Extra Practice Questions for Midterm 1

1. (a) What would be the result from running the following code?
```
all( c(1,2,3,4,5) > 0)
```

(b) Consider the following function

```
a_function <- function(n) {
    out <- 0
    for (i in 1:n) {
        out <- out + i^2
    }
    out
}
```

If you run the following code, what will it output?
a_function(5)
2. Suppose there are two random variables X and Y.
a) If you know that X and Y are independent, do you know what their covariance is equal to? Explain. If yes, what is the covariance equal to?
b) If you know that $\operatorname{cov}(X, Y)=0$, are X and Y independent? Explain.
c) If you know that $\operatorname{cov}(X, Y)=1$, are X and Y independent? Explain.
3. Suppose that X_{1} and X_{2} are two random variables such that $\mathbb{E}\left[X_{1}\right]=0, \mathbb{E}\left[X_{2}\right]=5, \operatorname{var}\left(X_{1}\right)=1$, $\operatorname{var}\left(X_{2}\right)=10$ and $\operatorname{cov}\left(X_{1}, X_{2}\right)=-1$. Suppose that $Y=X_{1}+X_{2}$.
a) What is $\mathbb{E}[Y]$?
b) What is $\operatorname{var}(Y)$?
4. Consider a random variable Y that is equal to a firm's profits (in thousands of dollars) and another random variable X that is equal to firm's number of employees. Suppose you know that

$$
\mathbb{E}[Y \mid X=x]=50+10 x
$$

a) Explain how to interpret $\mathbb{E}[Y \mid X=x]$.
b) What is $\mathbb{E}[Y \mid X=10]$?
c) Suppose that $\operatorname{var}(Y)=40, \mathbb{E}[X]=30$, and $\operatorname{var}(Y)=20$, calculate $\mathbb{E}[Y]$.
5. Suppose that we have a random sample of n observations of X and Y.
a) Suppose that you want to estimate the covariance between X and Y using the data that we have. Propose an estimator for the covariance. Hint: Try using the analogy principle and the expression $\operatorname{cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]$.
b) Alternatively, the definition of covariance is $\operatorname{cov}(X, Y)=\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]$. Propose an estimator for the covariance based on this expression. Would you expect this to give you the same estimate of the covariance as in part a?

