For today’s code challenge, we’ll use the data fertilizer_panel
which is available on the course website.
The variable avfert
contains the tons of fertilizer used per hectare (about 2.5 acres) of farmland across countries and across years.
For this problem, you need to calculate the median amount of fertilizer separately for each country starting in 1980 to the present. For example, fertilizer usage for Mexico that is available in the data is
year | avfert |
---|---|
1965 | 0.015 |
1970 | 0.026 |
1975 | 0.046 |
1980 | 0.057 |
1985 | 0.074 |
1990 | 0.072 |
1995 | 0.061 |
2000 | 0.074 |
Rules:
ggplot2
and dplyr
), but any base R functions are allowedTo win
You must email me your code brantly.callaway@uga.edu
I’ll run exactly the code that you send me, and if you calculate the correct median amount of fertilizer for all countries, then you win.
Solution below…
library(dplyr)
data <- subset(fertilizer_panel, year >= 1980)
med_fert_by_country <- data %>% group_by(country) %>%
summarize(median_avfert = median(avfert)) %>%
as.data.frame()
med_fert_by_country
## country median_avfert
## 1 Algeria 0.0156501550
## 2 Argentina 0.0061351010
## 3 Bangladesh 0.1048785299
## 4 Benin 0.0062558735
## 5 Bolivia 0.0028469483
## 6 Botswana 0.0032338309
## 7 Brazil 0.0777190179
## 8 Burundi 0.0031678486
## 9 Cameroon 0.0056212265
## 10 Chile 0.1081880629
## 11 China 0.2221987545
## 12 Colombia 0.1770450771
## 13 Costa Rica 0.4256410301
## 14 Cote d'Ivoire 0.0223179981
## 15 Dominican Republic 0.0859113559
## 16 Ecuador 0.0470984392
## 17 Egypt, Arab Rep. 0.3848614991
## 18 El Salvador 0.1370679289
## 19 Fiji 0.1264293343
## 20 Gabon 0.0020124682
## 21 Gambia, The 0.0064138998
## 22 Ghana 0.0040090578
## 23 Guatemala 0.0998974368
## 24 Haiti 0.0043162392
## 25 Honduras 0.0193095859
## 26 India 0.0738830641
## 27 Indonesia 0.1226644292
## 28 Iran, Islamic Rep. 0.0613351390
## 29 Jamaica 0.1408390701
## 30 Jordan 0.0642600730
## 31 Kenya 0.0258333348
## 32 Korea, Rep. 0.4545066357
## 33 Lesotho 0.0160962436
## 34 Malawi 0.0210565981
## 35 Malaysia 0.5386134386
## 36 Mali 0.0077816672
## 37 Mauritania 0.0056532356
## 38 Mauritius 0.2866933346
## 39 Mexico 0.0716425031
## 40 Morocco 0.0357644893
## 41 Mozambique 0.0020205642
## 42 Namibia 0.0000000000
## 43 Nepal 0.0320219807
## 44 Nicaragua 0.0281356424
## 45 Niger 0.0003151741
## 46 Pakistan 0.0920683444
## 47 Panama 0.0656088963
## 48 Paraguay 0.0091811260
## 49 Peru 0.0380968302
## 50 Philippines 0.0955030993
## 51 Romania 0.1077129170
## 52 Rwanda 0.0003265846
## 53 Senegal 0.0093252277
## 54 Sierra Leone 0.0057628029
## 55 South Africa 0.0573089123
## 56 Sri Lanka 0.2269737720
## 57 Syrian Arab Republic 0.0580627061
## 58 Tanzania 0.0109782023
## 59 Thailand 0.0537285693
## 60 Togo 0.0057220440
## 61 Trinidad and Tobago 0.0846990719
## 62 Tunisia 0.0314634331
## 63 Turkey 0.0677941293
## 64 Uganda 0.0001161479
## 65 Uruguay 0.0585582033
## 66 Venezuela, RB 0.1095280051
## 67 Zambia 0.0127835721
## 68 Zimbabwe 0.0562351495