Since \(n\) grows faster than \(\sqrt{n}\), \(n \left(\frac{1}{n}\sum_{i=1}^n (Y_i - \mathbb{E}[Y])\right)\) diverges (i.e., the absolute value goes to infinity as \(n \rightarrow \infty\))
Since \(n^{1/3}\) grows slower than \(\sqrt{n}\), \(n^{1/3} \left(\frac{1}{n}\sum_{i=1}^n (Y_i - \mathbb{E}[Y])\right)\) converges to 0 as \(n \rightarrow \infty\)