also suppose that we are willing to invoke the extra assumption of linearity of the
model for untreated potential outcomes; that is,

𝑌𝑖(0) = 𝑊 ′
𝑖 𝛽0 + 𝑒𝑖
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Linearity + unconfoundedness implies that 𝔼[𝑒|𝑊, 𝐷] = 0. Moreover (following arguments we have
used several times before),

𝐴𝑇 𝑇 = 𝔼[𝑌 |𝐷 = 1] − 𝔼[𝑌 (0)|𝐷 = 1]
= 𝔼[𝑌 |𝐷 = 1] − 𝔼[𝑊 ′𝛽0 + 𝑒|𝐷 = 1]
= 𝔼[𝑌 |𝐷 = 1] − 𝔼[𝑊 ′|𝐷 = 1]𝛽0 (1)

and where 𝛽0 would come from the regression of 𝑌 on 𝑊 using the untreated group only. This is
exactly the same as we have done before except that this strategy is now infeasible — that is, we
cannot hope to estimate 𝛽0 or 𝔼[𝑊|𝐷 = 1] using the available data because 𝑊 is not observed.

Side-Comment: The above issues are related to the issue of omitted variable bias that we
talked about earlier in the semester. Consider the feasible comparison of means in outcomes
between the treated group and untreated group:

𝔼[𝑌 |𝐷 = 1] − 𝔼[𝑌 |𝐷 = 0] = (𝐴𝑇 𝑇 + 𝔼[𝑊 ′|𝐷 = 1]𝛽0) − 𝔼[𝔼[𝑌 |𝑊, 𝐷 = 0]|𝐷 = 0]

= (𝐴𝑇 𝑇 + 𝔼[𝑊 ′|𝐷 = 1]𝛽0) − 𝔼[𝑊 ′|𝐷 = 0]𝛽0

= 𝐴𝑇 𝑇 + (𝔼[𝑊 ′|𝐷 = 1] − 𝔼[𝑊 ′|𝐷 = 0])𝛽0

where the first equality plugs in for 𝔼[𝑌 |𝐷 = 1] using Equation (1) and by the law of iterated
expectations for the second term, the second equality holds by linearity of untreated potential
outcomes, and the last equality holds by rearranging terms.

This suggests that the comparison of means (which ignores 𝑊 ) is equal to the 𝐴𝑇 𝑇 plus a
leftover term that is not generally equal to 0. Like omitted variable bias, the second term
can be equal to 0 if either (i) 𝔼[𝑊|𝐷 = 1] = 𝔼[𝑊|𝐷 = 0] (i.e., that the mean of 𝑊 is the
same across groups), or (ii) 𝛽0 = 0 (i.e., that 𝑊 has no effect on untreated on potential
outcomes). That said, we typically do not have a good way of checking whether the mean of
𝑊 is the same across groups, and we’d probably be unlikely to have thought that 𝑊 would
show up in the unconfoundedness assumption if we thought 𝛽0 were equal to 0 (and we don’t
have the data where we could test this either).

Using Panel Data (2 period case)

Now, let’s consider the case where we observe two periods of panel data. In particular, suppose
that we observe {𝑌𝑖1, 𝑌𝑖2, 𝐷𝑖1, 𝐷𝑖2}𝑛

𝑖=1 which are iid across units, and where the second index denotes
the time period. For example, 𝐷𝑖2 indicates whether or not unit 𝑖 was treated in period 2. As
additional notation, sometimes I’ll write 𝑌𝑖𝑡 as a generic way to indicate the outcome for unit 𝑖 in
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time period 𝑡. Also, let’s define the first difference operation as Δ𝑌𝑖𝑡 = 𝑌𝑖𝑡 − 𝑌𝑖𝑡−1. Finally, let’s
also define Y𝑖 = (𝑌𝑖1, 𝑌𝑖2)′. Similar notation along these lines applies for 𝐷𝑖𝑡.
When there are more time periods, we also need to think more carefully about our notion of

potential outcomes. In particular, let d denote a 2 × 1 vector where each element is either 0 or 1.
Then, let 𝑌𝑖𝑡(d) denote the potential outcome in time period 𝑡 for unit 𝑖 under treatment “regime”
d. For example, 𝑌𝑖2(0, 0) is the outcome that unit 𝑖 would experience in the second time period if
it was not treated in either time period. Also, let Y𝑖(d) = (𝑌𝑖1(d), 𝑌𝑖2(d))′.
This notation/setup can be quite cumbersome (it is already fairly cumbersome, but we’ll want to

consider the case with more time periods later where all of this will start to explode in notational
complexity) as we need to index potential outcomes by treatment status in all time periods. In
order to circumvent this, I am going to suppose that there is staggered treatment adoption;
that is, 𝐷𝑖1 = 1 ⟹ 𝐷𝑖2 = 1. In words: once a unit becomes treated, it remains treated. With two
time periods, this means that there are no units that follow the treatment path (1, 0). When there
are more periods, this condition will eliminate more treatment paths. I have a longer discussion
below of staggered treatment adoption in the case with multiple periods, but the main practical
benefit is that we can fully summarize a unit’s entire path of participating in the treatment by it’s
group – the time period when it becomes treated. Here, we have 3 possible groups: group 1, group
2, and the never-treated group.

𝐺𝑖 is sort of ambiguously defined for units that do not participate in the treatment in any time
period (the never-treated group). For the never-treated group, I’ll set 𝐺𝑖 = ∞. It’s also convenient
to define the variable 𝑈𝑖 indicating whether or not a unit is in the never-treated group; 𝑈𝑖 = 1 for
units in the never-treated group, and 𝑈𝑖 = 0 for units that participate in the treatment in any time
period (this means that 𝑈𝑖 = 1 is equivalent to 𝐺𝑖 = ∞).
Next, we’ll define potential outcomes 𝑌𝑖𝑡(𝑔) as the outcome that unit 𝑖 would experience in

time period 𝑡 if they were in group 𝑔. We’ll also write 𝑌𝑖𝑡(∞) for the outcome that unit 𝑖 would
experience in time period 𝑡 if they did not participate in the treatment in any time period. And
we’ll define Y𝑖(0) as the entire vector of untreated potential outcomes and Y𝑖(𝑔) as the vector of
potential outcomes for unit 𝑖 under group 𝑔. The outcomes that we observe are Y𝑖 = Y𝑖(𝐺𝑖) (the
potential outcome corresponding to the unit’s actual group).
Finally, we’ll add a no anticipation condition that says that participating in the treatment does

not affect outcomes in pre-treatment periods. In math, we can write this as:
For 𝑡 < 𝐺𝑖 (pre-treatment periods for unit 𝑖)

𝑌𝑖𝑡 = 𝑌𝑖𝑡(∞)

To give an example, in the case with two time periods, this imposes the restriction that for units
in group 2, their outcome in the first period is the same as it would have been if they had not
participated in the treatment in any time period (i.e., for group 2, 𝑌𝑖1 = 𝑌𝑖1(∞)). The table below
has the full set of observed potential outcomes for all three groups in both time periods
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𝑡 = 1 𝑡 = 2
Group 1 𝑌𝑖1(1) 𝑌𝑖1(1)
Group 2 𝑌𝑖1(∞) 𝑌𝑖2(2)
Group ∞ 𝑌𝑖1(∞) 𝑌𝑖2(∞)

Further, note that ruling out anticipation does not rule out things like treatment effect dynamics
(that the effect of treatment can depend on how long a unit has been treated).

Given panel data, the natural analogue of the unconfoundedness assumption is that

Y𝑖(∞) ⟂⟂ 𝐺|W𝑖

In other words, conditional on having (unobserved) covariates over time W𝑖 (where W𝑖 =
(𝑊𝑖1, 𝑊𝑖2)′), there is nothing special about the distribution of untreated potential outcomes (in
either time period) for any group; we’ll come back to the issue of including observed covariates
X𝑖 later, but conceptually it would be straightforward to include them here too. Next, probably
the most natural way to write the model for untreated potential outcomes is just to put a time
subscript on everything. That is,

𝑌𝑖𝑡(∞) = 𝑊 ′
𝑖𝑡𝛽𝑡 + 𝑒𝑖𝑡 (2)

Together with unconfoundedness, it holds that, for all 𝑡, 𝔼[𝑒𝑡|W, 𝐺] = 0.
Given this setup, we will run into the same sort of issues as we did before (you can try it!) due

to 𝑊𝑖𝑡 not being observed. However, let’s suppose that

𝑌𝑖𝑡(∞) = 𝜃𝑡 + 𝑊 ′
𝑖 𝛽 + 𝑒𝑖𝑡 (3)

As one additional comment, we are slightly abusing notation by separating 𝜃𝑡 out of 𝛽𝑡, but this
allows for trends in the untreated potential outcomes over time (for job displacement, this would
mean that people’s earnings could tend to be increasing over time). 𝜃𝑡 is called a time fixed-effect.
We’ll talk about how this change is useful momentarily, but first let’s talk about whether or not

it is reasonable. We have made two imporant changes here:

• Moving from 𝑊𝑖𝑡 to 𝑊𝑖 indicates that 𝑊 does not change over time. This may or may not be
reasonable in applications. For example, in the job displacement application discussed earlier,
is it reasonable to think that a person’s “ability” or “motivation” do not change over time? I
am not 100% sure, though perhaps it is reasonable to think that these are close to constant
over time, at least over short time horizons.

• Moving from 𝛽𝑡 to 𝛽 indicates that the “effect” of 𝑊 on untreated potential outcomes is
constant over time. Again, this may or may not be reasonable. In our example on job
displacement, over longer time horizons, I think that there is evidence that the return to
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“ability” has increased over time (suggesting that 𝛽 does in fact vary over time). Perhaps
over shorter time horizons, it is not-too-far from being time invariant (it is not totally clear).

In applications where you would hope to “exploit” panel data to estimate causal effect parameters,
these are the types of conditions that you had ought to think about.

Assuming that we feel good about moving from the model in Equation 2 to 3, at this point, notice
that the entire term 𝑊 ′

𝑖 𝛽 does not vary over time. It is common to replace this term generically
with 𝜂𝑖 ∶= 𝑊 ′

𝑖 𝛽. 𝜂𝑖 is called a unit fixed effect (or sometimes an individual fixed effect). Now,
let’s explicitly write the model for time periods 2 and 1, and subtract them:

𝑌𝑖2(∞) = 𝜃2 + 𝜂𝑖 + 𝑒𝑖2

𝑌𝑖1(∞) = 𝜃1 + 𝜂𝑖 + 𝑒𝑖1

⟹ Δ𝑌𝑖2(∞) = Δ𝜃2 + Δ𝑒𝑖2

and, further,

𝔼[Δ𝑒2|𝐺] = 𝔼[𝑒2|𝐺] − 𝔼[𝑒1|𝐺]
= 𝔼[ 𝔼[𝑒2|W, 𝐺]⏟⏟⏟⏟⏟

=0
|𝐺] − 𝔼[ 𝔼[𝑒1|W, 𝐺]⏟⏟⏟⏟⏟

=0
|𝐺]

= 0

where the second equality uses the law of iterated expectations and holds under the version of
unconfoundedness that we have been using. Thus, we have that, for any 𝑔,

𝔼[Δ𝑌2(∞)|𝐺 = 𝑔] = Δ𝜃2 (4)

In other words, the average change in untreated potential outcomes over time is the same across
all groups (and it is equal to Δ𝜃2). More commonly, this sort of condition can be written as, for
any group 𝑔,

𝔼[Δ𝑌2(∞)|𝐺 = 𝑔] = 𝔼[Δ𝑌2(∞)]

This condition is called the parallel trends assumption, and it says that average “paths” of
outcomes are the same across all groups. In many difference-in-differences applications, this is
taken as the starting point, but the discussion above provides a natural way to rationalize where
the parallel trends assumption comes from.
This sort of condition is potentially useful because we do not observe Δ𝑌𝑖2(∞) for units in group

1 or group 2, but we do observe it for untreated units (because we observe their untreated potential
outcomes in both periods) – we will exploit this below.
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Let’s define the group-time average treatment effect

𝐴𝑇 𝑇 (𝑔, 𝑡) = 𝔼[𝑌𝑡(𝑔) − 𝑌𝑡(∞)|𝐺 = 𝑔]

This is the average treatment effect in period 𝑡 of becoming treated in period 𝑔 relative to not being
treated in either time period among those that were in group 𝑔. 𝐴𝑇 𝑇 (𝑔, 𝑡) provides a natural way
to generalize 𝐴𝑇 𝑇 from the case with cross-sectional data to a case with panel data and staggered
treatment adoption.

Practice: How do you interpret 𝐴𝑇 𝑇 (2, 1)? Show that 𝐴𝑇 𝑇 (2, 1) = 0 under the conditions
that we have been considering.

Let’s consider trying to recover 𝐴𝑇 𝑇 (2, 2) (in other words, the average treatment effect for group
2 in period 2). Notice that

𝐴𝑇 𝑇 (2, 2) = 𝔼[𝑌2(2) − 𝑌2(∞)|𝐺 = 2]
= 𝔼[𝑌2(2) − 𝑌1(∞)|𝐺 = 2] − 𝔼[𝑌2(∞) − 𝑌1(∞)|𝐺 = 2]
= 𝔼[𝑌2(2) − 𝑌1(∞)|𝐺 = 2] − 𝔼[𝑌2(∞) − 𝑌1(∞)|𝑈 = 1]
= 𝔼[Δ𝑌2|𝐺 = 2] − 𝔼[Δ𝑌2|𝑈 = 1] (5)

where the first equality is just the definition of 𝐴𝑇 𝑇 (2, 2), the second equality holds by adding
and subtracting 𝔼[𝑌1(∞)|𝐺 = 2], the third equality uses the parallel trends assumption for the
second term, and the last equality holds by writing potential outcomes in terms of their observed
counterparts (to be clear, that 𝑌1 = 𝑌1(∞) for group 2 holds by no anticipation condition; or, more
informally, holds because group 2 isn’t treated yet in the first time period and therefore we observe
their untreated potential outcomes in the first time period).

Here are some additional things to notice:

• The expression for 𝐴𝑇 𝑇 (2, 2) on the right side of Equation 5 involves the average difference
in outcomes over time among group 2 relative to the average difference in outcomes over time
for the never-treated group. This double differencing is what leads to this strategy being
called difference-in-differences (DID). This is a very common (maybe the most common)
identification strategy in economics.

• The same strategy would not work for other groups. For example, suppose that you were
interested in 𝐴𝑇 𝑇 (1, 2) (the 𝐴𝑇 𝑇 among those that participated in the treatment in both
periods). You might consider 𝔼[Δ𝑌2|𝐺 = 1] − 𝔼[Δ𝑌2|𝑈 = 1]. However, this will not generally
be equal to 𝐴𝑇 𝑇 (1, 2) – see the practice question below.
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• Moreover, group 1 is not used in the expression for 𝐴𝑇 𝑇 (2, 2). This suggests group 1 is not
useful at all here. For this reason, it is common in DID applications to drop units that are
already treated in the first period (i.e., units where 𝐷𝑖1 = 1). If you do this, you can refer
to units with 𝐷𝑖2 = 1 as the “treated group” and define 𝐴𝑇 𝑇 = 𝐴𝑇 𝑇 (2, 2) which makes for
“lighter” notation.

• Once you drop group 1 (or in applications where there is no group treated in the first period),
we are in the case where there is a pre-treatment period where no units are treated yet and
there is a post-treatment period where some units (group 2) become treated while others
remain untreated (the never-treated group). This setup is an important difference relative to
traditional panel data approaches (which would not typically drop the already treated group)
and, in my view, is one of the reasons why DID is often grouped with “quasi-experimental”
methods.

• One last thing to notice is that it is not a coincidence that we are identifying treatment effects
for group 2. Group 2 is special in the sense that it is the only group for which we observe
both treated (in period 2) and untreated (in period) potential outcomes. This is the first
time this semester where we have seen both treated and untreated potential outcomes for any
units (which seems fundamentally useful) though they are observed in different time periods.
You can think of DID as a way to exploit this setup.

Side-Comment: A large fraction of empirical work in economics takes the parallel trends
assumption as the starting point for DID applications; i.e., avoiding the discussion of models
that we used to motivate the parallel trends assumption. This is a very reduced form
approach (i.e., model agnostic) to empirical work. However, our discussion under Equation
3 implies that, even if we are willing to maintain the version of unconfoundedness that we have
been considering in this section, having access to panel data does not automatically guarantee
that parallel trends assumptions hold and therefore does not always rationalize using DID
to recover 𝐴𝑇 𝑇 ’s. This is different from cases earlier this semester where unconfoundedness
hold conditional on only observed covariates; in that case, the 𝐴𝑇 𝑇 was nonparametrically
identified (that is, identified without requiring “extra” limitations on the model for untreated
potential outcomes such as (i) time invariance of 𝑊 , (ii) time invariance of 𝛽, and (iii)
linearity in 𝜂𝑖 = 𝑊 ′

𝑖 𝛽). Thus, DID gives us a way to possibly deal with not observing
variables that we think we should condition on, but it inherently comes with a cost related
to effectively imposing functional form conditions.
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Practice: Show that, under the conditions in this section,

𝔼[Δ𝑌2|𝐺 = 1] − 𝔼[Δ𝑌2|𝑈 = 1] = 𝐴𝑇 𝑇 (1, 2) − 𝐴𝑇 𝑇 (1, 1)

How can you interpret 𝐴𝑇 𝑇 (1, 2) − 𝐴𝑇 𝑇 (1, 1)?

Regression Approaches

Most often, DID identification strategies are implemented using what are called two-way fixed
effects (TWFE) regressions. That’s what we’ll start to discuss in this section.
For simplicity, let’s suppose that no units are treated in the first time period. If we additionally

impose treatment effect homogeneity: 𝑌𝑖2(2) − 𝑌𝑖2(∞) = 𝛼 which is constant for all units, then the
observed outcome in the secon period can be written as

𝑌𝑖2 = 𝑌𝑖2(∞) + 𝐷𝑖2(𝑌𝑖2(2) − 𝑌𝑖2(∞))
= 𝜃2 + 𝜂𝑖 + 𝑒𝑖2 + 𝛼𝐷𝑖2

where the first equality we have used before, and the second equality holds by the linear model for
untreated potential outcomes (and implicitly relies on 𝑊𝑖𝑡 and 𝛽𝑡 not varying over time). Further-
more, for the observed outcome in the first time period,

𝑌𝑖1 = 𝑌𝑖1(∞) = 𝜃1 + 𝜂𝑖 + 𝑒𝑖1

where the first equality holds by no anticipation. Thus (because 𝐷𝑖1 = 0 for all units), we can
generally write

𝑌𝑖𝑡 = 𝜃𝑡 + 𝜂𝑖 + 𝛼𝐷𝑖𝑡 + 𝑒𝑖𝑡

This is called a two-way fixed effects regression because it includes both a time and unit fixed effect.
I have more details about estimating this sort of model below, but you can use R packages like
fixest or plm to estimate this sort of model very easily.

In the case with only two time periods, this regression is exactly equivalent to running the
regression

Δ𝑌𝑖2 = Δ𝜃2 + 𝛼𝐷𝑖2 + Δ𝑒𝑖2

which amounts to estimating 𝛼 by running a regression of the change in the outcome on whether
or not a unit participated in the treatment.
Interestingly, this particular TWFE regression is robust to treatment effect heterogeneity – see

the practice question below.
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Practice: Try showing that 𝛼 = 𝐴𝑇 𝑇 . This implies that this regression is robust to
treatment effect heterogeneity.
Hint: The arguments to show this are very similar to the ones for using a regression in the
context of random treatment assignment that we discussed early in the semester.

Practice (*): It’s also interesting to think about 𝛼 when there are units that are already
treated in the first period; that is, there are units where 𝐺𝑖 = 1. Provide an expression for
𝛼 in this case in terms of underlying group-time average treatment effects.
Hint: Notice that there are only two possible values for Δ𝐷𝑖; it is equal to 1 for units that
become treated (i.e., when 𝐺𝑖 = 2), and equal to 0 for units that are never-treated (𝑈𝑖 = 1)
or always-treated (𝐺𝑖 = 1).

Multiple Periods

For this part, we’ll consider the case where we observe 𝑇 periods of panel data. In particular,
suppose that we observe {𝑌𝑖1, 𝑌𝑖2, … , 𝑌𝑖𝑡, 𝐷𝑖1, 𝐷𝑖2, … , 𝐷𝑖𝑇 }𝑛

𝑖=1 which are iid across units.
We’ll continue to make the assumption of staggered treatment adoption: for all 𝑡 = 2, … , 𝑇 ,

𝐷𝑖𝑡−1 = 1 ⟹ 𝐷𝑖𝑡 = 1. This means that, once a unit becomes treated, then it remains treated.
This is common in applications in economics where, for example, once a location implements a
policy, the policy remains in place in subsequent time periods. It also happens when treatments
are “scarring”; for example, in job displacement, once a person becomes displaced, it would be
typical to think of them as permanently moving into the treated group. Staggered treatment
adoption allows for the timing of the treatment to vary across units though. In some sense, this
assumption is not necessary, but it will greatly simplify notation below. In particular, it means
that we can define a unit’s “group”, 𝐺𝑖, as the time period when unit 𝑖 becomes treated. Once we
know a unit’s group, under staggered treatment adoption, we know it’s entire path of participating
in the treatment. We’ll also set 𝐺𝑖 = ∞ for units that do not participate in the treatment in any
time period. Let’s also use introduce the additional notation, 𝒢 to denote the set of all groups
(we’ll continue to drop group 1 if there is an already treated group), and ̄𝒢 to denote the set of all
groups excluding the untreated group. Likewise, define 𝑝𝑔 = P(𝐺 = 𝑔) and ̄𝑝𝑔 = P(𝐺 = 𝑔|𝑈 = 0).
Thus, we can write potential outcomes indexed by group; that is, let 𝑌𝑖𝑡(𝑔) denote unit 𝑖’s

outcome in period 𝑡 if it became treated in period 𝑔. Observed outcomes are therefore given by
𝑌𝑖𝑡 = 𝑌𝑖𝑡(𝐺𝑖). No anticipation implies that 𝑌𝑖𝑡(𝐺𝑖) = 𝑌𝑖𝑡(∞) for all periods where 𝑡 < 𝐺𝑖 (i.e.,
periods before the treatment started).
In this case, we’ll continue to be interested in 𝐴𝑇 𝑇 (𝑔, 𝑡). We’ll also make a multi-period

version of the parallel trends assumption. In particular, we’ll suppose that, for 𝑡 = 2, … , 𝑇 ,
and for all groups 𝑔

𝔼[Δ𝑌𝑡(∞)|𝐺 = 𝑔] = 𝔼[Δ𝑌𝑡(∞)]

9



In other words, the average path of untreated potential outcomes is the same for all groups across
all time periods. As in the two-period case, this assumption is very closely related to (i) a version of
unconfoundedness conditional on time-invariant unobservables, and (ii) a linear model for untreated
potential outcomes such that 𝑌𝑖𝑡(∞) = 𝜃𝑡 + 𝑊 ′

𝑖 𝛽 + 𝑒𝑖𝑡 with 𝔼[𝑒𝑖𝑡|𝑊, 𝐺] = 0.
Moreover, note that, for any 𝑡 ≥ 𝑔 (i.e., post-treatment periods for group 𝑔), we have that

𝐴𝑇 𝑇 (𝑔, 𝑡) = 𝔼[𝑌𝑡(𝑔) − 𝑌𝑡(∞)|𝐺 = 𝑔]
= 𝔼[𝑌𝑡(𝑔) − 𝑌𝑔−1(∞)|𝐺 = 𝑔] − 𝔼[𝑌𝑡(∞) − 𝑌𝑔−1(∞)|𝐺 = 𝑔]
= 𝔼[𝑌𝑡(𝑔) − 𝑌𝑔−1(∞)|𝐺 = 𝑔] − 𝔼[𝑌𝑡(∞) − 𝑌𝑔−1(∞)|𝑈 = 1]
= 𝔼[𝑌𝑡 − 𝑌𝑔−1|𝐺 = 𝑔] − 𝔼[𝑌𝑡 − 𝑌𝑔−1|𝑈 = 1]

where the first equality is just the definition of 𝐴𝑇 𝑇 (𝑔, 𝑡), the second equality adds and subtracts
𝔼[𝑌𝑔−1(∞)|𝐺 = 𝑔] (the average untreated potential outcome in the period before group 𝑔 becomes
treated).
This is very similar to the arguments for the two periods case above except we use period 𝑔 − 1

as the “base period” (the period that we difference with respect to). The reason for this is that it
is the most recent period for which we observe untreated potential outcomes for group 𝑔.

This expression also suggests estimating 𝐴𝑇 𝑇 (𝑔, 𝑡) by computing the average of 𝑌𝑖𝑡 − 𝑌𝑖𝑔−1 for
group 𝑔 relative to the average of 𝑌𝑖𝑡 − 𝑌𝑖𝑔−1 for the untreated group.

This approach should make intuitive sense too. In order to figure out 𝐴𝑇 𝑇 (𝑔, 𝑡), we take the
path of outcomes that group 𝑔 actually experienced from its base period to period 𝑡 and adjust it
by the path of outcomes that it would have experienced if it had not participated in the treatment
(under parallel trends, this path of outcomes can be recovered from the untreated group).

Aggregating group-time average treatment effects

Group-time average treatment effects are useful causal effect parameters. Once you set them as
the target parameter, the DID identification strategies that we have been discussing are relatively
straightforward. Group-time average treatment effects can be useful for highlighting treatment ef-
fect heterogeneity across groups, time-periods and/or length of exposure to the treatment. However,
in many applications, there can be lots of them; perhaps too many to easily report.
In many cases, we would like to recover a more aggregated (i.e., lower-dimensional) parameter.

First, let’s consider an overall ATT that is a single number summarizing the average effect of par-
ticipating in the treatment. Towards this end, among units that ever participate in the treatment,
define

𝑇 𝐸𝑖 = 1
𝑇 − 𝐺𝑖 + 1

𝑇
∑
𝑡=𝐺𝑖

(𝑌𝑖𝑡 − 𝑌𝑖𝑡(∞))

which is the average treatment effect for unit 𝑖 across all of its post-treatment time periods; notice
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that 𝑇 − 𝐺𝑖 + 1 is the total number of post-treatment periods for unit 𝑖. Also, define

𝐴𝑇 𝑇 𝑜 = 𝔼[𝑇 𝐸|𝑈 = 0]

which is the average treatment effect among units that are treated in any time period. 𝐴𝑇 𝑇 𝑜 can
be expressed in terms of underlying group-time average treatment effects. In particular, notice that

𝐴𝑇 𝑇 𝑜 = ∑
𝑔∈ ̄𝒢

𝔼[𝑇 𝐸|𝐺 = 𝑔] ̄𝑝𝑔

= ∑
𝑔∈ ̄𝒢

1
𝑇 − 𝑔 + 1

𝑇
∑
𝑡=𝑔

𝔼[𝑌𝑡 − 𝑌𝑡(∞)|𝐺 = 𝑔] ̄𝑝𝑔

= ∑
𝑔∈ ̄𝒢

𝑇
∑
𝑡=𝑔

̄𝑝𝑔
𝑇 − 𝑔 + 1⏟⏟⏟⏟⏟

𝑤𝑜(𝑔,𝑡)

𝐴𝑇 𝑇 (𝑔, 𝑡)

where the first line uses the law of iterated expectations, the second line uses the definition of 𝑇 𝐸,
and the last line rearranges terms. The expression above is a weighted average of 𝐴𝑇 𝑇 (𝑔, 𝑡). In
other words, 𝐴𝑇 𝑇 𝑜 is a weighted average of underlying group-time average treatment effects where
the weights are given by 𝑤𝑜(𝑔, 𝑡) (which are weights that you can easily compute). The weights
depend on the relative size of the group (through ̄𝑝𝑔) and on the number of time periods that a
particular group is treated (𝐴𝑇 𝑇 (𝑔, 𝑡)’s get less weight for groups that were exposed for longer to
the treatment as the weight is split across more time periods).
Another common target parameter in DID applications is the event study. The idea is to

compute the average treatment effect as a function of the length of exposure to the treatment. For
some 𝑒 (which you can think of as defining the length of exposure to the treatment), among units
such that 𝐺𝑖 + 𝑒 ∈ [2, 𝑇 ], define 𝑇 𝐸𝑖(𝑒) = (𝑌𝑖𝐺𝑖+𝑒 − 𝑌𝑖𝐺𝑖+𝑒(∞)) which is the causal effect of the
treatment 𝑒 periods after exposure to the treatment. Then, we can define

𝐴𝑇 𝑇 𝑒𝑠(𝑒) = 𝔼[𝑇 𝐸(𝑒)|𝐺 + 𝑒 ∈ [2, 𝑇 ], 𝑈 = 0]

which is the average effect of having been exposed to the treatment for 𝑒 periods (conditional
on being observed having participated in the treatment for 𝑒 periods (from the condition that
𝐺 + 𝑒 ∈ [2, 𝑇 ]) and participating in the treatment (the condition 𝑈 = 0)). This can also be written
as an average

𝐴𝑇 𝑇 𝑒𝑠(𝑒) = ∑
𝑔∈ ̄𝒢

1{𝑔 + 𝑒 ∈ [2, 𝑇 ], 𝑈 = 0}P(𝐺 = 𝑔|𝐺 + 𝑒 ∈ [2, 𝑇 ], 𝑈 = 0)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=𝑤𝑒𝑠(𝑔,𝑒)

𝐴𝑇 𝑇 (𝑔, 𝑔 + 𝑒)

which is just the average of 𝐴𝑇 𝑇 (𝑔, 𝑔 + 𝑒) averaged across all ever-treated groups that are ever
observed to have participated in the treatment for 𝑒 periods. (This expression looks more compli-
cated than it is – you can just find all available group-time average treatment effects corresponding
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to 𝐴𝑇 𝑇 (𝑔, 𝑔 + 𝑒) and average them together weighted by relative group size).
It is also common in applications to report 𝐴𝑇 𝑇 𝑒𝑠(𝑒) for negative values of 𝑒. When 𝑒 is negative,

this is an estimate of the average effect of the treatment in periods before the treatment takes place.
This is useful because, if the parallel trends assumption holds in pre-treatment periods, then it
should be the case that 𝐴𝑇 𝑇 𝑒𝑠(𝑒) = 0 for 𝑒 < 0. This strategy is called pre-testing. To be
clear, even if 𝐴𝑇 𝑇 (𝑒) = 0 for 𝑒 < 0, it could still be the case that parallel trends is violated in
post-treatment periods (which would imply that our estimates of 𝐴𝑇 𝑇 (𝑔, 𝑡) would likely be poor).
That said, I think it is fair to see this as a validation exercise for the identification strategy. If you
see large violations of parallel trends in pre-treatment periods, it should make you feel very worried
about your approach. On the other hand, if it looks like parallel trends holds in pre-treatment
periods, and then there are large estimated treatment effects in post-treatment periods, this is
suggestive that you are credibly estimating causal effects of the treatment.

Regressions under treatment effect homogeneity

Now, let’s think about how well running a regression can work in this case. In particular, if we
additionally suppose treatment effect homogeneity, then we can get to

𝑌𝑖𝑡 = 𝜃𝑡 + 𝜂𝑖 + 𝛼𝐷𝑖𝑡 + 𝑒𝑖𝑡

This is exactly the same TWFE regression that we discussed in the case with two time periods.
Using arguments quite similar to the ones we have used before, if you estimate this regression,
under treatment effect homogeneity you can interpret ̂𝛼 as an estimate of the causal effect of the
treatment. In the next two sections we’ll cover (i) the mechanics of how to estimate the sort of
model, and (ii) how to interpret 𝛼 from this model under treatment effect heterogeneity.

Within Estimator

For this section, let’s consider how to estimate this sort of TWFE regression. Instead of the specific
case of a binary treatment and no other covariates, I’m going to follow the textbook and consider
estimating the following model.

𝑌𝑖𝑡 = 𝜃𝑡 + 𝜂𝑖 + 𝑋′
𝑖𝑡𝛽 + 𝑒𝑖𝑡

For example, 𝑋𝑖𝑡 could include 𝐷𝑖𝑡 or it could include other variables as well.
To start with, define

̄𝑌𝑖 = 1
𝑇

𝑇
∑
𝑡=1

𝑌𝑖𝑡 �̄�𝑖 = 1
𝑇

𝑇
∑
𝑡=1

𝑋𝑖𝑡 ̄𝜃 = 1
𝑇

𝑇
∑
𝑡=1

𝜃𝑡 ̄𝑒𝑖 = 1
𝑇

𝑇
∑
𝑡=1

𝑒𝑖𝑡

which are the average outcome (across time periods) for unit 𝑖, the average regressors for unit 𝑖
across time periods, and the the average time fixed effect across time periods.
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Throughout this section, we’ll maintain the assumption of strict exogeneity For 𝑡 = 1, … , 𝑇 ,
𝔼[𝑒𝑡|X𝑖] = 0 where X𝑖 is the 𝑇 × 𝑘 matrix that includes 𝑋𝑖𝑡 for all time periods

X𝑖 =
⎡
⎢
⎢
⎢
⎣

𝑋′
𝑖1

𝑋′
𝑖2
⋮

𝑋′
𝑖𝑇

⎤
⎥
⎥
⎥
⎦

We’ll denote the within transformation for a particular random variable by ̇𝐶𝑖𝑡 = 𝐶𝑖𝑡 − ̄𝐶𝑖.
Moreover, notice that

̄𝑌𝑖 = ̄𝜃 + 𝜂𝑖 + �̄�′
𝑖𝛽 + ̄𝑒𝑖

which implies that

(𝑌𝑖𝑡 − ̄𝑌𝑖) = (𝜃𝑡 − ̄𝜃) + (𝑋𝑖𝑡 − �̄�𝑖)′𝛽 + (𝑒𝑖𝑡 − ̄𝑒𝑖)

which, importantly, gets rid of 𝜂𝑖. Equivalently, we can write

̇𝑌𝑖𝑡 = �̇�′
𝑖𝑡𝛽 + ̇𝑒𝑖𝑡

where (abusing notation to some extent), I am going to take �̇�𝑖𝑡 to include indicators for a particular
time period and 𝛽 to additionally include corresponding terms that are equal to ̇𝜃.
It’s also convenient to write down matrix versions the above expressions. Towards this end, let

1𝑖 denote a 𝑇 × 1 vector of 1’s, let Y𝑖 = (𝑌𝑖1, … , 𝑌𝑖𝑇 )′, and recall that ̄𝑌𝑖 = (1′
𝑖1𝑖)−11′

𝑖Y𝑖; this
holds because 1′

𝑖1𝑖 = ∑𝑇
𝑡=1 1 = 𝑇 and 1′

𝑖Y𝑖 = ∑𝑇
𝑡=1 𝑌𝑖𝑡, and that

Ẏ𝑖 = Y𝑖 − 1𝑖 ̄𝑌𝑖

= Y𝑖 − 1𝑖(1′
𝑖1𝑖)−11′

𝑖Y𝑖

= M𝑖Y𝑖

where M𝑖 = I𝑇 − 1𝑖(1′
𝑖1𝑖)−11′

𝑖 is a 𝑇 × 𝑇 annihilator matrix. Similarly, it follows that

Ẋ𝑖 = M𝑖X𝑖

and note that Ẏ𝑖 is a 𝑇 × 1 vector and Ẋ𝑖 is a 𝑇 × 𝑘 matrix.
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Then, we can estimate 𝛽 by the least squares regression of ̇𝑌𝑖𝑡 on �̇�𝑖𝑡, so that

̂𝛽 = (
𝑛

∑
𝑖=1

𝑇
∑
𝑡=1

�̇�𝑖𝑡�̇�′
𝑖𝑡)

−1 𝑛
∑
𝑖=1

𝑇
∑
𝑡=1

�̇�𝑖𝑡 ̇𝑌𝑖𝑡

= (
𝑛

∑
𝑖=1

Ẋ′
𝑖Ẋ𝑖)

−1 𝑛
∑
𝑖=1

Ẋ′
𝑖Ẏ𝑖

= (
𝑛

∑
𝑖=1

X′
𝑖M𝑖X𝑖)

−1 𝑛
∑
𝑖=1

X′
𝑖M𝑖Y𝑖

Side-Comment: The above expressions are useful for the theory that we derive below, but
for estimation it is useful to have “data matrix” versions of all of the terms here. Towards
that end, let’s define

Y =
⎡
⎢
⎢
⎢
⎣

Y1
Y2
⋮

Y𝑛

⎤
⎥
⎥
⎥
⎦

X =
⎡
⎢
⎢
⎢
⎣

X1
X2
⋮

X𝑛

⎤
⎥
⎥
⎥
⎦

D =
⎛⎜⎜⎜⎜⎜⎜
⎝

1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

⎞⎟⎟⎟⎟⎟⎟
⎠

which are an 𝑛𝑇 × 1 vector, an 𝑛𝑇 × 𝑘 matrix, and an 𝑛𝑇 × 𝑛 matrix, respectively. Similarly
define M𝐷 = I − D(D′D)−1D′ which is an 𝑛𝑇 × 𝑛𝑇 matrix. Then, you can show that

M𝐷Y = Ẏ =
⎛⎜⎜⎜⎜⎜⎜
⎝

Ẏ1
Ẏ2
⋮

Ẏ𝑛

⎞⎟⎟⎟⎟⎟⎟
⎠

and M𝐷X = Ẋ =
⎛⎜⎜⎜⎜⎜⎜
⎝

Ẋ1
Ẋ2
⋮

Ẋ𝑛

⎞⎟⎟⎟⎟⎟⎟
⎠

so that we can write

̂𝛽 = (X′M𝐷X)−1X′M𝐷Y

This expression is convenient to use in computations.

Next, notice that

̂𝛽 − 𝛽 = (
𝑛

∑
𝑖=1

X′
𝑖M𝑖X𝑖)

−1 𝑛
∑
𝑖=1

X′
𝑖M𝑖e𝑖
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Under strict exogeneity, it immediately follows that

𝔼[ ̂𝛽 − 𝛽|X] = (
𝑛

∑
𝑖=1

X′
𝑖M𝑖X𝑖)

−1 𝑛
∑
𝑖=1

X′
𝑖M𝑖 𝔼[e𝑖|X]⏟

=0

where X is teh data matrix mentioned above and where the underlined term uses strict exogeneity.
This implies that ̂𝛽 is unbiased for 𝛽.

Asymptotic Distribution

H: 17.20
Under standard assumptions (see Assumption 17.2 in the textbook) that include (i) iid sample

(across units), (ii) a positive definite condition, (iii) existence of moments, and (iv) strict exogeneity,
notice that we can write

√𝑛( ̂𝛽 − 𝛽) = ( 1
𝑛

𝑛
∑
𝑖=1

X′
𝑖M𝑖X𝑖)

−1
1√𝑛

𝑛
∑
𝑖=1

X′
𝑖M𝑖e𝑖

From the weak law of large numbers, we have that

1
𝑛

𝑛
∑
𝑖=1

X′
𝑖M𝑖X𝑖

𝑝
−→ 𝔼[X′

𝑖M𝑖X𝑖]

which is a 𝑘 × 𝑘 matrix and from the central limit theorem, we have that

1√𝑛
𝑛

∑
𝑖=1

X′
𝑖M𝑖e𝑖

𝑑−→ 𝒩(0,ΩΩΩ)

where

ΩΩΩ = 𝔼 [X′
𝑖M𝑖e𝑖e′

𝑖M′
𝑖X𝑖]

which is a 𝑘 × 𝑘 matrix, and the continuous mapping theorem implies that

√𝑛( ̂𝛽 − 𝛽) 𝑑−→ 𝒩(0,V)

where

V = 𝔼[X′
𝑖M𝑖X𝑖]−1ΩΩΩ𝔼[X′

𝑖M𝑖X𝑖]−1

and this can be estimated in the usual way (i.e., replace population moments with sample averages
and replace e𝑖 with ê𝑖 (the vector of residuals for unit 𝑖)); then one can construct standard errors,
confidence intervals, etc. as we have done many times before.
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Regressions under treatment effect heterogeneity

Next, let’s consider whether or not this kind of TWFE regression is robust to treatment effect
heterogeneity (or what exactly you are getting when there is treatment effect heterogeneity).
This is an interesting thing to consider because this kind of regression has been the dominant way

that empirical researchers have implemented DID identification strategies over the past 30 years or
so (often implicitly saying that they are assuming parallel trends and not limiting treatment effect
heterogeneity). Besides that, this kind of regression was robust to treatment effect heterogeneity
when there were only two time periods; therefore, it seems reasonable to think (or at least hope)
that this would continue to be the case in the present case where there are more periods. For this
section, I would like to set 𝐺𝑖 = 𝑇 + 1 for units in the never treated group (we have previously set
𝐺𝑖 = ∞ for this group); this change simplifies a few steps in the discussion below.
In order to make progress along the lines discussed above, let’s define

̈𝑌𝑖𝑡 = 𝑌𝑖𝑡 − ̄𝑌𝑖 − 𝔼[𝑌𝑡] + 1
𝑇

𝑇
∑
𝑡=1

𝔼[𝑌𝑡]

�̈�𝑖𝑡 = 𝐷𝑖𝑡 − �̄�𝑖 − 𝔼[𝐷𝑡] + 1
𝑇

𝑇
∑
𝑡=1

𝔼[𝑌𝑡]

which are population versions of what’s called double de-meaning 𝑌𝑖𝑡 and 𝐷𝑖𝑡. This sort of
transformation removes the unit- and time-fixed effects from 𝑌𝑖𝑡 and 𝐷𝑖𝑡. In particular, notice that

𝑌𝑖𝑡 = 𝜃𝑡 + 𝜂𝑖 + 𝛼𝐷𝑖𝑡 + 𝑒𝑖𝑡
̄𝑌𝑖 = ̄𝜃 + 𝜂𝑖 + 𝛼�̄�𝑖 + ̄𝑒𝑖

𝔼[𝑌𝑡] = 𝜃𝑡 + 𝔼[𝜂] + 𝛼𝔼[𝐷𝑡] + 𝔼[𝑒𝑡]
1
𝑇

𝑇
∑
𝑡=1

𝔼[𝑌𝑡] = ̄𝜃 + 𝔼[𝜂] + 𝛼 1
𝑇

𝑇
∑
𝑡=1

𝔼[𝐷𝑡] + 1
𝑇

𝑇
∑
𝑡=1

𝔼[𝑒𝑡]

Combining these expressions implies that

̈𝑌𝑖𝑡 = 𝛼�̈�𝑖𝑡 + ̈𝑒𝑖𝑡

which has removed the unit- and time- fixed effects. This expression is easier to deal with, and we
know that,

𝛼 =

1
𝑇

𝑇
∑
𝑡=1

𝔼[�̈�𝑖𝑡𝑌𝑖𝑡]

1
𝑇

𝑇
∑
𝑡=1

𝔼[�̈�2
𝑖𝑡]

There are some useful properties of double de-meaned variables. First, it is straightforward to

16



show that

𝔼[�̈�𝑖𝑡] = 0 and 1
𝑇

𝑇
∑
𝑡=1

�̈�𝑖𝑡 = 0 and 1
𝑇

𝑇
∑
𝑡=1

𝔼[�̈�𝑖𝑡𝐶𝑖] = 0

where 𝐶𝑖 is some generic random variable that is constant across time. I’m not going to provide the
proof of these, but you can show them just by brute force (i.e., plugging in for �̈�𝑖𝑡) and algebra.
In order to related 𝛼 to underlying 𝐴𝑇 𝑇 (𝑔, 𝑡)’s, it is helpful to notice that �̈�𝑖𝑡 is fully determined

by a unit’s group. In particular,

𝐷𝑖𝑡 = 1{𝑡 ≥ 𝐺𝑖}

�̄�𝑖 = 1
𝑇

𝑇
∑
𝑡=1

1{𝑡 ≥ 𝐺𝑖} = 𝑇 − 𝐺𝑖 + 1
𝑇

and 𝔼[𝐷𝑡] only depends on 𝑡 and 1
𝑇 ∑𝑇

𝑡=1 𝔼[𝐷𝑡] is just a number. Thus, we can write �̈�𝑖𝑡 = ℎ(𝐺𝑖, 𝑡).
Two more things that we use below are that

1
𝑇

𝑇
∑
𝑡=1

∑
𝑔∈𝒢

ℎ(𝑔, 𝑡)𝔼[𝑌𝑖𝑡|𝑈 = 1]𝑝𝑔 = 1
𝑇

𝑇
∑
𝑡=1

𝔼[𝑌𝑖𝑡|𝑈 = 1] ∑
𝑔∈𝒢

ℎ(𝑔, 𝑡)𝑝𝑔
⏟⏟⏟⏟⏟

=𝔼[ℎ(𝐺𝑖,𝑡)]=𝔼[�̈�𝑖𝑡]=0

(6)

and that

1
𝑇

𝑇
∑
𝑡=1

∑
𝑔∈𝒢

ℎ(𝑔, 𝑡)𝔼[𝑌𝑖1|𝑈 = 1]𝑝𝑔 = 𝔼[𝑌𝑖1|𝑈 = 1] 1
𝑇

𝑇
∑
𝑡=1

∑
𝑔∈𝒢

ℎ(𝑔, 𝑡)𝑝𝑔
⏟⏟⏟⏟⏟

=𝔼[ℎ(𝐺𝑖,𝑡)]=𝔼[�̈�𝑖𝑡]=0

(7)

Now, let’s consider the numerator for 𝛼. It is given by

1
𝑇

𝑇
∑
𝑡=1

𝔼[�̈�𝑖𝑡𝑌𝑖𝑡] = 1
𝑇

𝑇
∑
𝑡=1

𝔼[�̈�𝑖𝑡𝑌𝑖𝑡] − 1
𝑇

𝑇
∑
𝑡=1

𝔼[�̈�𝑖𝑡𝑌𝑖1]

= 1
𝑇

𝑇
∑
𝑡=1

∑
𝑔∈𝒢

𝔼[ℎ(𝑔, 𝑡)(𝑌𝑖𝑡 − 𝑌𝑖1)|𝐺 = 𝑔]𝑝𝑔

= 1
𝑇

𝑇
∑
𝑡=1

∑
𝑔∈𝒢

𝔼[ℎ(𝑔, 𝑡)(𝑌𝑖𝑡 − 𝑌𝑖1)|𝐺 = 𝑔]𝑝𝑔 − 1
𝑇

𝑇
∑
𝑡=1

∑
𝑔∈𝒢

𝔼[ℎ(𝑔, 𝑡)(𝑌𝑖𝑡 − 𝑌𝑖1)|𝑈 = 1]𝑝𝑔

= 1
𝑇

𝑇
∑
𝑡=2

∑
𝑔∈ ̄𝒢

ℎ(𝑔, 𝑡)(𝔼[𝑌𝑖𝑡 − 𝑌𝑖1|𝐺 = 𝑔] − 𝔼[𝑌𝑖𝑡 − 𝑌𝑖1|𝑈 = 1])𝑝𝑔

= ∑
𝑔∈ ̄𝒢

𝑇
∑
𝑡=𝑔

ℎ(𝑔, 𝑡)𝑝𝑔
𝑇 𝐴𝑇 𝑇 (𝑔, 𝑡)

where the first equality uses the properties of �̈�𝑖𝑡 and that 𝑌𝑖1 doesn’t vary over time, the second
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equality replaces �̈�𝑖𝑡 with ℎ(𝐺𝑖, 𝑡) and from the law of iterated expectations, the third equality uses
Equations 6 and 7, the fourth equality rearranges terms and removes some terms that are equal to
0, the fifth equality uses the parallel trends assumption (and that 𝐴𝑇 𝑇 (𝑔, 𝑡) = 0 for 𝑡 < 𝑔).
This implies that

𝛼 = ∑
𝑔∈ ̄𝒢

𝑇
∑
𝑡=𝑔

𝑤𝑇 𝑊𝐹𝐸(𝑔, 𝑡)𝐴𝑇 𝑇 (𝑔, 𝑡)

where

𝑤𝑇 𝑊𝐹𝐸(𝑔, 𝑡) =
ℎ(𝑔, 𝑡)𝑝𝑔

𝑇
1
𝑇

𝑇
∑
𝑡=1

𝔼[�̈�2
𝑖𝑡]

= ℎ(𝑔, 𝑡)𝑝𝑔

∑
𝑔∈ ̄𝒢

𝑇
∑
𝑡=𝑔

ℎ(𝑔, 𝑡)𝑝𝑔

You can show that ∑
𝑔∈ ̄𝒢

𝑇
∑
𝑡=𝑔

𝑤𝑇 𝑊𝐹𝐸(𝑔, 𝑡) = 1 (which is good; to see this you can notice that 𝔼[�̈�2
𝑖𝑡] =

𝔼[�̈�𝑖𝑡𝐷𝑖𝑡] and then follow the same arguments as above but with 𝐷𝑖𝑡 replacing 𝑌𝑖𝑡. When you do
this, the term 𝐴𝑇 𝑇 (𝑔, 𝑡) will be replaced by 1.), but notice that in general 𝑤𝑇 𝑊𝐹𝐸(𝑔, 𝑡) ≠ 𝑤𝑜(𝑔, 𝑡)
defined above. This means that, in the presence of treatment effect heterogeneity (so that 𝐴𝑇 𝑇 (𝑔, 𝑡)
is not constant across 𝑔 and 𝑡), it would not generally be the case that 𝛼 = 𝐴𝑇 𝑇 𝑜. This suggests
a lack of robustness to treatment effect heterogeneity.
Besides that, 𝑤𝑇 𝑊𝐹𝐸(𝑔, 𝑡) can be negative for some values of 𝑔 and 𝑡. Negative weights are

particularly troubling as they open up the possibility that the effect of the treatment could be, say,
positive for all units but you could get a negative estimate due to the estimation strategy.
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Example:
I think it is useful to try out an example. One example that delivers negative weights is
when 𝑇 = 3, 𝑝2 = 0.4, 𝑝3 = 0.4 and the probability of being in the untreated group is 0.2.
To figure out the weights, notice that

�̄�𝑖 = 3 − 2 + 1
3 = 2

3 for group 2

�̄�𝑖 = 3 − 3 + 1
3 = 1

3 for group 3

𝔼[𝐷2] = P(𝐺 = 2) = 0.4
𝔼[𝐷3] = P(𝐺 = 2) + P(𝐺 = 3) = 0.8

1
𝑇

𝑇
∑
𝑡=1

𝔼[𝐷𝑡] = 0 + 0.4 + 0.8
3 = 0.4

Therefore,

ℎ(2, 2) = 1 − 2
3 − 0.4 + 0.4 = 1

3
ℎ(2, 3) = 1 − 2

3 − 8
10 + 4

10 = 30 − 20 − 24 + 12
10 = − 1

15
ℎ(3, 3) = 1 − 1

3 − 8
10 + 4

10 = 30 − 10 − 24 + 12
10 = 4

5

which implies (plugging into the expressions from above) that

𝑤𝑇 𝑊𝐹𝐸(2, 2) =
1
3

4
10

1
3

4
10 − 1

15
4

10 + 4
5

4
10

= 5
5 − 1 + 12 = 5

16

𝑤𝑇 𝑊𝐹𝐸(2, 3) = − 1
16

𝑤𝑇 𝑊𝐹𝐸(3, 3) = 3
4

so that the weight on 𝐴𝑇 𝑇 (2, 3) is actually negative. It is interesting to contrast this with
the weights on 𝐴𝑇 𝑇 (𝑔, 𝑡)’s from 𝐴𝑇 𝑇 𝑜. These are given by

𝑤𝑜(2, 2) = 1
4

𝑤𝑜(2, 3) = 1
4

𝑤𝑜(3, 3) = 1
2

You can see how this might go poorly. For example, suppose that the treatment takes one
period to have any effect so that 𝐴𝑇 𝑇 (𝑔, 𝑔) = 0 and 𝐴𝑇 𝑇 (𝑔, 𝑔 + 1) = 1 for all groups. In
this case 𝐴𝑇 𝑇 𝑜 = 1

4 (which is the average treatment effect across all post-treatment periods
across all groups). On the other hand, 𝛼 = − 1

16 . Thus, even if the DID identification strategy
were working exactly right, you would estimate the wrong sign of the effect of the treatment
due to using a TWFE regression rather than the alternative approaches that we have been
talking about. 19



A natural question to ask at this point is: what is going wrong here? It turns out that you can
alternatively decompose 𝛼 from the TWFE regression into a weighted average (with all positive
weights) of comparisons between paths of outcomes of units that become treated relative to units
whose treatment status does not change. The problem with this is that units whose treatment
status does not change include (i) not-yet-treated units (these are “good” comparisons that are in
the spirit of DID), and (ii) already-treated units (these are “bad” comparisons in that their paths
of outcomes could be affected by the treatment).

If there is treatment effect homogeneity, then it does make sense to use already-treated units as
part of the comparison group (in this case, treatment happens and increases the level of outcomes
but units keep the same trend they would have had absent the treatment, so it is ok to use their
post-treatment paths of outcomes in this case). However, if there is treatment effect heterogeneity
(particularly dynamics), you start to get weighted averages of terms that use already treated units
as the comparison group (this is similar to what happens in the simpler case considered in Practice
(*) above).

Covariates

Recall that our original unconfoundedness assumption also included observed covariates 𝑋. To
conclude this part of the course, let’s revisit that case. I’ll consider the case where the observed
covariates are time-invariant as I think this is a leading case; in the example on job displacement,
the most important observed covariates that are likely to be a person’s demographic characteristics
(typically time invariant) and a person’s years of education (typically close to time invariant at
ages where people are at risk of being displaced). It is natural to consider a version of the parallel
trends assumption that includes covariates

𝔼[Δ𝑌𝑡(∞)|𝑋, 𝐺 = 𝑔] = 𝔼[Δ𝑌𝑡(∞)|𝑋]

In other words, conditional on having covariates 𝑋, then paths of untreated potential outcomes are
the same across all groups and time periods.
Moreover, in this case, you can show that

𝐴𝑇 𝑇 (𝑔, 𝑡) = 𝔼[𝑌𝑡 − 𝑌𝑔−1|𝐺 = 𝑔] − 𝔼[𝑌𝑡(∞) − 𝑌𝑔−1(∞)|𝐺 = 𝑔]
= 𝔼[𝑌𝑡 − 𝑌𝑔−1|𝐺 = 𝑔] − 𝔼[𝔼[𝑌𝑡(∞) − 𝑌𝑔−1(∞)|𝑋, 𝐺 = 𝑔]∣𝐺 = 𝑔]

= 𝔼[𝑌𝑡 − 𝑌𝑔−1|𝐺 = 𝑔] − 𝔼[𝔼[𝑌𝑡(∞) − 𝑌𝑔−1(∞)|𝑋, 𝑈 = 1]∣𝐺 = 𝑔]

= 𝔼[𝑌𝑡 − 𝑌𝑔−1|𝐺 = 𝑔] − 𝔼[𝔼[𝑌𝑡 − 𝑌𝑔−1|𝑋, 𝑈 = 1]∣𝐺 = 𝑔]

which is identified and is similar to expressions that we have seen before.
The above expression is very similar to the regression adjustment approach that we discussed

earlier this semester; you could imagine estimating 𝐴𝑇 𝑇 (𝑔, 𝑡) by imposing that 𝔼[𝑌𝑡 − 𝑌𝑔−1|𝑋, 𝑈 =
1] = 𝑋′𝛽𝑡 and estimating 𝛽𝑡 from running a regression of (𝑌𝑡 − 𝑌𝑔−1) on 𝑋 using observations from
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the untreated group.
You can also develop propensity score weighting and doubly robust expressions for 𝐴𝑇 𝑇 (𝑔, 𝑡),

similar to what we’ve done before, in this case as well:

𝐴𝑇 𝑇 (𝑔, 𝑡) = 𝔼 [(1{𝐺 = 𝑔}
̄𝑝𝑔

− 𝑈𝑝𝑔(𝑋)
̄𝑝𝑔(1 − 𝑝𝑔(𝑋))) (𝑌𝑡 − 𝑌𝑔−1)]

𝐴𝑇 𝑇 (𝑔, 𝑡) = 𝔼 [(1{𝐺 = 𝑔}
̄𝑝𝑔

− 𝑈𝑝𝑔(𝑋)
̄𝑝𝑔(1 − 𝑝𝑔(𝑋))) (𝑌𝑡 − 𝑌𝑔−1 − 𝔼[𝑌𝑡 − 𝑌𝑔−1|𝑋, 𝑈 = 1])]

where we define 𝑝𝑔(𝑋) = P(𝐺 = 𝑔|𝑋,1{𝐺 = 𝑔}+𝑈 = 1); which is a version of the propensity score
– it is the probability of being in group 𝑔 conditional on covariates and on being either in group 𝑔
or the never-treated group.
These are very similar to what we talked about in the previous set of notes. Moreover, the

aggregations that we talked about previously can continue to apply.
As a final comment, let us briefly consider using the following sort of TWFE regression here

𝑌𝑖𝑡 = 𝜃𝑡 + 𝜂𝑖 + 𝛼𝐷𝑖𝑡 + 𝑋′
𝑖𝛽𝑡 + 𝑒𝑖𝑡

This strategy would work fine under (i) a linear model for untreated potential outcomes and (ii)
treatment effect homogeneity; but, in the presence of treatment effect heterogeneity would suffer
from (i) the problems that we talked about in the last set of notes (such as weight reversal) as well
as (ii) the problems due to multiple periods that we have talked about above. To me, this strategy
seems notably less attractive than the alternative approaches discussed above.
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