Extra Practice Questions for Midterm 1

1. (a) What would be the result from running the following code?

```
all( c(1,2,3,4,5) > 0)
```

(b) Consider the following function

```
a_function <- function(n) {
    out <- 0
    for (i in 1:n) {
        out <- out + i^2
    }
    out
}</pre>
```

If you run the following code, what will it output? a_function(5)

- 2. Suppose there are two random variables X and Y.
 - a) If you know that X and Y are independent, do you know what their covariance is equal to? Explain. If yes, what is the covariance equal to?
 - b) If you know that cov(X, Y) = 0, are X and Y independent? Explain.
 - c) If you know that cov(X, Y) = 1, are X and Y independent? Explain.

- 3. Suppose that X_1 and X_2 are two random variables such that $\mathbb{E}[X_1] = 0$, $\mathbb{E}[X_2] = 5$, $\operatorname{var}(X_1) = 1$, $\operatorname{var}(X_2) = 10$ and $\operatorname{cov}(X_1, X_2) = -1$. Suppose that $Y = X_1 + X_2$.
 - a) What is $\mathbb{E}[Y]$?
 - b) What is var(Y)?

4. Consider a random variable Y that is equal to a firm's profits (in thousands of dollars) and another random variable X that is equal to firm's number of employees. Suppose you know that

$$\mathbb{E}[Y|X=x] = 50 + 10x$$

- a) Explain how to interpret $\mathbb{E}[Y|X = x]$.
- b) What is $\mathbb{E}[Y|X = 10]$?
- c) Suppose that $\operatorname{var}(Y) = 40$, $\mathbb{E}[X] = 30$, and $\operatorname{var}(Y) = 20$, calculate $\mathbb{E}[Y]$.

- 5. Suppose that we have a random sample of n observations of X and Y.
 - a) Suppose that you want to estimate the covariance between X and Y using the data that we have. Propose an estimator for the covariance. **Hint:** Try using the analogy principle and the expression $cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$.
 - b) Alternatively, the definition of covariance is $cov(X, Y) = \mathbb{E}[(X \mathbb{E}[X])(Y \mathbb{E}[Y])]$. Propose an estimator for the covariance based on this expression. Would you expect this to give you the same estimate of the covariance as in part a?