
These notes come from Chapter 3 of the textbook and covers properties of least squares regression
under the assumptions of the linear projection model.

Linear Regression Notes 3: The algebra of least squares

We’ll spend the next few classes talking about the linear projection model. Recall that, in chapter
2, we defined the best linear predictor of 𝑌 given 𝑋 as 𝑋′𝛽 where

𝛽 = argmin
𝑏

𝔼[(𝑌 − 𝑋′𝑏)2]

which has the solution 𝛽 = 𝔼[𝑋𝑋′]−1𝔼[𝑋𝑌 ] (see Hansen 2.18 and our preliminary notes for this
derivation though we will derive a very closely related result below).

Moreover, the best linear predictor is therefore given by 𝑋′𝛽 = 𝑋′𝔼[𝑋𝑋′]−1𝔼[𝑋𝑌 ]. And, recall
that we defined the projection error 𝑒 = 𝑌 − 𝑋′𝛽.

Notation:
H: 3.10
It’s convenient to define the data matrix

X ∶=
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑋11 𝑋12 ⋯ 𝑋1𝑘
𝑋21 𝑋22 ⋯ 𝑋2𝑘

⋮ ⋮ ⋱ ⋮
𝑋𝑛1 𝑋𝑛2 ⋯ 𝑋𝑛𝑘

⎞⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑋′
1

𝑋′
2

⋮
𝑋′

𝑛

⎞⎟⎟⎟⎟⎟⎟
⎠

which is an 𝑛 × 𝑘 matrix. This is called a data matrix because it is very similar to, say, an
Excel spreadsheet — each row contains a particular observation. In class, since it is hard
to write bold font, I’ll typically use 𝑋 for this data matrix. And, slightly abusing notation,
let’s define

Y ∶=
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑌1
𝑌2
⋮

𝑌𝑛

⎞⎟⎟⎟⎟⎟⎟
⎠

and e =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑒1
𝑒2
⋮

𝑒𝑛

⎞⎟⎟⎟⎟⎟⎟
⎠

which are both 𝑛 × 1 vectors. In class, I will write these as 𝑌 and 𝑒.

Sampling

H: 3.2, 4.2
For most of this semester, we’ll suppose that we have access to a simple random simple. That

is, the observed data consists of {(𝑌𝑖, 𝑋𝑖)}𝑛
𝑖=1 that are independent and identically distributed. This

means that we observe 𝑛 “draws” from some underlying population. That the data is identically
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distributed means that the draws are all from the same distribution — you should not think of
this as being a strong assumption in most cases (though there are some exceptions such as some
types of time series data). Independent means that observations are independent of each other; for
example, if you are studying labor market outcomes, it means that if you draw a very rich person
for the first observation, it does not give you an indication of whether or not the next draw is
likely to be a rich person or not. Data being independent is a leading case though there are some
important exceptions (many time series do not satisfy independence, and we’ll talk some about
clustered sampling too).

Estimating 𝛽 from the linear projection model

H: 3.3, 3.4, 3.6
Often in econometrics, we will be interesting in estimating population quantities using the data

that we have access. Perhaps the simplest example of a population quantity that we might be
interested in estimating is 𝔼[𝑌 ]. The natural way to estimate a population moment like this is to
use its sample analogue. That is,

�̂�[𝑌 ] ∶= 1
𝑛

𝑛
∑
𝑖=1

𝑌𝑖

where the “ ̂ ’ ’ indicates that it is an estimated quantity. This strategy of estimating population
moments by their sample counterpart is called a moment estimator or, more generally, as the
analogy principle. This strategy also works for estimating more complicated population quan-
tities like the 𝑘 × 1 matrix 𝔼[𝑋𝑌 ] or the 𝑘 × 𝑘 matrix 𝔼[𝑋𝑋′], where the natural estimators are
given by

1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑌𝑖 and 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑋′
𝑖

Another common setup is that we are interested in population parameters that are a function
of moments. For example, we can write the linear proejection coefficient 𝛽 = 𝑔(𝔼[𝑋𝑋′], 𝔼[𝑋𝑌 ]) =
𝔼[𝑋𝑋′]−1𝔼[𝑋𝑌 ]. A natural way to estimate parameters that are functions of moments (as is 𝛽)
is to use the same function but replace the population moments with their sample counterparts.
That is,

̂𝛽 = 𝑔 ( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑋′
𝑖 ,

1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑌𝑖)

= ( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑋′
𝑖)

−1
1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑌𝑖
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This strategy is called a plug-in estimators. This is the way that we’ll estimate 𝛽, but let’s
also think about one other motivation for this expression. We can also think of ̂𝛽 as the solution to

̂𝛽 = argmin
𝑏

1
𝑛

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑋′
𝑖𝑏)2

Let’s solve this for ̂𝛽. It’s helpful to expand the expression above into

̂𝛽 = argmin
𝑏

1
𝑛

𝑛
∑
𝑖=1

𝑌 2
𝑖 − 2𝑏′ 1

𝑛
𝑛

∑
𝑖=1

𝑋𝑖𝑌𝑖 + 𝑏′ 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑋′
𝑖𝑏

Now, let’s take the derivative with respect to 𝛽, set it equal to 0, and solve:

0 = −2 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑌𝑖 + 2 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑋′
𝑖 ̂𝛽

which (as long as 1
𝑛 ∑𝑛

𝑖=1 𝑋𝑖𝑋′
𝑖 is positive definite) implies that

̂𝛽 = ( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑋′
𝑖)

−1
1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖𝑌𝑖

which is exactly the same expression that we got before.
It is also good to have an expression for ̂𝛽 in terms of the data matrices that we defined earlier.
Using this notation, notice that we can write

̂𝛽 = (X′X)−1X′Y

which holds because

X′X = (𝑋1 𝑋2 ⋯ 𝑋𝑛)
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑋′
1

𝑋′
2

⋮
𝑋′

𝑛

⎞⎟⎟⎟⎟⎟⎟
⎠

=
𝑛

∑
𝑖=1

𝑋𝑖𝑋′
𝑖

and, similarly,

X′Y = (𝑋1 𝑋2 ⋯ 𝑋𝑛)
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑌1
𝑌2
⋮

𝑌𝑛

⎞⎟⎟⎟⎟⎟⎟
⎠

=
𝑛

∑
𝑖=1

𝑋𝑖𝑌𝑖

Least squares residuals

H: 3.8
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Once we have estimated the linear projection coefficient, we can define fitted values: ̂𝑌𝑖 ∶= 𝑋′
𝑖 ̂𝛽

and residuals: ̂𝑒𝑖 ∶= 𝑌𝑖 − ̂𝑌𝑖 = 𝑌𝑖 − 𝑋′
𝑖 ̂𝛽. Note that the residual is distinct from the error term

that we defined earlier; in particular, the residual is something that we can calculate while the error
term is not observed. Two useful properties of residuals are

1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖 ̂𝑒𝑖 = 0 and 1
𝑛

𝑛
∑
𝑖=1

̂𝑒𝑖 = 0

where the last one holds if 𝑋 includes an intercept. Proving these results is mechanically similar
to proving that 𝔼[𝑋𝑒] = 0 in the linear projection model, so I will omit showing this (you can also
see the textbook for a proof).

We can also define a vector/matrix version of the residuals. In particular, define

ê ∶= Y − X ̂𝛽

which is an 𝑛 × 1 vector of residuals.

Projection Matrix

H: 3.11
Next, let’s define

P ∶= X(X′X)−1X′

P is called a projection matrix. It is an 𝑛 × 𝑛 matrix. The projection matrix creates fitted
values; that is

PY = X(X′X)−1X′Y = X ̂𝛽 = Ŷ

Also, notice that

PX = X(X′X)−1X′X = X

In other words, if you project X onto itself, you will just recover X.

Theorem 3.3 The projection matrix has the following properties (the theorem contains a few
extra properties, but these are the main ones we’ll use this semester)

1. P is symmetric

2. P is idempotent (that is, PP = P)

3. tr(P) = 𝑘.

4. P is positive semi-definite
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Proof
For 1, notice that

P′ = (X(X′X)−1X′)′

= (X′)′ ((X′X)−1)′ (X)′

= X ((X′X)′)−1 X′

= X ((X)′(X′)′)−1 X′

= X(X′X)−1X′

= P

For 2,

PP = PX(X′X)−1X′

= X(X′X)−1X′

= P

For 3, recall that the trace of a square matrix is the sum of its diagonal elements. It also has the
useful property that, for a 𝑘 × 𝑟 matrix A and an 𝑟 × 𝑘 matrix B, tr(𝐴𝐵) = tr(𝐵𝐴) (the proof of
this is straightforward, see p.961 in the book).

tr(P) = tr(X(X′X)−1X′)

= tr(X′X(X′X)−1)

= tr(I𝑘)

= 𝑘

For 4, recall that for P, which is an 𝑛 × 𝑛 matrix, to be positive definite, it should be the case
that 𝑐′P𝑐 ≥ 0 for any 𝑛 × 1 vector 𝑐. Notice that,

𝑐′P𝑐 = 𝑐′PP𝑐
= 𝑐′P′P𝑐
= (P𝑐)′P𝑐 ≥ 0

where the first equality holds because P is idempotent, the second equality holds because P is
symmetric, and the third line holds by the properties of transpose and the inequality holds because
it is the inner product of the 𝑛 × 1 vector P𝑐 with itself is ≥ 0.

Annihilator Matrix

H: 3.12
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Next, consider the annihilator matrix

M ∶= I𝑛 − P
= I𝑛 − X(X′X)−1X′

This is also an 𝑛 × 𝑛 matrix. Notice that,

MX = (I𝑛 − P)X
= X − X
= 0

where 0 is an 𝑛 × 𝑘 matrix of zeros.
Further, M creates residuals (in fact, it is sometimes called the residual-maker matrix). To see

this, notice that

MY = (I𝑛 − P)𝑌
= Y − PY
= Y − X ̂𝛽
= ê

We can also use the annihilator matrix to provide a useful expression for the residuals in terms
of the linear projection errors. In particular, notice that

ê = MY
= M(X𝛽 + e)
= 0 + Me
= Me

The annihilator matrix has some similar properties as the projection matrix above. In particular,
it is symmetric, idempotent, and tr(M) = 𝑛−𝑘. I’ll omit the proofs of these, but it is good practice
to show that these statements are true.

Estimation of Error Variance

H: 3:13
Next, let’s consider trying to estimate the variance of the linear projection error; that is 𝜎2 ∶=
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𝔼[𝑒2]. Following our earlier discussion, if the error term were observed for particular observations,
we would estimate it by

�̃�2 = 1
𝑛

𝑛
∑
𝑖=1

𝑒2
𝑖 = 1

𝑛e′e

This is an infeasible estimator though (because 𝑒𝑖 is not observed). A main alternative way to
estimate 𝜎2 is the feasible estimator that replaces the error term, 𝑒𝑖, with the residual ̂𝑒𝑖. That is,

�̂�2 = 1
𝑛

𝑛
∑
𝑖=1

̂𝑒2
𝑖

Let’s try to relate this to the infeasible estimator above. [As a side-comment, this is not a main
property that you ought to remember, but more like practice using properties of projection/anni-
hilator matrices.] Notice that,

�̂�2 = 1
𝑛 ê′ê

= 1
𝑛(Me)′Me

= 1
𝑛e′M′Me

= 1
𝑛e′MMe

= 1
𝑛e′Me

where the first equality holds by the definition of ê, the second equality holds by our earlier argument
that ê = Me, the third equality holds by taking the transpose, the fourth equality holds because
M is symmetric, the fifth equality holds because M is idempotent. This implies that

�̃�2 − �̂�2 = 1
𝑛e′e − 1

𝑛e′Me

= 1
𝑛e′I𝑛e − 1

𝑛e′Me

= 1
𝑛e′Pe ≥ 0

where the last equality holds because P is positive semi-definite and e′Pe is a quadratic form. This
implies that �̂�2 is smaller than the infeasible �̃�2.
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Regression Components

H: 3.16
There are a large number of cases where we may be more interested in some of the regression

parameters than others (e.g., the treatment effects discussion that we had earlier this semester), so
it’s useful to have some specific expressions for subsets of the parameters. For this, let’s partition
X = [X1 X2] and, likewise, 𝛽 = (𝛽′

1, 𝛽′
2)′. Using this notation, we can immediately write

Y = X ̂𝛽 + ê

= [X1 X2] (
̂𝛽1
̂𝛽2
)

= X1 ̂𝛽1 + X2 ̂𝛽2 + ê

Recall that, ̂𝛽1 and ̂𝛽2 minimize the sum of squared residuals

( ̂𝛽′
1, ̂𝛽′

2)′ = argmin
𝑏1,𝑏2

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑋′
𝑖1𝑏1 − 𝑋′

𝑖2𝑏2)2

= argmin
𝑏1,𝑏2

(Y − X1𝑏1 − X2𝑏2)′(Y − X1𝑏1 − X2𝑏2)

If we are just focused on ̂𝛽1, we can alternatively express this as

̂𝛽1 = argmin
𝑏1

{min
𝑏2

(Y − X𝑏1 − X𝑏2)′(Y − X𝑏1 − X𝑏2)} (1)

This sort of nested minimization is often referred to as “concentrating out” 𝑏2 and is a fairly
common estimation strategy (it doesn’t really apply here, but there are some cases where this sort
of step may lead to estimators that are notably less computationally complex). The idea here is
roughly that we can minimize the overall function by first minimizing it with respect to 𝑏2 (treating
𝑏1 as fixed). This results in our recovering ̂𝛽2(𝑏1) (that is the value of 𝑏2 that minimizes the objective
function for a given value of 𝑏1). Then, we can fully minimize the function by taking ̂𝛽1 to be the
value of 𝑏1 that minimizes the objective function taking into account ̂𝛽2(𝑏1). [Also, notice that the
inside minimization uses “min” rather than “argmin” because we are still interested in minimizing
the objective function itself which is (obviously) quite different from minimizing ̂𝛽2(𝑏1).]

Let’s focus on the inside minimization first. For the inside minimization, we treat 𝑏1 as being
fixed and the value of 𝑏2 that minimizes this expression will be a function of 𝑏1; I’ll call the value of
𝑏2 that minimizes ̂𝛽2(𝑏1). The inside minimization just amounts to just a regression of Y − X1𝛽1
on X2 which implies that

̂𝛽2(𝑏1) = (X′
2X2)−1X2

′(Y − X1𝛽1)
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Notice that, from the inside minimization problem, we are not directly interested in ̂𝛽2(𝑏1), but
rather the value of the function at ̂𝛽2(𝑏1) (this is because of of the “min” rather than “argmin”).
This means that the term inside the large curly braces in Equation 1 comes from plugging in this
value of ̂𝛽2(𝑏1), i.e.,

min
𝑏2

(Y − X𝑏1 − X𝑏2)′(Y − X𝑏1 − X𝑏2) = (Y − X𝑏1 − X𝛽2(𝑏1))′(Y − X𝑏1 − X ̂𝛽2(𝑏1))

Moreover, notice that

Y − X1𝛽1 − X2 ̂𝛽2(𝑏1) = Y − X1𝛽1 − X2(X′
2X2)−1X2

′⏟⏟⏟⏟⏟⏟⏟
P2

(Y − X1𝛽1)

= (I𝑛 − P2)(Y − X1𝛽1)
= M2(Y − X1𝛽1)

where P2 ∶= X2(X′
2X2)−1X2

′ and M2 ∶= (I𝑛 − P2). Therefore, the inside term in Equation 1 can
be written as

min
𝛽2

(Y − X𝛽1 − X𝛽2)′(Y − X𝛽1 − X𝛽2) = (M2(Y − X1𝛽1))′(M2(Y − X1𝛽1))

= (Y − X1𝛽1)′M2(Y − X1𝛽1)

where the first equality uses the expression from above and the last equality uses that M2 is
symmetric and idempotent. Now, let’s plug this into the outside minimization problem.

̂𝛽1 = argmin
𝑏1

(Y − X1𝑏1)′M2(Y − X1𝑏1)

= argmin
𝑏1

Y′M2Y − 2𝑏′
1X′

1M2Y + 𝑏′
1X′

1M2X1𝑏1

Taking the derivative of the right hand side and setting equal to 0, we have that

0 = −2X′
1M2Y + 2X′

1M2X1 ̂𝛽1

which implies that

̂𝛽1 = (X′
1M2X1)−1X′

1M2Y

The arguments above are symmetric, so you could make the same sorts of calculations and derive
a similar result for ̂𝛽2.
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Residual Regression

H: 3.18
The previous result is very closely related to a famous result in econometrics called the Frisch,

Waugh, Lovell Theorem. In particular, from the previous expression for ̂𝛽1, we have that

̂𝛽1 = (X′
1M2X1)−1X′

1M2Y
= (X′

1M′
2M2X1)−1X′

1M2
′M2Y

= ((M2X1)′M2X1)−1(M2X1)′M2Y
= (X̃′

1X̃1)−1X̃1 ̃e2

which uses that M2 is symmetric and idempotent and where X̃1 ∶= M2X1 (i.e., the residuals from
a regression of X1 on X2) and ẽ2 ∶= M2Y (i.e., the residuals from the regression of Y on X2).

This implies an algebraic equivalence between ̂𝛽1 from the regression of Y on X1 and X2 and
the following estimation procedure:

1. Regress Y on X2 and recover the residuals ẽ2.

2. Regress X1 on X2 and recover the residuals X̃1.

3. Regress ẽ2 on X̃1.

This procedure delivers exactly the same estimate of ̂𝛽1. That this procedure recovers exactly
the same estimate of ̂𝛽1 is called the Frisch-Waugh-Lovell Theorem.

This result gives a nice interpretation to the estimates of ̂𝛽1. It is equivalent to a regression of Y
on X1 after “partialling out” (i.e., removing the effect of X2 on both Y and X1). Besides that, the
FWL Theorem is computationally useful in some important cases too such as some of the panel
data approaches that we’ll consider later in the semester.

10



Side-Comment:
H: 2.23
A population version of FWL is given in H: 2.23. I have used this in a few of my papers, so
I just want to quickly mention it here. For simplicity (and because it is the leading case),
let’s consider the case where 𝑋1 is scalar and write

𝑌 = 𝑋1𝛽1 + 𝑋′
2𝛽2 + 𝑒

where 𝔼[𝑋𝑒] = 0. Now, consider the projection of 𝑋1 on 𝑋2, that is,

𝑋1 = 𝑋′
2𝛾1 + 𝑢1

where 𝔼[𝑋2𝑢1] = 0. Now, notice that

𝔼[𝑢1𝑌 ] = 𝔼[𝑢1𝑋1]𝛽1 + 𝔼[𝑢1𝑋′
2]⏟

=0
𝛽2 + 𝔼[𝑢1𝑒]

= 𝔼[𝑢1(𝑋′
2𝛾1 + 𝑢1)]𝛽1 + 𝔼[(𝑋1 − 𝑋′

2𝛾1)𝑒]
= 𝔼[𝑢2

1]𝛽1

where the second equality holds by substituting for 𝑋1 in the first term and for 𝑢1 in the
last term, and the last equality holds because 𝔼[𝑋2𝑢1] = 0 and because 𝔼[𝑋1𝑒] = 0 and
𝔼[𝑋2𝑒] = 0. This implies that

𝛽1 = 𝔼[𝑢1𝑌 ]
𝔼[𝑢2

1]

which is, essentially, a population version of the FWL theorem.
As a final comment, we can write the linear projection of 𝑌 on 𝑋2

𝑌 = 𝑋′
2𝛾𝑌 + 𝑢𝑌

Using similar arguments as above, you can also show that

𝛽1 = 𝔼[𝑢𝑌 𝑋1]
𝔼[𝑢2

1] and 𝛽1 = 𝔼[𝑢1𝑢𝑌 ]
𝔼[𝑢2

1]

but I will leave these as practice problems for you (note that the last expression is really the
most analogous version of a population version of FWL).
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